| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2021 Broadcom. All Rights Reserved. The term |
| * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. |
| */ |
| |
| #include "efct_driver.h" |
| #include "efct_hw.h" |
| #include "efct_unsol.h" |
| |
| struct efct_hw_link_stat_cb_arg { |
| void (*cb)(int status, u32 num_counters, |
| struct efct_hw_link_stat_counts *counters, void *arg); |
| void *arg; |
| }; |
| |
| struct efct_hw_host_stat_cb_arg { |
| void (*cb)(int status, u32 num_counters, |
| struct efct_hw_host_stat_counts *counters, void *arg); |
| void *arg; |
| }; |
| |
| struct efct_hw_fw_wr_cb_arg { |
| void (*cb)(int status, u32 bytes_written, u32 change_status, void *arg); |
| void *arg; |
| }; |
| |
| struct efct_mbox_rqst_ctx { |
| int (*callback)(struct efc *efc, int status, u8 *mqe, void *arg); |
| void *arg; |
| }; |
| |
| static int |
| efct_hw_link_event_init(struct efct_hw *hw) |
| { |
| hw->link.status = SLI4_LINK_STATUS_MAX; |
| hw->link.topology = SLI4_LINK_TOPO_NONE; |
| hw->link.medium = SLI4_LINK_MEDIUM_MAX; |
| hw->link.speed = 0; |
| hw->link.loop_map = NULL; |
| hw->link.fc_id = U32_MAX; |
| |
| return 0; |
| } |
| |
| static int |
| efct_hw_read_max_dump_size(struct efct_hw *hw) |
| { |
| u8 buf[SLI4_BMBX_SIZE]; |
| struct efct *efct = hw->os; |
| int rc = 0; |
| struct sli4_rsp_cmn_set_dump_location *rsp; |
| |
| /* attempt to detemine the dump size for function 0 only. */ |
| if (PCI_FUNC(efct->pci->devfn) != 0) |
| return rc; |
| |
| if (sli_cmd_common_set_dump_location(&hw->sli, buf, 1, 0, NULL, 0)) |
| return -EIO; |
| |
| rsp = (struct sli4_rsp_cmn_set_dump_location *) |
| (buf + offsetof(struct sli4_cmd_sli_config, payload.embed)); |
| |
| rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); |
| if (rc != 0) { |
| efc_log_debug(hw->os, "set dump location cmd failed\n"); |
| return rc; |
| } |
| |
| hw->dump_size = |
| le32_to_cpu(rsp->buffer_length_dword) & SLI4_CMN_SET_DUMP_BUFFER_LEN; |
| |
| efc_log_debug(hw->os, "Dump size %x\n", hw->dump_size); |
| |
| return rc; |
| } |
| |
| static int |
| __efct_read_topology_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg) |
| { |
| struct sli4_cmd_read_topology *read_topo = |
| (struct sli4_cmd_read_topology *)mqe; |
| u8 speed; |
| struct efc_domain_record drec = {0}; |
| struct efct *efct = hw->os; |
| |
| if (status || le16_to_cpu(read_topo->hdr.status)) { |
| efc_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status, |
| le16_to_cpu(read_topo->hdr.status)); |
| return -EIO; |
| } |
| |
| switch (le32_to_cpu(read_topo->dw2_attentype) & |
| SLI4_READTOPO_ATTEN_TYPE) { |
| case SLI4_READ_TOPOLOGY_LINK_UP: |
| hw->link.status = SLI4_LINK_STATUS_UP; |
| break; |
| case SLI4_READ_TOPOLOGY_LINK_DOWN: |
| hw->link.status = SLI4_LINK_STATUS_DOWN; |
| break; |
| case SLI4_READ_TOPOLOGY_LINK_NO_ALPA: |
| hw->link.status = SLI4_LINK_STATUS_NO_ALPA; |
| break; |
| default: |
| hw->link.status = SLI4_LINK_STATUS_MAX; |
| break; |
| } |
| |
| switch (read_topo->topology) { |
| case SLI4_READ_TOPO_NON_FC_AL: |
| hw->link.topology = SLI4_LINK_TOPO_NON_FC_AL; |
| break; |
| case SLI4_READ_TOPO_FC_AL: |
| hw->link.topology = SLI4_LINK_TOPO_FC_AL; |
| if (hw->link.status == SLI4_LINK_STATUS_UP) |
| hw->link.loop_map = hw->loop_map.virt; |
| hw->link.fc_id = read_topo->acquired_al_pa; |
| break; |
| default: |
| hw->link.topology = SLI4_LINK_TOPO_MAX; |
| break; |
| } |
| |
| hw->link.medium = SLI4_LINK_MEDIUM_FC; |
| |
| speed = (le32_to_cpu(read_topo->currlink_state) & |
| SLI4_READTOPO_LINKSTATE_SPEED) >> 8; |
| switch (speed) { |
| case SLI4_READ_TOPOLOGY_SPEED_1G: |
| hw->link.speed = 1 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_2G: |
| hw->link.speed = 2 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_4G: |
| hw->link.speed = 4 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_8G: |
| hw->link.speed = 8 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_16G: |
| hw->link.speed = 16 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_32G: |
| hw->link.speed = 32 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_64G: |
| hw->link.speed = 64 * 1000; |
| break; |
| case SLI4_READ_TOPOLOGY_SPEED_128G: |
| hw->link.speed = 128 * 1000; |
| break; |
| } |
| |
| drec.speed = hw->link.speed; |
| drec.fc_id = hw->link.fc_id; |
| drec.is_nport = true; |
| efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_FOUND, &drec); |
| |
| return 0; |
| } |
| |
| static int |
| efct_hw_cb_link(void *ctx, void *e) |
| { |
| struct efct_hw *hw = ctx; |
| struct sli4_link_event *event = e; |
| struct efc_domain *d = NULL; |
| int rc = 0; |
| struct efct *efct = hw->os; |
| |
| efct_hw_link_event_init(hw); |
| |
| switch (event->status) { |
| case SLI4_LINK_STATUS_UP: |
| |
| hw->link = *event; |
| efct->efcport->link_status = EFC_LINK_STATUS_UP; |
| |
| if (event->topology == SLI4_LINK_TOPO_NON_FC_AL) { |
| struct efc_domain_record drec = {0}; |
| |
| efc_log_info(hw->os, "Link Up, NPORT, speed is %d\n", |
| event->speed); |
| drec.speed = event->speed; |
| drec.fc_id = event->fc_id; |
| drec.is_nport = true; |
| efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_FOUND, |
| &drec); |
| } else if (event->topology == SLI4_LINK_TOPO_FC_AL) { |
| u8 buf[SLI4_BMBX_SIZE]; |
| |
| efc_log_info(hw->os, "Link Up, LOOP, speed is %d\n", |
| event->speed); |
| |
| if (!sli_cmd_read_topology(&hw->sli, buf, |
| &hw->loop_map)) { |
| rc = efct_hw_command(hw, buf, EFCT_CMD_NOWAIT, |
| __efct_read_topology_cb, NULL); |
| } |
| |
| if (rc) |
| efc_log_debug(hw->os, "READ_TOPOLOGY failed\n"); |
| } else { |
| efc_log_info(hw->os, "%s(%#x), speed is %d\n", |
| "Link Up, unsupported topology ", |
| event->topology, event->speed); |
| } |
| break; |
| case SLI4_LINK_STATUS_DOWN: |
| efc_log_info(hw->os, "Link down\n"); |
| |
| hw->link.status = event->status; |
| efct->efcport->link_status = EFC_LINK_STATUS_DOWN; |
| |
| d = efct->efcport->domain; |
| if (d) |
| efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_LOST, d); |
| break; |
| default: |
| efc_log_debug(hw->os, "unhandled link status %#x\n", |
| event->status); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_setup(struct efct_hw *hw, void *os, struct pci_dev *pdev) |
| { |
| u32 i, max_sgl, cpus; |
| |
| if (hw->hw_setup_called) |
| return 0; |
| |
| /* |
| * efct_hw_init() relies on NULL pointers indicating that a structure |
| * needs allocation. If a structure is non-NULL, efct_hw_init() won't |
| * free/realloc that memory |
| */ |
| memset(hw, 0, sizeof(struct efct_hw)); |
| |
| hw->hw_setup_called = true; |
| |
| hw->os = os; |
| |
| mutex_init(&hw->bmbx_lock); |
| spin_lock_init(&hw->cmd_lock); |
| INIT_LIST_HEAD(&hw->cmd_head); |
| INIT_LIST_HEAD(&hw->cmd_pending); |
| hw->cmd_head_count = 0; |
| |
| /* Create mailbox command ctx pool */ |
| hw->cmd_ctx_pool = mempool_create_kmalloc_pool(EFCT_CMD_CTX_POOL_SZ, |
| sizeof(struct efct_command_ctx)); |
| if (!hw->cmd_ctx_pool) { |
| efc_log_err(hw->os, "failed to allocate mailbox buffer pool\n"); |
| return -EIO; |
| } |
| |
| /* Create mailbox request ctx pool for library callback */ |
| hw->mbox_rqst_pool = mempool_create_kmalloc_pool(EFCT_CMD_CTX_POOL_SZ, |
| sizeof(struct efct_mbox_rqst_ctx)); |
| if (!hw->mbox_rqst_pool) { |
| efc_log_err(hw->os, "failed to allocate mbox request pool\n"); |
| return -EIO; |
| } |
| |
| spin_lock_init(&hw->io_lock); |
| INIT_LIST_HEAD(&hw->io_inuse); |
| INIT_LIST_HEAD(&hw->io_free); |
| INIT_LIST_HEAD(&hw->io_wait_free); |
| |
| atomic_set(&hw->io_alloc_failed_count, 0); |
| |
| hw->config.speed = SLI4_LINK_SPEED_AUTO_16_8_4; |
| if (sli_setup(&hw->sli, hw->os, pdev, ((struct efct *)os)->reg)) { |
| efc_log_err(hw->os, "SLI setup failed\n"); |
| return -EIO; |
| } |
| |
| efct_hw_link_event_init(hw); |
| |
| sli_callback(&hw->sli, SLI4_CB_LINK, efct_hw_cb_link, hw); |
| |
| /* |
| * Set all the queue sizes to the maximum allowed. |
| */ |
| for (i = 0; i < ARRAY_SIZE(hw->num_qentries); i++) |
| hw->num_qentries[i] = hw->sli.qinfo.max_qentries[i]; |
| /* |
| * Adjust the size of the WQs so that the CQ is twice as big as |
| * the WQ to allow for 2 completions per IO. This allows us to |
| * handle multi-phase as well as aborts. |
| */ |
| hw->num_qentries[SLI4_QTYPE_WQ] = hw->num_qentries[SLI4_QTYPE_CQ] / 2; |
| |
| /* |
| * The RQ assignment for RQ pair mode. |
| */ |
| |
| hw->config.rq_default_buffer_size = EFCT_HW_RQ_SIZE_PAYLOAD; |
| hw->config.n_io = hw->sli.ext[SLI4_RSRC_XRI].size; |
| |
| cpus = num_possible_cpus(); |
| hw->config.n_eq = cpus > EFCT_HW_MAX_NUM_EQ ? EFCT_HW_MAX_NUM_EQ : cpus; |
| |
| max_sgl = sli_get_max_sgl(&hw->sli) - SLI4_SGE_MAX_RESERVED; |
| max_sgl = (max_sgl > EFCT_FC_MAX_SGL) ? EFCT_FC_MAX_SGL : max_sgl; |
| hw->config.n_sgl = max_sgl; |
| |
| (void)efct_hw_read_max_dump_size(hw); |
| |
| return 0; |
| } |
| |
| static void |
| efct_logfcfi(struct efct_hw *hw, u32 j, u32 i, u32 id) |
| { |
| efc_log_info(hw->os, |
| "REG_FCFI: filter[%d] %08X -> RQ[%d] id=%d\n", |
| j, hw->config.filter_def[j], i, id); |
| } |
| |
| static inline void |
| efct_hw_init_free_io(struct efct_hw_io *io) |
| { |
| /* |
| * Set io->done to NULL, to avoid any callbacks, should |
| * a completion be received for one of these IOs |
| */ |
| io->done = NULL; |
| io->abort_done = NULL; |
| io->status_saved = false; |
| io->abort_in_progress = false; |
| io->type = 0xFFFF; |
| io->wq = NULL; |
| } |
| |
| static bool efct_hw_iotype_is_originator(u16 io_type) |
| { |
| switch (io_type) { |
| case EFCT_HW_FC_CT: |
| case EFCT_HW_ELS_REQ: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void |
| efct_hw_io_restore_sgl(struct efct_hw *hw, struct efct_hw_io *io) |
| { |
| /* Restore the default */ |
| io->sgl = &io->def_sgl; |
| io->sgl_count = io->def_sgl_count; |
| } |
| |
| static void |
| efct_hw_wq_process_io(void *arg, u8 *cqe, int status) |
| { |
| struct efct_hw_io *io = arg; |
| struct efct_hw *hw = io->hw; |
| struct sli4_fc_wcqe *wcqe = (void *)cqe; |
| u32 len = 0; |
| u32 ext = 0; |
| |
| /* clear xbusy flag if WCQE[XB] is clear */ |
| if (io->xbusy && (wcqe->flags & SLI4_WCQE_XB) == 0) |
| io->xbusy = false; |
| |
| /* get extended CQE status */ |
| switch (io->type) { |
| case EFCT_HW_BLS_ACC: |
| case EFCT_HW_BLS_RJT: |
| break; |
| case EFCT_HW_ELS_REQ: |
| sli_fc_els_did(&hw->sli, cqe, &ext); |
| len = sli_fc_response_length(&hw->sli, cqe); |
| break; |
| case EFCT_HW_ELS_RSP: |
| case EFCT_HW_FC_CT_RSP: |
| break; |
| case EFCT_HW_FC_CT: |
| len = sli_fc_response_length(&hw->sli, cqe); |
| break; |
| case EFCT_HW_IO_TARGET_WRITE: |
| len = sli_fc_io_length(&hw->sli, cqe); |
| break; |
| case EFCT_HW_IO_TARGET_READ: |
| len = sli_fc_io_length(&hw->sli, cqe); |
| break; |
| case EFCT_HW_IO_TARGET_RSP: |
| break; |
| case EFCT_HW_IO_DNRX_REQUEUE: |
| /* release the count for re-posting the buffer */ |
| /* efct_hw_io_free(hw, io); */ |
| break; |
| default: |
| efc_log_err(hw->os, "unhandled io type %#x for XRI 0x%x\n", |
| io->type, io->indicator); |
| break; |
| } |
| if (status) { |
| ext = sli_fc_ext_status(&hw->sli, cqe); |
| /* |
| * If we're not an originator IO, and XB is set, then issue |
| * abort for the IO from within the HW |
| */ |
| if (efct_hw_iotype_is_originator(io->type) && |
| wcqe->flags & SLI4_WCQE_XB) { |
| int rc; |
| |
| efc_log_debug(hw->os, "aborting xri=%#x tag=%#x\n", |
| io->indicator, io->reqtag); |
| |
| /* |
| * Because targets may send a response when the IO |
| * completes using the same XRI, we must wait for the |
| * XRI_ABORTED CQE to issue the IO callback |
| */ |
| rc = efct_hw_io_abort(hw, io, false, NULL, NULL); |
| if (rc == 0) { |
| /* |
| * latch status to return after abort is |
| * complete |
| */ |
| io->status_saved = true; |
| io->saved_status = status; |
| io->saved_ext = ext; |
| io->saved_len = len; |
| goto exit_efct_hw_wq_process_io; |
| } else if (rc == -EINPROGRESS) { |
| /* |
| * Already being aborted by someone else (ABTS |
| * perhaps). Just return original |
| * error. |
| */ |
| efc_log_debug(hw->os, "%s%#x tag=%#x\n", |
| "abort in progress xri=", |
| io->indicator, io->reqtag); |
| |
| } else { |
| /* Failed to abort for some other reason, log |
| * error |
| */ |
| efc_log_debug(hw->os, "%s%#x tag=%#x rc=%d\n", |
| "Failed to abort xri=", |
| io->indicator, io->reqtag, rc); |
| } |
| } |
| } |
| |
| if (io->done) { |
| efct_hw_done_t done = io->done; |
| |
| io->done = NULL; |
| |
| if (io->status_saved) { |
| /* use latched status if exists */ |
| status = io->saved_status; |
| len = io->saved_len; |
| ext = io->saved_ext; |
| io->status_saved = false; |
| } |
| |
| /* Restore default SGL */ |
| efct_hw_io_restore_sgl(hw, io); |
| done(io, len, status, ext, io->arg); |
| } |
| |
| exit_efct_hw_wq_process_io: |
| return; |
| } |
| |
| static int |
| efct_hw_setup_io(struct efct_hw *hw) |
| { |
| u32 i = 0; |
| struct efct_hw_io *io = NULL; |
| uintptr_t xfer_virt = 0; |
| uintptr_t xfer_phys = 0; |
| u32 index; |
| bool new_alloc = true; |
| struct efc_dma *dma; |
| struct efct *efct = hw->os; |
| |
| if (!hw->io) { |
| hw->io = kmalloc_array(hw->config.n_io, sizeof(io), GFP_KERNEL); |
| if (!hw->io) |
| return -ENOMEM; |
| |
| memset(hw->io, 0, hw->config.n_io * sizeof(io)); |
| |
| for (i = 0; i < hw->config.n_io; i++) { |
| hw->io[i] = kzalloc(sizeof(*io), GFP_KERNEL); |
| if (!hw->io[i]) |
| goto error; |
| } |
| |
| /* Create WQE buffs for IO */ |
| hw->wqe_buffs = kzalloc((hw->config.n_io * hw->sli.wqe_size), |
| GFP_KERNEL); |
| if (!hw->wqe_buffs) { |
| kfree(hw->io); |
| return -ENOMEM; |
| } |
| |
| } else { |
| /* re-use existing IOs, including SGLs */ |
| new_alloc = false; |
| } |
| |
| if (new_alloc) { |
| dma = &hw->xfer_rdy; |
| dma->size = sizeof(struct fcp_txrdy) * hw->config.n_io; |
| dma->virt = dma_alloc_coherent(&efct->pci->dev, |
| dma->size, &dma->phys, GFP_KERNEL); |
| if (!dma->virt) |
| return -ENOMEM; |
| } |
| xfer_virt = (uintptr_t)hw->xfer_rdy.virt; |
| xfer_phys = hw->xfer_rdy.phys; |
| |
| /* Initialize the pool of HW IO objects */ |
| for (i = 0; i < hw->config.n_io; i++) { |
| struct hw_wq_callback *wqcb; |
| |
| io = hw->io[i]; |
| |
| /* initialize IO fields */ |
| io->hw = hw; |
| |
| /* Assign a WQE buff */ |
| io->wqe.wqebuf = &hw->wqe_buffs[i * hw->sli.wqe_size]; |
| |
| /* Allocate the request tag for this IO */ |
| wqcb = efct_hw_reqtag_alloc(hw, efct_hw_wq_process_io, io); |
| if (!wqcb) { |
| efc_log_err(hw->os, "can't allocate request tag\n"); |
| return -ENOSPC; |
| } |
| io->reqtag = wqcb->instance_index; |
| |
| /* Now for the fields that are initialized on each free */ |
| efct_hw_init_free_io(io); |
| |
| /* The XB flag isn't cleared on IO free, so init to zero */ |
| io->xbusy = 0; |
| |
| if (sli_resource_alloc(&hw->sli, SLI4_RSRC_XRI, |
| &io->indicator, &index)) { |
| efc_log_err(hw->os, |
| "sli_resource_alloc failed @ %d\n", i); |
| return -ENOMEM; |
| } |
| |
| if (new_alloc) { |
| dma = &io->def_sgl; |
| dma->size = hw->config.n_sgl * |
| sizeof(struct sli4_sge); |
| dma->virt = dma_alloc_coherent(&efct->pci->dev, |
| dma->size, &dma->phys, |
| GFP_KERNEL); |
| if (!dma->virt) { |
| efc_log_err(hw->os, "dma_alloc fail %d\n", i); |
| memset(&io->def_sgl, 0, |
| sizeof(struct efc_dma)); |
| return -ENOMEM; |
| } |
| } |
| io->def_sgl_count = hw->config.n_sgl; |
| io->sgl = &io->def_sgl; |
| io->sgl_count = io->def_sgl_count; |
| |
| if (hw->xfer_rdy.size) { |
| io->xfer_rdy.virt = (void *)xfer_virt; |
| io->xfer_rdy.phys = xfer_phys; |
| io->xfer_rdy.size = sizeof(struct fcp_txrdy); |
| |
| xfer_virt += sizeof(struct fcp_txrdy); |
| xfer_phys += sizeof(struct fcp_txrdy); |
| } |
| } |
| |
| return 0; |
| error: |
| for (i = 0; i < hw->config.n_io && hw->io[i]; i++) { |
| kfree(hw->io[i]); |
| hw->io[i] = NULL; |
| } |
| |
| kfree(hw->io); |
| hw->io = NULL; |
| |
| return -ENOMEM; |
| } |
| |
| static int |
| efct_hw_init_prereg_io(struct efct_hw *hw) |
| { |
| u32 i, idx = 0; |
| struct efct_hw_io *io = NULL; |
| u8 cmd[SLI4_BMBX_SIZE]; |
| int rc = 0; |
| u32 n_rem; |
| u32 n = 0; |
| u32 sgls_per_request = 256; |
| struct efc_dma **sgls = NULL; |
| struct efc_dma req; |
| struct efct *efct = hw->os; |
| |
| sgls = kmalloc_array(sgls_per_request, sizeof(*sgls), GFP_KERNEL); |
| if (!sgls) |
| return -ENOMEM; |
| |
| memset(&req, 0, sizeof(struct efc_dma)); |
| req.size = 32 + sgls_per_request * 16; |
| req.virt = dma_alloc_coherent(&efct->pci->dev, req.size, &req.phys, |
| GFP_KERNEL); |
| if (!req.virt) { |
| kfree(sgls); |
| return -ENOMEM; |
| } |
| |
| for (n_rem = hw->config.n_io; n_rem; n_rem -= n) { |
| /* Copy address of SGL's into local sgls[] array, break |
| * out if the xri is not contiguous. |
| */ |
| u32 min = (sgls_per_request < n_rem) ? sgls_per_request : n_rem; |
| |
| for (n = 0; n < min; n++) { |
| /* Check that we have contiguous xri values */ |
| if (n > 0) { |
| if (hw->io[idx + n]->indicator != |
| hw->io[idx + n - 1]->indicator + 1) |
| break; |
| } |
| |
| sgls[n] = hw->io[idx + n]->sgl; |
| } |
| |
| if (sli_cmd_post_sgl_pages(&hw->sli, cmd, |
| hw->io[idx]->indicator, n, sgls, NULL, &req)) { |
| rc = -EIO; |
| break; |
| } |
| |
| rc = efct_hw_command(hw, cmd, EFCT_CMD_POLL, NULL, NULL); |
| if (rc) { |
| efc_log_err(hw->os, "SGL post failed, rc=%d\n", rc); |
| break; |
| } |
| |
| /* Add to tail if successful */ |
| for (i = 0; i < n; i++, idx++) { |
| io = hw->io[idx]; |
| io->state = EFCT_HW_IO_STATE_FREE; |
| INIT_LIST_HEAD(&io->list_entry); |
| list_add_tail(&io->list_entry, &hw->io_free); |
| } |
| } |
| |
| dma_free_coherent(&efct->pci->dev, req.size, req.virt, req.phys); |
| memset(&req, 0, sizeof(struct efc_dma)); |
| kfree(sgls); |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_init_io(struct efct_hw *hw) |
| { |
| u32 i, idx = 0; |
| bool prereg = false; |
| struct efct_hw_io *io = NULL; |
| int rc = 0; |
| |
| prereg = hw->sli.params.sgl_pre_registered; |
| |
| if (prereg) |
| return efct_hw_init_prereg_io(hw); |
| |
| for (i = 0; i < hw->config.n_io; i++, idx++) { |
| io = hw->io[idx]; |
| io->state = EFCT_HW_IO_STATE_FREE; |
| INIT_LIST_HEAD(&io->list_entry); |
| list_add_tail(&io->list_entry, &hw->io_free); |
| } |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_config_set_fdt_xfer_hint(struct efct_hw *hw, u32 fdt_xfer_hint) |
| { |
| int rc = 0; |
| u8 buf[SLI4_BMBX_SIZE]; |
| struct sli4_rqst_cmn_set_features_set_fdt_xfer_hint param; |
| |
| memset(¶m, 0, sizeof(param)); |
| param.fdt_xfer_hint = cpu_to_le32(fdt_xfer_hint); |
| /* build the set_features command */ |
| sli_cmd_common_set_features(&hw->sli, buf, |
| SLI4_SET_FEATURES_SET_FTD_XFER_HINT, sizeof(param), ¶m); |
| |
| rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); |
| if (rc) |
| efc_log_warn(hw->os, "set FDT hint %d failed: %d\n", |
| fdt_xfer_hint, rc); |
| else |
| efc_log_info(hw->os, "Set FTD transfer hint to %d\n", |
| le32_to_cpu(param.fdt_xfer_hint)); |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_config_rq(struct efct_hw *hw) |
| { |
| u32 min_rq_count, i, rc; |
| struct sli4_cmd_rq_cfg rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]; |
| u8 buf[SLI4_BMBX_SIZE]; |
| |
| efc_log_info(hw->os, "using REG_FCFI standard\n"); |
| |
| /* |
| * Set the filter match/mask values from hw's |
| * filter_def values |
| */ |
| for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { |
| rq_cfg[i].rq_id = cpu_to_le16(0xffff); |
| rq_cfg[i].r_ctl_mask = (u8)hw->config.filter_def[i]; |
| rq_cfg[i].r_ctl_match = (u8)(hw->config.filter_def[i] >> 8); |
| rq_cfg[i].type_mask = (u8)(hw->config.filter_def[i] >> 16); |
| rq_cfg[i].type_match = (u8)(hw->config.filter_def[i] >> 24); |
| } |
| |
| /* |
| * Update the rq_id's of the FCF configuration |
| * (don't update more than the number of rq_cfg |
| * elements) |
| */ |
| min_rq_count = (hw->hw_rq_count < SLI4_CMD_REG_FCFI_NUM_RQ_CFG) ? |
| hw->hw_rq_count : SLI4_CMD_REG_FCFI_NUM_RQ_CFG; |
| for (i = 0; i < min_rq_count; i++) { |
| struct hw_rq *rq = hw->hw_rq[i]; |
| u32 j; |
| |
| for (j = 0; j < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; j++) { |
| u32 mask = (rq->filter_mask != 0) ? |
| rq->filter_mask : 1; |
| |
| if (!(mask & (1U << j))) |
| continue; |
| |
| rq_cfg[i].rq_id = cpu_to_le16(rq->hdr->id); |
| efct_logfcfi(hw, j, i, rq->hdr->id); |
| } |
| } |
| |
| rc = -EIO; |
| if (!sli_cmd_reg_fcfi(&hw->sli, buf, 0, rq_cfg)) |
| rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); |
| |
| if (rc != 0) { |
| efc_log_err(hw->os, "FCFI registration failed\n"); |
| return rc; |
| } |
| hw->fcf_indicator = |
| le16_to_cpu(((struct sli4_cmd_reg_fcfi *)buf)->fcfi); |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_config_mrq(struct efct_hw *hw, u8 mode, u16 fcf_index) |
| { |
| u8 buf[SLI4_BMBX_SIZE], mrq_bitmask = 0; |
| struct hw_rq *rq; |
| struct sli4_cmd_reg_fcfi_mrq *rsp = NULL; |
| struct sli4_cmd_rq_cfg rq_filter[SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG]; |
| u32 rc, i; |
| |
| if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) |
| goto issue_cmd; |
| |
| /* Set the filter match/mask values from hw's filter_def values */ |
| for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { |
| rq_filter[i].rq_id = cpu_to_le16(0xffff); |
| rq_filter[i].type_mask = (u8)hw->config.filter_def[i]; |
| rq_filter[i].type_match = (u8)(hw->config.filter_def[i] >> 8); |
| rq_filter[i].r_ctl_mask = (u8)(hw->config.filter_def[i] >> 16); |
| rq_filter[i].r_ctl_match = (u8)(hw->config.filter_def[i] >> 24); |
| } |
| |
| rq = hw->hw_rq[0]; |
| rq_filter[0].rq_id = cpu_to_le16(rq->hdr->id); |
| rq_filter[1].rq_id = cpu_to_le16(rq->hdr->id); |
| |
| mrq_bitmask = 0x2; |
| issue_cmd: |
| efc_log_debug(hw->os, "Issue reg_fcfi_mrq count:%d policy:%d mode:%d\n", |
| hw->hw_rq_count, hw->config.rq_selection_policy, mode); |
| /* Invoke REG_FCFI_MRQ */ |
| rc = sli_cmd_reg_fcfi_mrq(&hw->sli, buf, mode, fcf_index, |
| hw->config.rq_selection_policy, mrq_bitmask, |
| hw->hw_mrq_count, rq_filter); |
| if (rc) { |
| efc_log_err(hw->os, "sli_cmd_reg_fcfi_mrq() failed\n"); |
| return -EIO; |
| } |
| |
| rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); |
| |
| rsp = (struct sli4_cmd_reg_fcfi_mrq *)buf; |
| |
| if ((rc) || (le16_to_cpu(rsp->hdr.status))) { |
| efc_log_err(hw->os, "FCFI MRQ reg failed. cmd=%x status=%x\n", |
| rsp->hdr.command, le16_to_cpu(rsp->hdr.status)); |
| return -EIO; |
| } |
| |
| if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) |
| hw->fcf_indicator = le16_to_cpu(rsp->fcfi); |
| |
| return 0; |
| } |
| |
| static void |
| efct_hw_queue_hash_add(struct efct_queue_hash *hash, |
| u16 id, u16 index) |
| { |
| u32 hash_index = id & (EFCT_HW_Q_HASH_SIZE - 1); |
| |
| /* |
| * Since the hash is always bigger than the number of queues, then we |
| * never have to worry about an infinite loop. |
| */ |
| while (hash[hash_index].in_use) |
| hash_index = (hash_index + 1) & (EFCT_HW_Q_HASH_SIZE - 1); |
| |
| /* not used, claim the entry */ |
| hash[hash_index].id = id; |
| hash[hash_index].in_use = true; |
| hash[hash_index].index = index; |
| } |
| |
| static int |
| efct_hw_config_sli_port_health_check(struct efct_hw *hw, u8 query, u8 enable) |
| { |
| int rc = 0; |
| u8 buf[SLI4_BMBX_SIZE]; |
| struct sli4_rqst_cmn_set_features_health_check param; |
| u32 health_check_flag = 0; |
| |
| memset(¶m, 0, sizeof(param)); |
| |
| if (enable) |
| health_check_flag |= SLI4_RQ_HEALTH_CHECK_ENABLE; |
| |
| if (query) |
| health_check_flag |= SLI4_RQ_HEALTH_CHECK_QUERY; |
| |
| param.health_check_dword = cpu_to_le32(health_check_flag); |
| |
| /* build the set_features command */ |
| sli_cmd_common_set_features(&hw->sli, buf, |
| SLI4_SET_FEATURES_SLI_PORT_HEALTH_CHECK, sizeof(param), ¶m); |
| |
| rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); |
| if (rc) |
| efc_log_err(hw->os, "efct_hw_command returns %d\n", rc); |
| else |
| efc_log_debug(hw->os, "SLI Port Health Check is enabled\n"); |
| |
| return rc; |
| } |
| |
| int |
| efct_hw_init(struct efct_hw *hw) |
| { |
| int rc; |
| u32 i = 0; |
| int rem_count; |
| unsigned long flags = 0; |
| struct efct_hw_io *temp; |
| struct efc_dma *dma; |
| |
| /* |
| * Make sure the command lists are empty. If this is start-of-day, |
| * they'll be empty since they were just initialized in efct_hw_setup. |
| * If we've just gone through a reset, the command and command pending |
| * lists should have been cleaned up as part of the reset |
| * (efct_hw_reset()). |
| */ |
| spin_lock_irqsave(&hw->cmd_lock, flags); |
| if (!list_empty(&hw->cmd_head)) { |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| efc_log_err(hw->os, "command found on cmd list\n"); |
| return -EIO; |
| } |
| if (!list_empty(&hw->cmd_pending)) { |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| efc_log_err(hw->os, "command found on pending list\n"); |
| return -EIO; |
| } |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| |
| /* Free RQ buffers if prevously allocated */ |
| efct_hw_rx_free(hw); |
| |
| /* |
| * The IO queues must be initialized here for the reset case. The |
| * efct_hw_init_io() function will re-add the IOs to the free list. |
| * The cmd_head list should be OK since we free all entries in |
| * efct_hw_command_cancel() that is called in the efct_hw_reset(). |
| */ |
| |
| /* If we are in this function due to a reset, there may be stale items |
| * on lists that need to be removed. Clean them up. |
| */ |
| rem_count = 0; |
| while ((!list_empty(&hw->io_wait_free))) { |
| rem_count++; |
| temp = list_first_entry(&hw->io_wait_free, struct efct_hw_io, |
| list_entry); |
| list_del_init(&temp->list_entry); |
| } |
| if (rem_count > 0) |
| efc_log_debug(hw->os, "rmvd %d items from io_wait_free list\n", |
| rem_count); |
| |
| rem_count = 0; |
| while ((!list_empty(&hw->io_inuse))) { |
| rem_count++; |
| temp = list_first_entry(&hw->io_inuse, struct efct_hw_io, |
| list_entry); |
| list_del_init(&temp->list_entry); |
| } |
| if (rem_count > 0) |
| efc_log_debug(hw->os, "rmvd %d items from io_inuse list\n", |
| rem_count); |
| |
| rem_count = 0; |
| while ((!list_empty(&hw->io_free))) { |
| rem_count++; |
| temp = list_first_entry(&hw->io_free, struct efct_hw_io, |
| list_entry); |
| list_del_init(&temp->list_entry); |
| } |
| if (rem_count > 0) |
| efc_log_debug(hw->os, "rmvd %d items from io_free list\n", |
| rem_count); |
| |
| /* If MRQ not required, Make sure we dont request feature. */ |
| if (hw->config.n_rq == 1) |
| hw->sli.features &= (~SLI4_REQFEAT_MRQP); |
| |
| if (sli_init(&hw->sli)) { |
| efc_log_err(hw->os, "SLI failed to initialize\n"); |
| return -EIO; |
| } |
| |
| if (hw->sliport_healthcheck) { |
| rc = efct_hw_config_sli_port_health_check(hw, 0, 1); |
| if (rc != 0) { |
| efc_log_err(hw->os, "Enable port Health check fail\n"); |
| return rc; |
| } |
| } |
| |
| /* |
| * Set FDT transfer hint, only works on Lancer |
| */ |
| if (hw->sli.if_type == SLI4_INTF_IF_TYPE_2) { |
| /* |
| * Non-fatal error. In particular, we can disregard failure to |
| * set EFCT_HW_FDT_XFER_HINT on devices with legacy firmware |
| * that do not support EFCT_HW_FDT_XFER_HINT feature. |
| */ |
| efct_hw_config_set_fdt_xfer_hint(hw, EFCT_HW_FDT_XFER_HINT); |
| } |
| |
| /* zero the hashes */ |
| memset(hw->cq_hash, 0, sizeof(hw->cq_hash)); |
| efc_log_debug(hw->os, "Max CQs %d, hash size = %d\n", |
| EFCT_HW_MAX_NUM_CQ, EFCT_HW_Q_HASH_SIZE); |
| |
| memset(hw->rq_hash, 0, sizeof(hw->rq_hash)); |
| efc_log_debug(hw->os, "Max RQs %d, hash size = %d\n", |
| EFCT_HW_MAX_NUM_RQ, EFCT_HW_Q_HASH_SIZE); |
| |
| memset(hw->wq_hash, 0, sizeof(hw->wq_hash)); |
| efc_log_debug(hw->os, "Max WQs %d, hash size = %d\n", |
| EFCT_HW_MAX_NUM_WQ, EFCT_HW_Q_HASH_SIZE); |
| |
| rc = efct_hw_init_queues(hw); |
| if (rc) |
| return rc; |
| |
| rc = efct_hw_map_wq_cpu(hw); |
| if (rc) |
| return rc; |
| |
| /* Allocate and p_st RQ buffers */ |
| rc = efct_hw_rx_allocate(hw); |
| if (rc) { |
| efc_log_err(hw->os, "rx_allocate failed\n"); |
| return rc; |
| } |
| |
| rc = efct_hw_rx_post(hw); |
| if (rc) { |
| efc_log_err(hw->os, "WARNING - error posting RQ buffers\n"); |
| return rc; |
| } |
| |
| if (hw->config.n_eq == 1) { |
| rc = efct_hw_config_rq(hw); |
| if (rc) { |
| efc_log_err(hw->os, "config rq failed %d\n", rc); |
| return rc; |
| } |
| } else { |
| rc = efct_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE, 0); |
| if (rc != 0) { |
| efc_log_err(hw->os, "REG_FCFI_MRQ FCFI reg failed\n"); |
| return rc; |
| } |
| |
| rc = efct_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_MRQ_MODE, 0); |
| if (rc != 0) { |
| efc_log_err(hw->os, "REG_FCFI_MRQ MRQ reg failed\n"); |
| return rc; |
| } |
| } |
| |
| /* |
| * Allocate the WQ request tag pool, if not previously allocated |
| * (the request tag value is 16 bits, thus the pool allocation size |
| * of 64k) |
| */ |
| hw->wq_reqtag_pool = efct_hw_reqtag_pool_alloc(hw); |
| if (!hw->wq_reqtag_pool) { |
| efc_log_err(hw->os, "efct_hw_reqtag_pool_alloc failed\n"); |
| return -ENOMEM; |
| } |
| |
| rc = efct_hw_setup_io(hw); |
| if (rc) { |
| efc_log_err(hw->os, "IO allocation failure\n"); |
| return rc; |
| } |
| |
| rc = efct_hw_init_io(hw); |
| if (rc) { |
| efc_log_err(hw->os, "IO initialization failure\n"); |
| return rc; |
| } |
| |
| dma = &hw->loop_map; |
| dma->size = SLI4_MIN_LOOP_MAP_BYTES; |
| dma->virt = dma_alloc_coherent(&hw->os->pci->dev, dma->size, &dma->phys, |
| GFP_KERNEL); |
| if (!dma->virt) |
| return -EIO; |
| |
| /* |
| * Arming the EQ allows (e.g.) interrupts when CQ completions write EQ |
| * entries |
| */ |
| for (i = 0; i < hw->eq_count; i++) |
| sli_queue_arm(&hw->sli, &hw->eq[i], true); |
| |
| /* |
| * Initialize RQ hash |
| */ |
| for (i = 0; i < hw->rq_count; i++) |
| efct_hw_queue_hash_add(hw->rq_hash, hw->rq[i].id, i); |
| |
| /* |
| * Initialize WQ hash |
| */ |
| for (i = 0; i < hw->wq_count; i++) |
| efct_hw_queue_hash_add(hw->wq_hash, hw->wq[i].id, i); |
| |
| /* |
| * Arming the CQ allows (e.g.) MQ completions to write CQ entries |
| */ |
| for (i = 0; i < hw->cq_count; i++) { |
| efct_hw_queue_hash_add(hw->cq_hash, hw->cq[i].id, i); |
| sli_queue_arm(&hw->sli, &hw->cq[i], true); |
| } |
| |
| /* Set RQ process limit*/ |
| for (i = 0; i < hw->hw_rq_count; i++) { |
| struct hw_rq *rq = hw->hw_rq[i]; |
| |
| hw->cq[rq->cq->instance].proc_limit = hw->config.n_io / 2; |
| } |
| |
| /* record the fact that the queues are functional */ |
| hw->state = EFCT_HW_STATE_ACTIVE; |
| /* |
| * Allocate a HW IOs for send frame. |
| */ |
| hw->hw_wq[0]->send_frame_io = efct_hw_io_alloc(hw); |
| if (!hw->hw_wq[0]->send_frame_io) |
| efc_log_err(hw->os, "alloc for send_frame_io failed\n"); |
| |
| /* Initialize send frame sequence id */ |
| atomic_set(&hw->send_frame_seq_id, 0); |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_parse_filter(struct efct_hw *hw, void *value) |
| { |
| int rc = 0; |
| char *p = NULL; |
| char *token; |
| u32 idx = 0; |
| |
| for (idx = 0; idx < ARRAY_SIZE(hw->config.filter_def); idx++) |
| hw->config.filter_def[idx] = 0; |
| |
| p = kstrdup(value, GFP_KERNEL); |
| if (!p || !*p) { |
| efc_log_err(hw->os, "p is NULL\n"); |
| return -ENOMEM; |
| } |
| |
| idx = 0; |
| while ((token = strsep(&p, ",")) && *token) { |
| if (kstrtou32(token, 0, &hw->config.filter_def[idx++])) |
| efc_log_err(hw->os, "kstrtoint failed\n"); |
| |
| if (!p || !*p) |
| break; |
| |
| if (idx == ARRAY_SIZE(hw->config.filter_def)) |
| break; |
| } |
| kfree(p); |
| |
| return rc; |
| } |
| |
| u64 |
| efct_get_wwnn(struct efct_hw *hw) |
| { |
| struct sli4 *sli = &hw->sli; |
| u8 p[8]; |
| |
| memcpy(p, sli->wwnn, sizeof(p)); |
| return get_unaligned_be64(p); |
| } |
| |
| u64 |
| efct_get_wwpn(struct efct_hw *hw) |
| { |
| struct sli4 *sli = &hw->sli; |
| u8 p[8]; |
| |
| memcpy(p, sli->wwpn, sizeof(p)); |
| return get_unaligned_be64(p); |
| } |
| |
| static struct efc_hw_rq_buffer * |
| efct_hw_rx_buffer_alloc(struct efct_hw *hw, u32 rqindex, u32 count, |
| u32 size) |
| { |
| struct efct *efct = hw->os; |
| struct efc_hw_rq_buffer *rq_buf = NULL; |
| struct efc_hw_rq_buffer *prq; |
| u32 i; |
| |
| if (!count) |
| return NULL; |
| |
| rq_buf = kmalloc_array(count, sizeof(*rq_buf), GFP_KERNEL); |
| if (!rq_buf) |
| return NULL; |
| memset(rq_buf, 0, sizeof(*rq_buf) * count); |
| |
| for (i = 0, prq = rq_buf; i < count; i ++, prq++) { |
| prq->rqindex = rqindex; |
| prq->dma.size = size; |
| prq->dma.virt = dma_alloc_coherent(&efct->pci->dev, |
| prq->dma.size, |
| &prq->dma.phys, |
| GFP_KERNEL); |
| if (!prq->dma.virt) { |
| efc_log_err(hw->os, "DMA allocation failed\n"); |
| kfree(rq_buf); |
| return NULL; |
| } |
| } |
| return rq_buf; |
| } |
| |
| static void |
| efct_hw_rx_buffer_free(struct efct_hw *hw, |
| struct efc_hw_rq_buffer *rq_buf, |
| u32 count) |
| { |
| struct efct *efct = hw->os; |
| u32 i; |
| struct efc_hw_rq_buffer *prq; |
| |
| if (rq_buf) { |
| for (i = 0, prq = rq_buf; i < count; i++, prq++) { |
| dma_free_coherent(&efct->pci->dev, |
| prq->dma.size, prq->dma.virt, |
| prq->dma.phys); |
| memset(&prq->dma, 0, sizeof(struct efc_dma)); |
| } |
| |
| kfree(rq_buf); |
| } |
| } |
| |
| int |
| efct_hw_rx_allocate(struct efct_hw *hw) |
| { |
| struct efct *efct = hw->os; |
| u32 i; |
| int rc = 0; |
| u32 rqindex = 0; |
| u32 hdr_size = EFCT_HW_RQ_SIZE_HDR; |
| u32 payload_size = hw->config.rq_default_buffer_size; |
| |
| rqindex = 0; |
| |
| for (i = 0; i < hw->hw_rq_count; i++) { |
| struct hw_rq *rq = hw->hw_rq[i]; |
| |
| /* Allocate header buffers */ |
| rq->hdr_buf = efct_hw_rx_buffer_alloc(hw, rqindex, |
| rq->entry_count, |
| hdr_size); |
| if (!rq->hdr_buf) { |
| efc_log_err(efct, "rx_buffer_alloc hdr_buf failed\n"); |
| rc = -EIO; |
| break; |
| } |
| |
| efc_log_debug(hw->os, |
| "rq[%2d] rq_id %02d header %4d by %4d bytes\n", |
| i, rq->hdr->id, rq->entry_count, hdr_size); |
| |
| rqindex++; |
| |
| /* Allocate payload buffers */ |
| rq->payload_buf = efct_hw_rx_buffer_alloc(hw, rqindex, |
| rq->entry_count, |
| payload_size); |
| if (!rq->payload_buf) { |
| efc_log_err(efct, "rx_buffer_alloc fb_buf failed\n"); |
| rc = -EIO; |
| break; |
| } |
| efc_log_debug(hw->os, |
| "rq[%2d] rq_id %02d default %4d by %4d bytes\n", |
| i, rq->data->id, rq->entry_count, payload_size); |
| rqindex++; |
| } |
| |
| return rc ? -EIO : 0; |
| } |
| |
| int |
| efct_hw_rx_post(struct efct_hw *hw) |
| { |
| u32 i; |
| u32 idx; |
| u32 rq_idx; |
| int rc = 0; |
| |
| if (!hw->seq_pool) { |
| u32 count = 0; |
| |
| for (i = 0; i < hw->hw_rq_count; i++) |
| count += hw->hw_rq[i]->entry_count; |
| |
| hw->seq_pool = kmalloc_array(count, |
| sizeof(struct efc_hw_sequence), GFP_KERNEL); |
| if (!hw->seq_pool) |
| return -ENOMEM; |
| } |
| |
| /* |
| * In RQ pair mode, we MUST post the header and payload buffer at the |
| * same time. |
| */ |
| for (rq_idx = 0, idx = 0; rq_idx < hw->hw_rq_count; rq_idx++) { |
| struct hw_rq *rq = hw->hw_rq[rq_idx]; |
| |
| for (i = 0; i < rq->entry_count - 1; i++) { |
| struct efc_hw_sequence *seq; |
| |
| seq = hw->seq_pool + idx; |
| idx++; |
| seq->header = &rq->hdr_buf[i]; |
| seq->payload = &rq->payload_buf[i]; |
| rc = efct_hw_sequence_free(hw, seq); |
| if (rc) |
| break; |
| } |
| if (rc) |
| break; |
| } |
| |
| if (rc && hw->seq_pool) |
| kfree(hw->seq_pool); |
| |
| return rc; |
| } |
| |
| void |
| efct_hw_rx_free(struct efct_hw *hw) |
| { |
| u32 i; |
| |
| /* Free hw_rq buffers */ |
| for (i = 0; i < hw->hw_rq_count; i++) { |
| struct hw_rq *rq = hw->hw_rq[i]; |
| |
| if (rq) { |
| efct_hw_rx_buffer_free(hw, rq->hdr_buf, |
| rq->entry_count); |
| rq->hdr_buf = NULL; |
| efct_hw_rx_buffer_free(hw, rq->payload_buf, |
| rq->entry_count); |
| rq->payload_buf = NULL; |
| } |
| } |
| } |
| |
| static int |
| efct_hw_cmd_submit_pending(struct efct_hw *hw) |
| { |
| int rc = 0; |
| |
| /* Assumes lock held */ |
| |
| /* Only submit MQE if there's room */ |
| while (hw->cmd_head_count < (EFCT_HW_MQ_DEPTH - 1) && |
| !list_empty(&hw->cmd_pending)) { |
| struct efct_command_ctx *ctx; |
| |
| ctx = list_first_entry(&hw->cmd_pending, |
| struct efct_command_ctx, list_entry); |
| if (!ctx) |
| break; |
| |
| list_del_init(&ctx->list_entry); |
| |
| list_add_tail(&ctx->list_entry, &hw->cmd_head); |
| hw->cmd_head_count++; |
| if (sli_mq_write(&hw->sli, hw->mq, ctx->buf) < 0) { |
| efc_log_debug(hw->os, |
| "sli_queue_write failed: %d\n", rc); |
| rc = -EIO; |
| break; |
| } |
| } |
| return rc; |
| } |
| |
| int |
| efct_hw_command(struct efct_hw *hw, u8 *cmd, u32 opts, void *cb, void *arg) |
| { |
| int rc = -EIO; |
| unsigned long flags = 0; |
| void *bmbx = NULL; |
| |
| /* |
| * If the chip is in an error state (UE'd) then reject this mailbox |
| * command. |
| */ |
| if (sli_fw_error_status(&hw->sli) > 0) { |
| efc_log_crit(hw->os, "Chip in an error state - reset needed\n"); |
| efc_log_crit(hw->os, "status=%#x error1=%#x error2=%#x\n", |
| sli_reg_read_status(&hw->sli), |
| sli_reg_read_err1(&hw->sli), |
| sli_reg_read_err2(&hw->sli)); |
| |
| return -EIO; |
| } |
| |
| /* |
| * Send a mailbox command to the hardware, and either wait for |
| * a completion (EFCT_CMD_POLL) or get an optional asynchronous |
| * completion (EFCT_CMD_NOWAIT). |
| */ |
| |
| if (opts == EFCT_CMD_POLL) { |
| mutex_lock(&hw->bmbx_lock); |
| bmbx = hw->sli.bmbx.virt; |
| |
| memset(bmbx, 0, SLI4_BMBX_SIZE); |
| memcpy(bmbx, cmd, SLI4_BMBX_SIZE); |
| |
| if (sli_bmbx_command(&hw->sli) == 0) { |
| rc = 0; |
| memcpy(cmd, bmbx, SLI4_BMBX_SIZE); |
| } |
| mutex_unlock(&hw->bmbx_lock); |
| } else if (opts == EFCT_CMD_NOWAIT) { |
| struct efct_command_ctx *ctx = NULL; |
| |
| if (hw->state != EFCT_HW_STATE_ACTIVE) { |
| efc_log_err(hw->os, "Can't send command, HW state=%d\n", |
| hw->state); |
| return -EIO; |
| } |
| |
| ctx = mempool_alloc(hw->cmd_ctx_pool, GFP_ATOMIC); |
| if (!ctx) |
| return -ENOSPC; |
| |
| memset(ctx, 0, sizeof(struct efct_command_ctx)); |
| |
| if (cb) { |
| ctx->cb = cb; |
| ctx->arg = arg; |
| } |
| |
| memcpy(ctx->buf, cmd, SLI4_BMBX_SIZE); |
| ctx->ctx = hw; |
| |
| spin_lock_irqsave(&hw->cmd_lock, flags); |
| |
| /* Add to pending list */ |
| INIT_LIST_HEAD(&ctx->list_entry); |
| list_add_tail(&ctx->list_entry, &hw->cmd_pending); |
| |
| /* Submit as much of the pending list as we can */ |
| rc = efct_hw_cmd_submit_pending(hw); |
| |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| } |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_command_process(struct efct_hw *hw, int status, u8 *mqe, |
| size_t size) |
| { |
| struct efct_command_ctx *ctx = NULL; |
| unsigned long flags = 0; |
| |
| spin_lock_irqsave(&hw->cmd_lock, flags); |
| if (!list_empty(&hw->cmd_head)) { |
| ctx = list_first_entry(&hw->cmd_head, |
| struct efct_command_ctx, list_entry); |
| list_del_init(&ctx->list_entry); |
| } |
| if (!ctx) { |
| efc_log_err(hw->os, "no command context\n"); |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| return -EIO; |
| } |
| |
| hw->cmd_head_count--; |
| |
| /* Post any pending requests */ |
| efct_hw_cmd_submit_pending(hw); |
| |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| |
| if (ctx->cb) { |
| memcpy(ctx->buf, mqe, size); |
| ctx->cb(hw, status, ctx->buf, ctx->arg); |
| } |
| |
| mempool_free(ctx, hw->cmd_ctx_pool); |
| |
| return 0; |
| } |
| |
| static int |
| efct_hw_mq_process(struct efct_hw *hw, |
| int status, struct sli4_queue *mq) |
| { |
| u8 mqe[SLI4_BMBX_SIZE]; |
| int rc; |
| |
| rc = sli_mq_read(&hw->sli, mq, mqe); |
| if (!rc) |
| rc = efct_hw_command_process(hw, status, mqe, mq->size); |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_command_cancel(struct efct_hw *hw) |
| { |
| unsigned long flags = 0; |
| int rc = 0; |
| |
| spin_lock_irqsave(&hw->cmd_lock, flags); |
| |
| /* |
| * Manually clean up remaining commands. Note: since this calls |
| * efct_hw_command_process(), we'll also process the cmd_pending |
| * list, so no need to manually clean that out. |
| */ |
| while (!list_empty(&hw->cmd_head)) { |
| u8 mqe[SLI4_BMBX_SIZE] = { 0 }; |
| struct efct_command_ctx *ctx; |
| |
| ctx = list_first_entry(&hw->cmd_head, |
| struct efct_command_ctx, list_entry); |
| |
| efc_log_debug(hw->os, "hung command %08x\n", |
| !ctx ? U32_MAX : *((u32 *)ctx->buf)); |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| rc = efct_hw_command_process(hw, -1, mqe, SLI4_BMBX_SIZE); |
| spin_lock_irqsave(&hw->cmd_lock, flags); |
| } |
| |
| spin_unlock_irqrestore(&hw->cmd_lock, flags); |
| |
| return rc; |
| } |
| |
| static void |
| efct_mbox_rsp_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg) |
| { |
| struct efct_mbox_rqst_ctx *ctx = arg; |
| |
| if (ctx) { |
| if (ctx->callback) |
| (*ctx->callback)(hw->os->efcport, status, mqe, |
| ctx->arg); |
| |
| mempool_free(ctx, hw->mbox_rqst_pool); |
| } |
| } |
| |
| int |
| efct_issue_mbox_rqst(void *base, void *cmd, void *cb, void *arg) |
| { |
| struct efct_mbox_rqst_ctx *ctx; |
| struct efct *efct = base; |
| struct efct_hw *hw = &efct->hw; |
| int rc; |
| |
| /* |
| * Allocate a callback context (which includes the mbox cmd buffer), |
| * we need this to be persistent as the mbox cmd submission may be |
| * queued and executed later execution. |
| */ |
| ctx = mempool_alloc(hw->mbox_rqst_pool, GFP_ATOMIC); |
| if (!ctx) |
| return -EIO; |
| |
| ctx->callback = cb; |
| ctx->arg = arg; |
| |
| rc = efct_hw_command(hw, cmd, EFCT_CMD_NOWAIT, efct_mbox_rsp_cb, ctx); |
| if (rc) { |
| efc_log_err(efct, "issue mbox rqst failure rc:%d\n", rc); |
| mempool_free(ctx, hw->mbox_rqst_pool); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static inline struct efct_hw_io * |
| _efct_hw_io_alloc(struct efct_hw *hw) |
| { |
| struct efct_hw_io *io = NULL; |
| |
| if (!list_empty(&hw->io_free)) { |
| io = list_first_entry(&hw->io_free, struct efct_hw_io, |
| list_entry); |
| list_del(&io->list_entry); |
| } |
| if (io) { |
| INIT_LIST_HEAD(&io->list_entry); |
| list_add_tail(&io->list_entry, &hw->io_inuse); |
| io->state = EFCT_HW_IO_STATE_INUSE; |
| io->abort_reqtag = U32_MAX; |
| io->wq = hw->wq_cpu_array[raw_smp_processor_id()]; |
| if (!io->wq) { |
| efc_log_err(hw->os, "WQ not assigned for cpu:%d\n", |
| raw_smp_processor_id()); |
| io->wq = hw->hw_wq[0]; |
| } |
| kref_init(&io->ref); |
| io->release = efct_hw_io_free_internal; |
| } else { |
| atomic_add(1, &hw->io_alloc_failed_count); |
| } |
| |
| return io; |
| } |
| |
| struct efct_hw_io * |
| efct_hw_io_alloc(struct efct_hw *hw) |
| { |
| struct efct_hw_io *io = NULL; |
| unsigned long flags = 0; |
| |
| spin_lock_irqsave(&hw->io_lock, flags); |
| io = _efct_hw_io_alloc(hw); |
| spin_unlock_irqrestore(&hw->io_lock, flags); |
| |
| return io; |
| } |
| |
| static void |
| efct_hw_io_free_move_correct_list(struct efct_hw *hw, |
| struct efct_hw_io *io) |
| { |
| /* |
| * When an IO is freed, depending on the exchange busy flag, |
| * move it to the correct list. |
| */ |
| if (io->xbusy) { |
| /* |
| * add to wait_free list and wait for XRI_ABORTED CQEs to clean |
| * up |
| */ |
| INIT_LIST_HEAD(&io->list_entry); |
| list_add_tail(&io->list_entry, &hw->io_wait_free); |
| io->state = EFCT_HW_IO_STATE_WAIT_FREE; |
| } else { |
| /* IO not busy, add to free list */ |
| INIT_LIST_HEAD(&io->list_entry); |
| list_add_tail(&io->list_entry, &hw->io_free); |
| io->state = EFCT_HW_IO_STATE_FREE; |
| } |
| } |
| |
| static inline void |
| efct_hw_io_free_common(struct efct_hw *hw, struct efct_hw_io *io) |
| { |
| /* initialize IO fields */ |
| efct_hw_init_free_io(io); |
| |
| /* Restore default SGL */ |
| efct_hw_io_restore_sgl(hw, io); |
| } |
| |
| void |
| efct_hw_io_free_internal(struct kref *arg) |
| { |
| unsigned long flags = 0; |
| struct efct_hw_io *io = container_of(arg, struct efct_hw_io, ref); |
| struct efct_hw *hw = io->hw; |
| |
| /* perform common cleanup */ |
| efct_hw_io_free_common(hw, io); |
| |
| spin_lock_irqsave(&hw->io_lock, flags); |
| /* remove from in-use list */ |
| if (!list_empty(&io->list_entry) && !list_empty(&hw->io_inuse)) { |
| list_del_init(&io->list_entry); |
| efct_hw_io_free_move_correct_list(hw, io); |
| } |
| spin_unlock_irqrestore(&hw->io_lock, flags); |
| } |
| |
| int |
| efct_hw_io_free(struct efct_hw *hw, struct efct_hw_io *io) |
| { |
| return kref_put(&io->ref, io->release); |
| } |
| |
| struct efct_hw_io * |
| efct_hw_io_lookup(struct efct_hw *hw, u32 xri) |
| { |
| u32 ioindex; |
| |
| ioindex = xri - hw->sli.ext[SLI4_RSRC_XRI].base[0]; |
| return hw->io[ioindex]; |
| } |
| |
| int |
| efct_hw_io_init_sges(struct efct_hw *hw, struct efct_hw_io *io, |
| enum efct_hw_io_type type) |
| { |
| struct sli4_sge *data = NULL; |
| u32 i = 0; |
| u32 skips = 0; |
| u32 sge_flags = 0; |
| |
| if (!io) { |
| efc_log_err(hw->os, "bad parameter hw=%p io=%p\n", hw, io); |
| return -EIO; |
| } |
| |
| /* Clear / reset the scatter-gather list */ |
| io->sgl = &io->def_sgl; |
| io->sgl_count = io->def_sgl_count; |
| io->first_data_sge = 0; |
| |
| memset(io->sgl->virt, 0, 2 * sizeof(struct sli4_sge)); |
| io->n_sge = 0; |
| io->sge_offset = 0; |
| |
| io->type = type; |
| |
| data = io->sgl->virt; |
| |
| /* |
| * Some IO types have underlying hardware requirements on the order |
| * of SGEs. Process all special entries here. |
| */ |
| switch (type) { |
| case EFCT_HW_IO_TARGET_WRITE: |
| |
| /* populate host resident XFER_RDY buffer */ |
| sge_flags = le32_to_cpu(data->dw2_flags); |
| sge_flags &= (~SLI4_SGE_TYPE_MASK); |
| sge_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT); |
| data->buffer_address_high = |
| cpu_to_le32(upper_32_bits(io->xfer_rdy.phys)); |
| data->buffer_address_low = |
| cpu_to_le32(lower_32_bits(io->xfer_rdy.phys)); |
| data->buffer_length = cpu_to_le32(io->xfer_rdy.size); |
| data->dw2_flags = cpu_to_le32(sge_flags); |
| data++; |
| |
| skips = EFCT_TARGET_WRITE_SKIPS; |
| |
| io->n_sge = 1; |
| break; |
| case EFCT_HW_IO_TARGET_READ: |
| /* |
| * For FCP_TSEND64, the first 2 entries are SKIP SGE's |
| */ |
| skips = EFCT_TARGET_READ_SKIPS; |
| break; |
| case EFCT_HW_IO_TARGET_RSP: |
| /* |
| * No skips, etc. for FCP_TRSP64 |
| */ |
| break; |
| default: |
| efc_log_err(hw->os, "unsupported IO type %#x\n", type); |
| return -EIO; |
| } |
| |
| /* |
| * Write skip entries |
| */ |
| for (i = 0; i < skips; i++) { |
| sge_flags = le32_to_cpu(data->dw2_flags); |
| sge_flags &= (~SLI4_SGE_TYPE_MASK); |
| sge_flags |= (SLI4_SGE_TYPE_SKIP << SLI4_SGE_TYPE_SHIFT); |
| data->dw2_flags = cpu_to_le32(sge_flags); |
| data++; |
| } |
| |
| io->n_sge += skips; |
| |
| /* |
| * Set last |
| */ |
| sge_flags = le32_to_cpu(data->dw2_flags); |
| sge_flags |= SLI4_SGE_LAST; |
| data->dw2_flags = cpu_to_le32(sge_flags); |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_io_add_sge(struct efct_hw *hw, struct efct_hw_io *io, |
| uintptr_t addr, u32 length) |
| { |
| struct sli4_sge *data = NULL; |
| u32 sge_flags = 0; |
| |
| if (!io || !addr || !length) { |
| efc_log_err(hw->os, |
| "bad parameter hw=%p io=%p addr=%lx length=%u\n", |
| hw, io, addr, length); |
| return -EIO; |
| } |
| |
| if (length > hw->sli.sge_supported_length) { |
| efc_log_err(hw->os, |
| "length of SGE %d bigger than allowed %d\n", |
| length, hw->sli.sge_supported_length); |
| return -EIO; |
| } |
| |
| data = io->sgl->virt; |
| data += io->n_sge; |
| |
| sge_flags = le32_to_cpu(data->dw2_flags); |
| sge_flags &= ~SLI4_SGE_TYPE_MASK; |
| sge_flags |= SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT; |
| sge_flags &= ~SLI4_SGE_DATA_OFFSET_MASK; |
| sge_flags |= SLI4_SGE_DATA_OFFSET_MASK & io->sge_offset; |
| |
| data->buffer_address_high = cpu_to_le32(upper_32_bits(addr)); |
| data->buffer_address_low = cpu_to_le32(lower_32_bits(addr)); |
| data->buffer_length = cpu_to_le32(length); |
| |
| /* |
| * Always assume this is the last entry and mark as such. |
| * If this is not the first entry unset the "last SGE" |
| * indication for the previous entry |
| */ |
| sge_flags |= SLI4_SGE_LAST; |
| data->dw2_flags = cpu_to_le32(sge_flags); |
| |
| if (io->n_sge) { |
| sge_flags = le32_to_cpu(data[-1].dw2_flags); |
| sge_flags &= ~SLI4_SGE_LAST; |
| data[-1].dw2_flags = cpu_to_le32(sge_flags); |
| } |
| |
| /* Set first_data_bde if not previously set */ |
| if (io->first_data_sge == 0) |
| io->first_data_sge = io->n_sge; |
| |
| io->sge_offset += length; |
| io->n_sge++; |
| |
| return 0; |
| } |
| |
| void |
| efct_hw_io_abort_all(struct efct_hw *hw) |
| { |
| struct efct_hw_io *io_to_abort = NULL; |
| struct efct_hw_io *next_io = NULL; |
| |
| list_for_each_entry_safe(io_to_abort, next_io, |
| &hw->io_inuse, list_entry) { |
| efct_hw_io_abort(hw, io_to_abort, true, NULL, NULL); |
| } |
| } |
| |
| static void |
| efct_hw_wq_process_abort(void *arg, u8 *cqe, int status) |
| { |
| struct efct_hw_io *io = arg; |
| struct efct_hw *hw = io->hw; |
| u32 ext = 0; |
| u32 len = 0; |
| struct hw_wq_callback *wqcb; |
| |
| /* |
| * For IOs that were aborted internally, we may need to issue the |
| * callback here depending on whether a XRI_ABORTED CQE is expected ot |
| * not. If the status is Local Reject/No XRI, then |
| * issue the callback now. |
| */ |
| ext = sli_fc_ext_status(&hw->sli, cqe); |
| if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT && |
| ext == SLI4_FC_LOCAL_REJECT_NO_XRI && io->done) { |
| efct_hw_done_t done = io->done; |
| |
| io->done = NULL; |
| |
| /* |
| * Use latched status as this is always saved for an internal |
| * abort Note: We won't have both a done and abort_done |
| * function, so don't worry about |
| * clobbering the len, status and ext fields. |
| */ |
| status = io->saved_status; |
| len = io->saved_len; |
| ext = io->saved_ext; |
| io->status_saved = false; |
| done(io, len, status, ext, io->arg); |
| } |
| |
| if (io->abort_done) { |
| efct_hw_done_t done = io->abort_done; |
| |
| io->abort_done = NULL; |
| done(io, len, status, ext, io->abort_arg); |
| } |
| |
| /* clear abort bit to indicate abort is complete */ |
| io->abort_in_progress = false; |
| |
| /* Free the WQ callback */ |
| if (io->abort_reqtag == U32_MAX) { |
| efc_log_err(hw->os, "HW IO already freed\n"); |
| return; |
| } |
| |
| wqcb = efct_hw_reqtag_get_instance(hw, io->abort_reqtag); |
| efct_hw_reqtag_free(hw, wqcb); |
| |
| /* |
| * Call efct_hw_io_free() because this releases the WQ reservation as |
| * well as doing the refcount put. Don't duplicate the code here. |
| */ |
| (void)efct_hw_io_free(hw, io); |
| } |
| |
| static void |
| efct_hw_fill_abort_wqe(struct efct_hw *hw, struct efct_hw_wqe *wqe) |
| { |
| struct sli4_abort_wqe *abort = (void *)wqe->wqebuf; |
| |
| memset(abort, 0, hw->sli.wqe_size); |
| |
| abort->criteria = SLI4_ABORT_CRITERIA_XRI_TAG; |
| abort->ia_ir_byte |= wqe->send_abts ? 0 : 1; |
| |
| /* Suppress ABTS retries */ |
| abort->ia_ir_byte |= SLI4_ABRT_WQE_IR; |
| |
| abort->t_tag = cpu_to_le32(wqe->id); |
| abort->command = SLI4_WQE_ABORT; |
| abort->request_tag = cpu_to_le16(wqe->abort_reqtag); |
| |
| abort->dw10w0_flags = cpu_to_le16(SLI4_ABRT_WQE_QOSD); |
| |
| abort->cq_id = cpu_to_le16(SLI4_CQ_DEFAULT); |
| } |
| |
| int |
| efct_hw_io_abort(struct efct_hw *hw, struct efct_hw_io *io_to_abort, |
| bool send_abts, void *cb, void *arg) |
| { |
| struct hw_wq_callback *wqcb; |
| unsigned long flags = 0; |
| |
| if (!io_to_abort) { |
| efc_log_err(hw->os, "bad parameter hw=%p io=%p\n", |
| hw, io_to_abort); |
| return -EIO; |
| } |
| |
| if (hw->state != EFCT_HW_STATE_ACTIVE) { |
| efc_log_err(hw->os, "cannot send IO abort, HW state=%d\n", |
| hw->state); |
| return -EIO; |
| } |
| |
| /* take a reference on IO being aborted */ |
| if (kref_get_unless_zero(&io_to_abort->ref) == 0) { |
| /* command no longer active */ |
| efc_log_debug(hw->os, |
| "io not active xri=0x%x tag=0x%x\n", |
| io_to_abort->indicator, io_to_abort->reqtag); |
| return -ENOENT; |
| } |
| |
| /* Must have a valid WQ reference */ |
| if (!io_to_abort->wq) { |
| efc_log_debug(hw->os, "io_to_abort xri=0x%x not active on WQ\n", |
| io_to_abort->indicator); |
| /* efct_ref_get(): same function */ |
| kref_put(&io_to_abort->ref, io_to_abort->release); |
| return -ENOENT; |
| } |
| |
| /* |
| * Validation checks complete; now check to see if already being |
| * aborted, if not set the flag. |
| */ |
| if (cmpxchg(&io_to_abort->abort_in_progress, false, true)) { |
| /* efct_ref_get(): same function */ |
| kref_put(&io_to_abort->ref, io_to_abort->release); |
| efc_log_debug(hw->os, |
| "io already being aborted xri=0x%x tag=0x%x\n", |
| io_to_abort->indicator, io_to_abort->reqtag); |
| return -EINPROGRESS; |
| } |
| |
| /* |
| * If we got here, the possibilities are: |
| * - host owned xri |
| * - io_to_abort->wq_index != U32_MAX |
| * - submit ABORT_WQE to same WQ |
| * - port owned xri: |
| * - rxri: io_to_abort->wq_index == U32_MAX |
| * - submit ABORT_WQE to any WQ |
| * - non-rxri |
| * - io_to_abort->index != U32_MAX |
| * - submit ABORT_WQE to same WQ |
| * - io_to_abort->index == U32_MAX |
| * - submit ABORT_WQE to any WQ |
| */ |
| io_to_abort->abort_done = cb; |
| io_to_abort->abort_arg = arg; |
| |
| /* Allocate a request tag for the abort portion of this IO */ |
| wqcb = efct_hw_reqtag_alloc(hw, efct_hw_wq_process_abort, io_to_abort); |
| if (!wqcb) { |
| efc_log_err(hw->os, "can't allocate request tag\n"); |
| return -ENOSPC; |
| } |
| |
| io_to_abort->abort_reqtag = wqcb->instance_index; |
| io_to_abort->wqe.send_abts = send_abts; |
| io_to_abort->wqe.id = io_to_abort->indicator; |
| io_to_abort->wqe.abort_reqtag = io_to_abort->abort_reqtag; |
| |
| /* |
| * If the wqe is on the pending list, then set this wqe to be |
| * aborted when the IO's wqe is removed from the list. |
| */ |
| if (io_to_abort->wq) { |
| spin_lock_irqsave(&io_to_abort->wq->queue->lock, flags); |
| if (io_to_abort->wqe.list_entry.next) { |
| io_to_abort->wqe.abort_wqe_submit_needed = true; |
| spin_unlock_irqrestore(&io_to_abort->wq->queue->lock, |
| flags); |
| return 0; |
| } |
| spin_unlock_irqrestore(&io_to_abort->wq->queue->lock, flags); |
| } |
| |
| efct_hw_fill_abort_wqe(hw, &io_to_abort->wqe); |
| |
| /* ABORT_WQE does not actually utilize an XRI on the Port, |
| * therefore, keep xbusy as-is to track the exchange's state, |
| * not the ABORT_WQE's state |
| */ |
| if (efct_hw_wq_write(io_to_abort->wq, &io_to_abort->wqe)) { |
| io_to_abort->abort_in_progress = false; |
| /* efct_ref_get(): same function */ |
| kref_put(&io_to_abort->ref, io_to_abort->release); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| void |
| efct_hw_reqtag_pool_free(struct efct_hw *hw) |
| { |
| u32 i; |
| struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool; |
| struct hw_wq_callback *wqcb = NULL; |
| |
| if (reqtag_pool) { |
| for (i = 0; i < U16_MAX; i++) { |
| wqcb = reqtag_pool->tags[i]; |
| if (!wqcb) |
| continue; |
| |
| kfree(wqcb); |
| } |
| kfree(reqtag_pool); |
| hw->wq_reqtag_pool = NULL; |
| } |
| } |
| |
| struct reqtag_pool * |
| efct_hw_reqtag_pool_alloc(struct efct_hw *hw) |
| { |
| u32 i = 0; |
| struct reqtag_pool *reqtag_pool; |
| struct hw_wq_callback *wqcb; |
| |
| reqtag_pool = kzalloc(sizeof(*reqtag_pool), GFP_KERNEL); |
| if (!reqtag_pool) |
| return NULL; |
| |
| INIT_LIST_HEAD(&reqtag_pool->freelist); |
| /* initialize reqtag pool lock */ |
| spin_lock_init(&reqtag_pool->lock); |
| for (i = 0; i < U16_MAX; i++) { |
| wqcb = kmalloc(sizeof(*wqcb), GFP_KERNEL); |
| if (!wqcb) |
| break; |
| |
| reqtag_pool->tags[i] = wqcb; |
| wqcb->instance_index = i; |
| wqcb->callback = NULL; |
| wqcb->arg = NULL; |
| INIT_LIST_HEAD(&wqcb->list_entry); |
| list_add_tail(&wqcb->list_entry, &reqtag_pool->freelist); |
| } |
| |
| return reqtag_pool; |
| } |
| |
| struct hw_wq_callback * |
| efct_hw_reqtag_alloc(struct efct_hw *hw, |
| void (*callback)(void *arg, u8 *cqe, int status), |
| void *arg) |
| { |
| struct hw_wq_callback *wqcb = NULL; |
| struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool; |
| unsigned long flags = 0; |
| |
| if (!callback) |
| return wqcb; |
| |
| spin_lock_irqsave(&reqtag_pool->lock, flags); |
| |
| if (!list_empty(&reqtag_pool->freelist)) { |
| wqcb = list_first_entry(&reqtag_pool->freelist, |
| struct hw_wq_callback, list_entry); |
| } |
| |
| if (wqcb) { |
| list_del_init(&wqcb->list_entry); |
| spin_unlock_irqrestore(&reqtag_pool->lock, flags); |
| wqcb->callback = callback; |
| wqcb->arg = arg; |
| } else { |
| spin_unlock_irqrestore(&reqtag_pool->lock, flags); |
| } |
| |
| return wqcb; |
| } |
| |
| void |
| efct_hw_reqtag_free(struct efct_hw *hw, struct hw_wq_callback *wqcb) |
| { |
| unsigned long flags = 0; |
| struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool; |
| |
| if (!wqcb->callback) |
| efc_log_err(hw->os, "WQCB is already freed\n"); |
| |
| spin_lock_irqsave(&reqtag_pool->lock, flags); |
| wqcb->callback = NULL; |
| wqcb->arg = NULL; |
| INIT_LIST_HEAD(&wqcb->list_entry); |
| list_add(&wqcb->list_entry, &hw->wq_reqtag_pool->freelist); |
| spin_unlock_irqrestore(&reqtag_pool->lock, flags); |
| } |
| |
| struct hw_wq_callback * |
| efct_hw_reqtag_get_instance(struct efct_hw *hw, u32 instance_index) |
| { |
| struct hw_wq_callback *wqcb; |
| |
| wqcb = hw->wq_reqtag_pool->tags[instance_index]; |
| if (!wqcb) |
| efc_log_err(hw->os, "wqcb for instance %d is null\n", |
| instance_index); |
| |
| return wqcb; |
| } |
| |
| int |
| efct_hw_queue_hash_find(struct efct_queue_hash *hash, u16 id) |
| { |
| int index = -1; |
| int i = id & (EFCT_HW_Q_HASH_SIZE - 1); |
| |
| /* |
| * Since the hash is always bigger than the maximum number of Qs, then |
| * we never have to worry about an infinite loop. We will always find |
| * an unused entry. |
| */ |
| do { |
| if (hash[i].in_use && hash[i].id == id) |
| index = hash[i].index; |
| else |
| i = (i + 1) & (EFCT_HW_Q_HASH_SIZE - 1); |
| } while (index == -1 && hash[i].in_use); |
| |
| return index; |
| } |
| |
| int |
| efct_hw_process(struct efct_hw *hw, u32 vector, |
| u32 max_isr_time_msec) |
| { |
| struct hw_eq *eq; |
| |
| /* |
| * The caller should disable interrupts if they wish to prevent us |
| * from processing during a shutdown. The following states are defined: |
| * EFCT_HW_STATE_UNINITIALIZED - No queues allocated |
| * EFCT_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset, |
| * queues are cleared. |
| * EFCT_HW_STATE_ACTIVE - Chip and queues are operational |
| * EFCT_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions |
| * EFCT_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox |
| * completions. |
| */ |
| if (hw->state == EFCT_HW_STATE_UNINITIALIZED) |
| return 0; |
| |
| /* Get pointer to struct hw_eq */ |
| eq = hw->hw_eq[vector]; |
| if (!eq) |
| return 0; |
| |
| eq->use_count++; |
| |
| return efct_hw_eq_process(hw, eq, max_isr_time_msec); |
| } |
| |
| int |
| efct_hw_eq_process(struct efct_hw *hw, struct hw_eq *eq, |
| u32 max_isr_time_msec) |
| { |
| u8 eqe[sizeof(struct sli4_eqe)] = { 0 }; |
| u32 tcheck_count; |
| u64 tstart; |
| u64 telapsed; |
| bool done = false; |
| |
| tcheck_count = EFCT_HW_TIMECHECK_ITERATIONS; |
| tstart = jiffies_to_msecs(jiffies); |
| |
| while (!done && !sli_eq_read(&hw->sli, eq->queue, eqe)) { |
| u16 cq_id = 0; |
| int rc; |
| |
| rc = sli_eq_parse(&hw->sli, eqe, &cq_id); |
| if (unlikely(rc)) { |
| if (rc == SLI4_EQE_STATUS_EQ_FULL) { |
| u32 i; |
| |
| /* |
| * Received a sentinel EQE indicating the |
| * EQ is full. Process all CQs |
| */ |
| for (i = 0; i < hw->cq_count; i++) |
| efct_hw_cq_process(hw, hw->hw_cq[i]); |
| continue; |
| } else { |
| return rc; |
| } |
| } else { |
| int index; |
| |
| index = efct_hw_queue_hash_find(hw->cq_hash, cq_id); |
| |
| if (likely(index >= 0)) |
| efct_hw_cq_process(hw, hw->hw_cq[index]); |
| else |
| efc_log_err(hw->os, "bad CQ_ID %#06x\n", cq_id); |
| } |
| |
| if (eq->queue->n_posted > eq->queue->posted_limit) |
| sli_queue_arm(&hw->sli, eq->queue, false); |
| |
| if (tcheck_count && (--tcheck_count == 0)) { |
| tcheck_count = EFCT_HW_TIMECHECK_ITERATIONS; |
| telapsed = jiffies_to_msecs(jiffies) - tstart; |
| if (telapsed >= max_isr_time_msec) |
| done = true; |
| } |
| } |
| sli_queue_eq_arm(&hw->sli, eq->queue, true); |
| |
| return 0; |
| } |
| |
| static int |
| _efct_hw_wq_write(struct hw_wq *wq, struct efct_hw_wqe *wqe) |
| { |
| int queue_rc; |
| |
| /* Every so often, set the wqec bit to generate comsummed completions */ |
| if (wq->wqec_count) |
| wq->wqec_count--; |
| |
| if (wq->wqec_count == 0) { |
| struct sli4_generic_wqe *genwqe = (void *)wqe->wqebuf; |
| |
| genwqe->cmdtype_wqec_byte |= SLI4_GEN_WQE_WQEC; |
| wq->wqec_count = wq->wqec_set_count; |
| } |
| |
| /* Decrement WQ free count */ |
| wq->free_count--; |
| |
| queue_rc = sli_wq_write(&wq->hw->sli, wq->queue, wqe->wqebuf); |
| |
| return (queue_rc < 0) ? -EIO : 0; |
| } |
| |
| static void |
| hw_wq_submit_pending(struct hw_wq *wq, u32 update_free_count) |
| { |
| struct efct_hw_wqe *wqe; |
| unsigned long flags = 0; |
| |
| spin_lock_irqsave(&wq->queue->lock, flags); |
| |
| /* Update free count with value passed in */ |
| wq->free_count += update_free_count; |
| |
| while ((wq->free_count > 0) && (!list_empty(&wq->pending_list))) { |
| wqe = list_first_entry(&wq->pending_list, |
| struct efct_hw_wqe, list_entry); |
| list_del_init(&wqe->list_entry); |
| _efct_hw_wq_write(wq, wqe); |
| |
| if (wqe->abort_wqe_submit_needed) { |
| wqe->abort_wqe_submit_needed = false; |
| efct_hw_fill_abort_wqe(wq->hw, wqe); |
| INIT_LIST_HEAD(&wqe->list_entry); |
| list_add_tail(&wqe->list_entry, &wq->pending_list); |
| wq->wq_pending_count++; |
| } |
| } |
| |
| spin_unlock_irqrestore(&wq->queue->lock, flags); |
| } |
| |
| void |
| efct_hw_cq_process(struct efct_hw *hw, struct hw_cq *cq) |
| { |
| u8 cqe[sizeof(struct sli4_mcqe)]; |
| u16 rid = U16_MAX; |
| /* completion type */ |
| enum sli4_qentry ctype; |
| u32 n_processed = 0; |
| u32 tstart, telapsed; |
| |
| tstart = jiffies_to_msecs(jiffies); |
| |
| while (!sli_cq_read(&hw->sli, cq->queue, cqe)) { |
| int status; |
| |
| status = sli_cq_parse(&hw->sli, cq->queue, cqe, &ctype, &rid); |
| /* |
| * The sign of status is significant. If status is: |
| * == 0 : call completed correctly and |
| * the CQE indicated success |
| * > 0 : call completed correctly and |
| * the CQE indicated an error |
| * < 0 : call failed and no information is available about the |
| * CQE |
| */ |
| if (status < 0) { |
| if (status == SLI4_MCQE_STATUS_NOT_COMPLETED) |
| /* |
| * Notification that an entry was consumed, |
| * but not completed |
| */ |
| continue; |
| |
| break; |
| } |
| |
| switch (ctype) { |
| case SLI4_QENTRY_ASYNC: |
| sli_cqe_async(&hw->sli, cqe); |
| break; |
| case SLI4_QENTRY_MQ: |
| /* |
| * Process MQ entry. Note there is no way to determine |
| * the MQ_ID from the completion entry. |
| */ |
| efct_hw_mq_process(hw, status, hw->mq); |
| break; |
| case SLI4_QENTRY_WQ: |
| efct_hw_wq_process(hw, cq, cqe, status, rid); |
| break; |
| case SLI4_QENTRY_WQ_RELEASE: { |
| u32 wq_id = rid; |
| int index; |
| struct hw_wq *wq = NULL; |
| |
| index = efct_hw_queue_hash_find(hw->wq_hash, wq_id); |
| |
| if (likely(index >= 0)) { |
| wq = hw->hw_wq[index]; |
| } else { |
| efc_log_err(hw->os, "bad WQ_ID %#06x\n", wq_id); |
| break; |
| } |
| /* Submit any HW IOs that are on the WQ pending list */ |
| hw_wq_submit_pending(wq, wq->wqec_set_count); |
| |
| break; |
| } |
| |
| case SLI4_QENTRY_RQ: |
| efct_hw_rqpair_process_rq(hw, cq, cqe); |
| break; |
| case SLI4_QENTRY_XABT: { |
| efct_hw_xabt_process(hw, cq, cqe, rid); |
| break; |
| } |
| default: |
| efc_log_debug(hw->os, "unhandled ctype=%#x rid=%#x\n", |
| ctype, rid); |
| break; |
| } |
| |
| n_processed++; |
| if (n_processed == cq->queue->proc_limit) |
| break; |
| |
| if (cq->queue->n_posted >= cq->queue->posted_limit) |
| sli_queue_arm(&hw->sli, cq->queue, false); |
| } |
| |
| sli_queue_arm(&hw->sli, cq->queue, true); |
| |
| if (n_processed > cq->queue->max_num_processed) |
| cq->queue->max_num_processed = n_processed; |
| telapsed = jiffies_to_msecs(jiffies) - tstart; |
| if (telapsed > cq->queue->max_process_time) |
| cq->queue->max_process_time = telapsed; |
| } |
| |
| void |
| efct_hw_wq_process(struct efct_hw *hw, struct hw_cq *cq, |
| u8 *cqe, int status, u16 rid) |
| { |
| struct hw_wq_callback *wqcb; |
| |
| if (rid == EFCT_HW_REQUE_XRI_REGTAG) { |
| if (status) |
| efc_log_err(hw->os, "reque xri failed, status = %d\n", |
| status); |
| return; |
| } |
| |
| wqcb = efct_hw_reqtag_get_instance(hw, rid); |
| if (!wqcb) { |
| efc_log_err(hw->os, "invalid request tag: x%x\n", rid); |
| return; |
| } |
| |
| if (!wqcb->callback) { |
| efc_log_err(hw->os, "wqcb callback is NULL\n"); |
| return; |
| } |
| |
| (*wqcb->callback)(wqcb->arg, cqe, status); |
| } |
| |
| void |
| efct_hw_xabt_process(struct efct_hw *hw, struct hw_cq *cq, |
| u8 *cqe, u16 rid) |
| { |
| /* search IOs wait free list */ |
| struct efct_hw_io *io = NULL; |
| unsigned long flags = 0; |
| |
| io = efct_hw_io_lookup(hw, rid); |
| if (!io) { |
| /* IO lookup failure should never happen */ |
| efc_log_err(hw->os, "xabt io lookup failed rid=%#x\n", rid); |
| return; |
| } |
| |
| if (!io->xbusy) |
| efc_log_debug(hw->os, "xabt io not busy rid=%#x\n", rid); |
| else |
| /* mark IO as no longer busy */ |
| io->xbusy = false; |
| |
| /* |
| * For IOs that were aborted internally, we need to issue any pending |
| * callback here. |
| */ |
| if (io->done) { |
| efct_hw_done_t done = io->done; |
| void *arg = io->arg; |
| |
| /* |
| * Use latched status as this is always saved for an internal |
| * abort |
| */ |
| int status = io->saved_status; |
| u32 len = io->saved_len; |
| u32 ext = io->saved_ext; |
| |
| io->done = NULL; |
| io->status_saved = false; |
| |
| done(io, len, status, ext, arg); |
| } |
| |
| spin_lock_irqsave(&hw->io_lock, flags); |
| if (io->state == EFCT_HW_IO_STATE_INUSE || |
| io->state == EFCT_HW_IO_STATE_WAIT_FREE) { |
| /* if on wait_free list, caller has already freed IO; |
| * remove from wait_free list and add to free list. |
| * if on in-use list, already marked as no longer busy; |
| * just leave there and wait for caller to free. |
| */ |
| if (io->state == EFCT_HW_IO_STATE_WAIT_FREE) { |
| io->state = EFCT_HW_IO_STATE_FREE; |
| list_del_init(&io->list_entry); |
| efct_hw_io_free_move_correct_list(hw, io); |
| } |
| } |
| spin_unlock_irqrestore(&hw->io_lock, flags); |
| } |
| |
| static int |
| efct_hw_flush(struct efct_hw *hw) |
| { |
| u32 i = 0; |
| |
| /* Process any remaining completions */ |
| for (i = 0; i < hw->eq_count; i++) |
| efct_hw_process(hw, i, ~0); |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_wq_write(struct hw_wq *wq, struct efct_hw_wqe *wqe) |
| { |
| int rc = 0; |
| unsigned long flags = 0; |
| |
| spin_lock_irqsave(&wq->queue->lock, flags); |
| if (list_empty(&wq->pending_list)) { |
| if (wq->free_count > 0) { |
| rc = _efct_hw_wq_write(wq, wqe); |
| } else { |
| INIT_LIST_HEAD(&wqe->list_entry); |
| list_add_tail(&wqe->list_entry, &wq->pending_list); |
| wq->wq_pending_count++; |
| } |
| |
| spin_unlock_irqrestore(&wq->queue->lock, flags); |
| return rc; |
| } |
| |
| INIT_LIST_HEAD(&wqe->list_entry); |
| list_add_tail(&wqe->list_entry, &wq->pending_list); |
| wq->wq_pending_count++; |
| while (wq->free_count > 0) { |
| wqe = list_first_entry(&wq->pending_list, struct efct_hw_wqe, |
| list_entry); |
| if (!wqe) |
| break; |
| |
| list_del_init(&wqe->list_entry); |
| rc = _efct_hw_wq_write(wq, wqe); |
| if (rc) |
| break; |
| |
| if (wqe->abort_wqe_submit_needed) { |
| wqe->abort_wqe_submit_needed = false; |
| efct_hw_fill_abort_wqe(wq->hw, wqe); |
| |
| INIT_LIST_HEAD(&wqe->list_entry); |
| list_add_tail(&wqe->list_entry, &wq->pending_list); |
| wq->wq_pending_count++; |
| } |
| } |
| |
| spin_unlock_irqrestore(&wq->queue->lock, flags); |
| |
| return rc; |
| } |
| |
| int |
| efct_efc_bls_send(struct efc *efc, u32 type, struct sli_bls_params *bls) |
| { |
| struct efct *efct = efc->base; |
| |
| return efct_hw_bls_send(efct, type, bls, NULL, NULL); |
| } |
| |
| int |
| efct_hw_bls_send(struct efct *efct, u32 type, struct sli_bls_params *bls_params, |
| void *cb, void *arg) |
| { |
| struct efct_hw *hw = &efct->hw; |
| struct efct_hw_io *hio; |
| struct sli_bls_payload bls; |
| int rc; |
| |
| if (hw->state != EFCT_HW_STATE_ACTIVE) { |
| efc_log_err(hw->os, |
| "cannot send BLS, HW state=%d\n", hw->state); |
| return -EIO; |
| } |
| |
| hio = efct_hw_io_alloc(hw); |
| if (!hio) { |
| efc_log_err(hw->os, "HIO allocation failed\n"); |
| return -EIO; |
| } |
| |
| hio->done = cb; |
| hio->arg = arg; |
| |
| bls_params->xri = hio->indicator; |
| bls_params->tag = hio->reqtag; |
| |
| if (type == FC_RCTL_BA_ACC) { |
| hio->type = EFCT_HW_BLS_ACC; |
| bls.type = SLI4_SLI_BLS_ACC; |
| memcpy(&bls.u.acc, bls_params->payload, sizeof(bls.u.acc)); |
| } else { |
| hio->type = EFCT_HW_BLS_RJT; |
| bls.type = SLI4_SLI_BLS_RJT; |
| memcpy(&bls.u.rjt, bls_params->payload, sizeof(bls.u.rjt)); |
| } |
| |
| bls.ox_id = cpu_to_le16(bls_params->ox_id); |
| bls.rx_id = cpu_to_le16(bls_params->rx_id); |
| |
| if (sli_xmit_bls_rsp64_wqe(&hw->sli, hio->wqe.wqebuf, |
| &bls, bls_params)) { |
| efc_log_err(hw->os, "XMIT_BLS_RSP64 WQE error\n"); |
| return -EIO; |
| } |
| |
| hio->xbusy = true; |
| |
| /* |
| * Add IO to active io wqe list before submitting, in case the |
| * wcqe processing preempts this thread. |
| */ |
| hio->wq->use_count++; |
| rc = efct_hw_wq_write(hio->wq, &hio->wqe); |
| if (rc >= 0) { |
| /* non-negative return is success */ |
| rc = 0; |
| } else { |
| /* failed to write wqe, remove from active wqe list */ |
| efc_log_err(hw->os, |
| "sli_queue_write failed: %d\n", rc); |
| hio->xbusy = false; |
| } |
| |
| return rc; |
| } |
| |
| static int |
| efct_els_ssrs_send_cb(struct efct_hw_io *hio, u32 length, int status, |
| u32 ext_status, void *arg) |
| { |
| struct efc_disc_io *io = arg; |
| |
| efc_disc_io_complete(io, length, status, ext_status); |
| return 0; |
| } |
| |
| static inline void |
| efct_fill_els_params(struct efc_disc_io *io, struct sli_els_params *params) |
| { |
| u8 *cmd = io->req.virt; |
| |
| params->cmd = *cmd; |
| params->s_id = io->s_id; |
| params->d_id = io->d_id; |
| params->ox_id = io->iparam.els.ox_id; |
| params->rpi = io->rpi; |
| params->vpi = io->vpi; |
| params->rpi_registered = io->rpi_registered; |
| params->xmit_len = io->xmit_len; |
| params->rsp_len = io->rsp_len; |
| params->timeout = io->iparam.els.timeout; |
| } |
| |
| static inline void |
| efct_fill_ct_params(struct efc_disc_io *io, struct sli_ct_params *params) |
| { |
| params->r_ctl = io->iparam.ct.r_ctl; |
| params->type = io->iparam.ct.type; |
| params->df_ctl = io->iparam.ct.df_ctl; |
| params->d_id = io->d_id; |
| params->ox_id = io->iparam.ct.ox_id; |
| params->rpi = io->rpi; |
| params->vpi = io->vpi; |
| params->rpi_registered = io->rpi_registered; |
| params->xmit_len = io->xmit_len; |
| params->rsp_len = io->rsp_len; |
| params->timeout = io->iparam.ct.timeout; |
| } |
| |
| /** |
| * efct_els_hw_srrs_send() - Send a single request and response cmd. |
| * @efc: efc library structure |
| * @io: Discovery IO used to hold els and ct cmd context. |
| * |
| * This routine supports communication sequences consisting of a single |
| * request and single response between two endpoints. Examples include: |
| * - Sending an ELS request. |
| * - Sending an ELS response - To send an ELS response, the caller must provide |
| * the OX_ID from the received request. |
| * - Sending a FC Common Transport (FC-CT) request - To send a FC-CT request, |
| * the caller must provide the R_CTL, TYPE, and DF_CTL |
| * values to place in the FC frame header. |
| * |
| * Return: Status of the request. |
| */ |
| int |
| efct_els_hw_srrs_send(struct efc *efc, struct efc_disc_io *io) |
| { |
| struct efct *efct = efc->base; |
| struct efct_hw_io *hio; |
| struct efct_hw *hw = &efct->hw; |
| struct efc_dma *send = &io->req; |
| struct efc_dma *receive = &io->rsp; |
| struct sli4_sge *sge = NULL; |
| int rc = 0; |
| u32 len = io->xmit_len; |
| u32 sge0_flags; |
| u32 sge1_flags; |
| |
| hio = efct_hw_io_alloc(hw); |
| if (!hio) { |
| pr_err("HIO alloc failed\n"); |
| return -EIO; |
| } |
| |
| if (hw->state != EFCT_HW_STATE_ACTIVE) { |
| efc_log_debug(hw->os, |
| "cannot send SRRS, HW state=%d\n", hw->state); |
| return -EIO; |
| } |
| |
| hio->done = efct_els_ssrs_send_cb; |
| hio->arg = io; |
| |
| sge = hio->sgl->virt; |
| |
| /* clear both SGE */ |
| memset(hio->sgl->virt, 0, 2 * sizeof(struct sli4_sge)); |
| |
| sge0_flags = le32_to_cpu(sge[0].dw2_flags); |
| sge1_flags = le32_to_cpu(sge[1].dw2_flags); |
| if (send->size) { |
| sge[0].buffer_address_high = |
| cpu_to_le32(upper_32_bits(send->phys)); |
| sge[0].buffer_address_low = |
| cpu_to_le32(lower_32_bits(send->phys)); |
| |
| sge0_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT); |
| |
| sge[0].buffer_length = cpu_to_le32(len); |
| } |
| |
| if (io->io_type == EFC_DISC_IO_ELS_REQ || |
| io->io_type == EFC_DISC_IO_CT_REQ) { |
| sge[1].buffer_address_high = |
| cpu_to_le32(upper_32_bits(receive->phys)); |
| sge[1].buffer_address_low = |
| cpu_to_le32(lower_32_bits(receive->phys)); |
| |
| sge1_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT); |
| sge1_flags |= SLI4_SGE_LAST; |
| |
| sge[1].buffer_length = cpu_to_le32(receive->size); |
| } else { |
| sge0_flags |= SLI4_SGE_LAST; |
| } |
| |
| sge[0].dw2_flags = cpu_to_le32(sge0_flags); |
| sge[1].dw2_flags = cpu_to_le32(sge1_flags); |
| |
| switch (io->io_type) { |
| case EFC_DISC_IO_ELS_REQ: { |
| struct sli_els_params els_params; |
| |
| hio->type = EFCT_HW_ELS_REQ; |
| efct_fill_els_params(io, &els_params); |
| els_params.xri = hio->indicator; |
| els_params.tag = hio->reqtag; |
| |
| if (sli_els_request64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl, |
| &els_params)) { |
| efc_log_err(hw->os, "REQ WQE error\n"); |
| rc = -EIO; |
| } |
| break; |
| } |
| case EFC_DISC_IO_ELS_RESP: { |
| struct sli_els_params els_params; |
| |
| hio->type = EFCT_HW_ELS_RSP; |
| efct_fill_els_params(io, &els_params); |
| els_params.xri = hio->indicator; |
| els_params.tag = hio->reqtag; |
| if (sli_xmit_els_rsp64_wqe(&hw->sli, hio->wqe.wqebuf, send, |
| &els_params)){ |
| efc_log_err(hw->os, "RSP WQE error\n"); |
| rc = -EIO; |
| } |
| break; |
| } |
| case EFC_DISC_IO_CT_REQ: { |
| struct sli_ct_params ct_params; |
| |
| hio->type = EFCT_HW_FC_CT; |
| efct_fill_ct_params(io, &ct_params); |
| ct_params.xri = hio->indicator; |
| ct_params.tag = hio->reqtag; |
| if (sli_gen_request64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl, |
| &ct_params)){ |
| efc_log_err(hw->os, "GEN WQE error\n"); |
| rc = -EIO; |
| } |
| break; |
| } |
| case EFC_DISC_IO_CT_RESP: { |
| struct sli_ct_params ct_params; |
| |
| hio->type = EFCT_HW_FC_CT_RSP; |
| efct_fill_ct_params(io, &ct_params); |
| ct_params.xri = hio->indicator; |
| ct_params.tag = hio->reqtag; |
| if (sli_xmit_sequence64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl, |
| &ct_params)){ |
| efc_log_err(hw->os, "XMIT SEQ WQE error\n"); |
| rc = -EIO; |
| } |
| break; |
| } |
| default: |
| efc_log_err(hw->os, "bad SRRS type %#x\n", io->io_type); |
| rc = -EIO; |
| } |
| |
| if (rc == 0) { |
| hio->xbusy = true; |
| |
| /* |
| * Add IO to active io wqe list before submitting, in case the |
| * wcqe processing preempts this thread. |
| */ |
| hio->wq->use_count++; |
| rc = efct_hw_wq_write(hio->wq, &hio->wqe); |
| if (rc >= 0) { |
| /* non-negative return is success */ |
| rc = 0; |
| } else { |
| /* failed to write wqe, remove from active wqe list */ |
| efc_log_err(hw->os, |
| "sli_queue_write failed: %d\n", rc); |
| hio->xbusy = false; |
| } |
| } |
| |
| return rc; |
| } |
| |
| int |
| efct_hw_io_send(struct efct_hw *hw, enum efct_hw_io_type type, |
| struct efct_hw_io *io, union efct_hw_io_param_u *iparam, |
| void *cb, void *arg) |
| { |
| int rc = 0; |
| bool send_wqe = true; |
| |
| if (!io) { |
| pr_err("bad parm hw=%p io=%p\n", hw, io); |
| return -EIO; |
| } |
| |
| if (hw->state != EFCT_HW_STATE_ACTIVE) { |
| efc_log_err(hw->os, "cannot send IO, HW state=%d\n", hw->state); |
| return -EIO; |
| } |
| |
| /* |
| * Save state needed during later stages |
| */ |
| io->type = type; |
| io->done = cb; |
| io->arg = arg; |
| |
| /* |
| * Format the work queue entry used to send the IO |
| */ |
| switch (type) { |
| case EFCT_HW_IO_TARGET_WRITE: { |
| u16 *flags = &iparam->fcp_tgt.flags; |
| struct fcp_txrdy *xfer = io->xfer_rdy.virt; |
| |
| /* |
| * Fill in the XFER_RDY for IF_TYPE 0 devices |
| */ |
| xfer->ft_data_ro = cpu_to_be32(iparam->fcp_tgt.offset); |
| xfer->ft_burst_len = cpu_to_be32(iparam->fcp_tgt.xmit_len); |
| |
| if (io->xbusy) |
| *flags |= SLI4_IO_CONTINUATION; |
| else |
| *flags &= ~SLI4_IO_CONTINUATION; |
| iparam->fcp_tgt.xri = io->indicator; |
| iparam->fcp_tgt.tag = io->reqtag; |
| |
| if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf, |
| &io->def_sgl, io->first_data_sge, |
| SLI4_CQ_DEFAULT, |
| 0, 0, &iparam->fcp_tgt)) { |
| efc_log_err(hw->os, "TRECEIVE WQE error\n"); |
| rc = -EIO; |
| } |
| break; |
| } |
| case EFCT_HW_IO_TARGET_READ: { |
| u16 *flags = &iparam->fcp_tgt.flags; |
| |
| if (io->xbusy) |
| *flags |= SLI4_IO_CONTINUATION; |
| else |
| *flags &= ~SLI4_IO_CONTINUATION; |
| |
| iparam->fcp_tgt.xri = io->indicator; |
| iparam->fcp_tgt.tag = io->reqtag; |
| |
| if (sli_fcp_tsend64_wqe(&hw->sli, io->wqe.wqebuf, |
| &io->def_sgl, io->first_data_sge, |
| SLI4_CQ_DEFAULT, |
| 0, 0, &iparam->fcp_tgt)) { |
| efc_log_err(hw->os, "TSEND WQE error\n"); |
| rc = -EIO; |
| } |
| break; |
| } |
| case EFCT_HW_IO_TARGET_RSP: { |
| u16 *flags = &iparam->fcp_tgt.flags; |
| |
| if (io->xbusy) |
| *flags |= SLI4_IO_CONTINUATION; |
| else |
| *flags &= ~SLI4_IO_CONTINUATION; |
| |
| iparam->fcp_tgt.xri = io->indicator; |
| iparam->fcp_tgt.tag = io->reqtag; |
| |
| if (sli_fcp_trsp64_wqe(&hw->sli, io->wqe.wqebuf, |
| &io->def_sgl, SLI4_CQ_DEFAULT, |
| 0, &iparam->fcp_tgt)) { |
| efc_log_err(hw->os, "TRSP WQE error\n"); |
| rc = -EIO; |
| } |
| |
| break; |
| } |
| default: |
| efc_log_err(hw->os, "unsupported IO type %#x\n", type); |
| rc = -EIO; |
| } |
| |
| if (send_wqe && rc == 0) { |
| io->xbusy = true; |
| |
| /* |
| * Add IO to active io wqe list before submitting, in case the |
| * wcqe processing preempts this thread. |
| */ |
| hw->tcmd_wq_submit[io->wq->instance]++; |
| io->wq->use_count++; |
| rc = efct_hw_wq_write(io->wq, &io->wqe); |
| if (rc >= 0) { |
| /* non-negative return is success */ |
| rc = 0; |
| } else { |
| /* failed to write wqe, remove from active wqe list */ |
| efc_log_err(hw->os, |
| "sli_queue_write failed: %d\n", rc); |
| io->xbusy = false; |
| } |
| } |
| |
| return rc; |
| } |
| |
| int |
| efct_hw_send_frame(struct efct_hw *hw, struct fc_frame_header *hdr, |
| u8 sof, u8 eof, struct efc_dma *payload, |
| struct efct_hw_send_frame_context *ctx, |
| void (*callback)(void *arg, u8 *cqe, int status), |
| void *arg) |
| { |
| int rc; |
| struct efct_hw_wqe *wqe; |
| u32 xri; |
| struct hw_wq *wq; |
| |
| wqe = &ctx->wqe; |
| |
| /* populate the callback object */ |
| ctx->hw = hw; |
| |
| /* Fetch and populate request tag */ |
| ctx->wqcb = efct_hw_reqtag_alloc(hw, callback, arg); |
| if (!ctx->wqcb) { |
| efc_log_err(hw->os, "can't allocate request tag\n"); |
| return -ENOSPC; |
| } |
| |
| wq = hw->hw_wq[0]; |
| |
| /* Set XRI and RX_ID in the header based on which WQ, and which |
| * send_frame_io we are using |
| */ |
| xri = wq->send_frame_io->indicator; |
| |
| /* Build the send frame WQE */ |
| rc = sli_send_frame_wqe(&hw->sli, wqe->wqebuf, |
| sof, eof, (u32 *)hdr, payload, payload->len, |
| EFCT_HW_SEND_FRAME_TIMEOUT, xri, |
| ctx->wqcb->instance_index); |
| if (rc) { |
| efc_log_err(hw->os, "sli_send_frame_wqe failed: %d\n", rc); |
| return -EIO; |
| } |
| |
| /* Write to WQ */ |
| rc = efct_hw_wq_write(wq, wqe); |
| if (rc) { |
| efc_log_err(hw->os, "efct_hw_wq_write failed: %d\n", rc); |
| return -EIO; |
| } |
| |
| wq->use_count++; |
| |
| return 0; |
| } |
| |
| static int |
| efct_hw_cb_link_stat(struct efct_hw *hw, int status, |
| u8 *mqe, void *arg) |
| { |
| struct sli4_cmd_read_link_stats *mbox_rsp; |
| struct efct_hw_link_stat_cb_arg *cb_arg = arg; |
| struct efct_hw_link_stat_counts counts[EFCT_HW_LINK_STAT_MAX]; |
| u32 num_counters, i; |
| u32 mbox_rsp_flags = 0; |
| |
| mbox_rsp = (struct sli4_cmd_read_link_stats *)mqe; |
| mbox_rsp_flags = le32_to_cpu(mbox_rsp->dw1_flags); |
| num_counters = (mbox_rsp_flags & SLI4_READ_LNKSTAT_GEC) ? 20 : 13; |
| memset(counts, 0, sizeof(struct efct_hw_link_stat_counts) * |
| EFCT_HW_LINK_STAT_MAX); |
| |
| /* Fill overflow counts, mask starts from SLI4_READ_LNKSTAT_W02OF*/ |
| for (i = 0; i < EFCT_HW_LINK_STAT_MAX; i++) |
| counts[i].overflow = (mbox_rsp_flags & (1 << (i + 2))); |
| |
| counts[EFCT_HW_LINK_STAT_LINK_FAILURE_COUNT].counter = |
| le32_to_cpu(mbox_rsp->linkfail_errcnt); |
| counts[EFCT_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter = |
| le32_to_cpu(mbox_rsp->losssync_errcnt); |
| counts[EFCT_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].counter = |
| le32_to_cpu(mbox_rsp->losssignal_errcnt); |
| counts[EFCT_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter = |
| le32_to_cpu(mbox_rsp->primseq_errcnt); |
| counts[EFCT_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter = |
| le32_to_cpu(mbox_rsp->inval_txword_errcnt); |
| counts[EFCT_HW_LINK_STAT_CRC_COUNT].counter = |
| le32_to_cpu(mbox_rsp->crc_errcnt); |
| counts[EFCT_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].counter = |
| le32_to_cpu(mbox_rsp->primseq_eventtimeout_cnt); |
| counts[EFCT_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].counter = |
| le32_to_cpu(mbox_rsp->elastic_bufoverrun_errcnt); |
| counts[EFCT_HW_LINK_STAT_ARB_TIMEOUT_COUNT].counter = |
| le32_to_cpu(mbox_rsp->arbit_fc_al_timeout_cnt); |
| counts[EFCT_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].counter = |
| le32_to_cpu(mbox_rsp->adv_rx_buftor_to_buf_credit); |
| counts[EFCT_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].counter = |
| le32_to_cpu(mbox_rsp->curr_rx_buf_to_buf_credit); |
| counts[EFCT_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].counter = |
| le32_to_cpu(mbox_rsp->adv_tx_buf_to_buf_credit); |
| counts[EFCT_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].counter = |
| le32_to_cpu(mbox_rsp->curr_tx_buf_to_buf_credit); |
| counts[EFCT_HW_LINK_STAT_RCV_EOFA_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_eofa_cnt); |
| counts[EFCT_HW_LINK_STAT_RCV_EOFDTI_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_eofdti_cnt); |
| counts[EFCT_HW_LINK_STAT_RCV_EOFNI_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_eofni_cnt); |
| counts[EFCT_HW_LINK_STAT_RCV_SOFF_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_soff_cnt); |
| counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_dropped_no_aer_cnt); |
| counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_dropped_no_avail_rpi_rescnt); |
| counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].counter = |
| le32_to_cpu(mbox_rsp->rx_dropped_no_avail_xri_rescnt); |
| |
| if (cb_arg) { |
| if (cb_arg->cb) { |
| if (status == 0 && le16_to_cpu(mbox_rsp->hdr.status)) |
| status = le16_to_cpu(mbox_rsp->hdr.status); |
| cb_arg->cb(status, num_counters, counts, cb_arg->arg); |
| } |
| |
| kfree(cb_arg); |
| } |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_get_link_stats(struct efct_hw *hw, u8 req_ext_counters, |
| u8 clear_overflow_flags, u8 clear_all_counters, |
| void (*cb)(int status, u32 num_counters, |
| struct efct_hw_link_stat_counts *counters, |
| void *arg), |
| void *arg) |
| { |
| int rc = -EIO; |
| struct efct_hw_link_stat_cb_arg *cb_arg; |
| u8 mbxdata[SLI4_BMBX_SIZE]; |
| |
| cb_arg = kzalloc(sizeof(*cb_arg), GFP_ATOMIC); |
| if (!cb_arg) |
| return -ENOMEM; |
| |
| cb_arg->cb = cb; |
| cb_arg->arg = arg; |
| |
| /* Send the HW command */ |
| if (!sli_cmd_read_link_stats(&hw->sli, mbxdata, req_ext_counters, |
| clear_overflow_flags, clear_all_counters)) |
| rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT, |
| efct_hw_cb_link_stat, cb_arg); |
| |
| if (rc) |
| kfree(cb_arg); |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_cb_host_stat(struct efct_hw *hw, int status, u8 *mqe, void *arg) |
| { |
| struct sli4_cmd_read_status *mbox_rsp = |
| (struct sli4_cmd_read_status *)mqe; |
| struct efct_hw_host_stat_cb_arg *cb_arg = arg; |
| struct efct_hw_host_stat_counts counts[EFCT_HW_HOST_STAT_MAX]; |
| u32 num_counters = EFCT_HW_HOST_STAT_MAX; |
| |
| memset(counts, 0, sizeof(struct efct_hw_host_stat_counts) * |
| EFCT_HW_HOST_STAT_MAX); |
| |
| counts[EFCT_HW_HOST_STAT_TX_KBYTE_COUNT].counter = |
| le32_to_cpu(mbox_rsp->trans_kbyte_cnt); |
| counts[EFCT_HW_HOST_STAT_RX_KBYTE_COUNT].counter = |
| le32_to_cpu(mbox_rsp->recv_kbyte_cnt); |
| counts[EFCT_HW_HOST_STAT_TX_FRAME_COUNT].counter = |
| le32_to_cpu(mbox_rsp->trans_frame_cnt); |
| counts[EFCT_HW_HOST_STAT_RX_FRAME_COUNT].counter = |
| le32_to_cpu(mbox_rsp->recv_frame_cnt); |
| counts[EFCT_HW_HOST_STAT_TX_SEQ_COUNT].counter = |
| le32_to_cpu(mbox_rsp->trans_seq_cnt); |
| counts[EFCT_HW_HOST_STAT_RX_SEQ_COUNT].counter = |
| le32_to_cpu(mbox_rsp->recv_seq_cnt); |
| counts[EFCT_HW_HOST_STAT_TOTAL_EXCH_ORIG].counter = |
| le32_to_cpu(mbox_rsp->tot_exchanges_orig); |
| counts[EFCT_HW_HOST_STAT_TOTAL_EXCH_RESP].counter = |
| le32_to_cpu(mbox_rsp->tot_exchanges_resp); |
| counts[EFCT_HW_HOSY_STAT_RX_P_BSY_COUNT].counter = |
| le32_to_cpu(mbox_rsp->recv_p_bsy_cnt); |
| counts[EFCT_HW_HOST_STAT_RX_F_BSY_COUNT].counter = |
| le32_to_cpu(mbox_rsp->recv_f_bsy_cnt); |
| counts[EFCT_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_RQ_BUF_COUNT].counter = |
| le32_to_cpu(mbox_rsp->no_rq_buf_dropped_frames_cnt); |
| counts[EFCT_HW_HOST_STAT_EMPTY_RQ_TIMEOUT_COUNT].counter = |
| le32_to_cpu(mbox_rsp->empty_rq_timeout_cnt); |
| counts[EFCT_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_XRI_COUNT].counter = |
| le32_to_cpu(mbox_rsp->no_xri_dropped_frames_cnt); |
| counts[EFCT_HW_HOST_STAT_EMPTY_XRI_POOL_COUNT].counter = |
| le32_to_cpu(mbox_rsp->empty_xri_pool_cnt); |
| |
| if (cb_arg) { |
| if (cb_arg->cb) { |
| if (status == 0 && le16_to_cpu(mbox_rsp->hdr.status)) |
| status = le16_to_cpu(mbox_rsp->hdr.status); |
| cb_arg->cb(status, num_counters, counts, cb_arg->arg); |
| } |
| |
| kfree(cb_arg); |
| } |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_get_host_stats(struct efct_hw *hw, u8 cc, |
| void (*cb)(int status, u32 num_counters, |
| struct efct_hw_host_stat_counts *counters, |
| void *arg), |
| void *arg) |
| { |
| int rc = -EIO; |
| struct efct_hw_host_stat_cb_arg *cb_arg; |
| u8 mbxdata[SLI4_BMBX_SIZE]; |
| |
| cb_arg = kmalloc(sizeof(*cb_arg), GFP_ATOMIC); |
| if (!cb_arg) |
| return -ENOMEM; |
| |
| cb_arg->cb = cb; |
| cb_arg->arg = arg; |
| |
| /* Send the HW command to get the host stats */ |
| if (!sli_cmd_read_status(&hw->sli, mbxdata, cc)) |
| rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT, |
| efct_hw_cb_host_stat, cb_arg); |
| |
| if (rc) { |
| efc_log_debug(hw->os, "READ_HOST_STATS failed\n"); |
| kfree(cb_arg); |
| } |
| |
| return rc; |
| } |
| |
| struct efct_hw_async_call_ctx { |
| efct_hw_async_cb_t callback; |
| void *arg; |
| u8 cmd[SLI4_BMBX_SIZE]; |
| }; |
| |
| static void |
| efct_hw_async_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg) |
| { |
| struct efct_hw_async_call_ctx *ctx = arg; |
| |
| if (ctx) { |
| if (ctx->callback) |
| (*ctx->callback)(hw, status, mqe, ctx->arg); |
| |
| kfree(ctx); |
| } |
| } |
| |
| int |
| efct_hw_async_call(struct efct_hw *hw, efct_hw_async_cb_t callback, void *arg) |
| { |
| struct efct_hw_async_call_ctx *ctx; |
| int rc; |
| |
| /* |
| * Allocate a callback context (which includes the mbox cmd buffer), |
| * we need this to be persistent as the mbox cmd submission may be |
| * queued and executed later execution. |
| */ |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| |
| ctx->callback = callback; |
| ctx->arg = arg; |
| |
| /* Build and send a NOP mailbox command */ |
| if (sli_cmd_common_nop(&hw->sli, ctx->cmd, 0)) { |
| efc_log_err(hw->os, "COMMON_NOP format failure\n"); |
| kfree(ctx); |
| return -EIO; |
| } |
| |
| rc = efct_hw_command(hw, ctx->cmd, EFCT_CMD_NOWAIT, efct_hw_async_cb, |
| ctx); |
| if (rc) { |
| efc_log_err(hw->os, "COMMON_NOP command failure, rc=%d\n", rc); |
| kfree(ctx); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int |
| efct_hw_cb_fw_write(struct efct_hw *hw, int status, u8 *mqe, void *arg) |
| { |
| struct sli4_cmd_sli_config *mbox_rsp = |
| (struct sli4_cmd_sli_config *)mqe; |
| struct sli4_rsp_cmn_write_object *wr_obj_rsp; |
| struct efct_hw_fw_wr_cb_arg *cb_arg = arg; |
| u32 bytes_written; |
| u16 mbox_status; |
| u32 change_status; |
| |
| wr_obj_rsp = (struct sli4_rsp_cmn_write_object *) |
| &mbox_rsp->payload.embed; |
| bytes_written = le32_to_cpu(wr_obj_rsp->actual_write_length); |
| mbox_status = le16_to_cpu(mbox_rsp->hdr.status); |
| change_status = (le32_to_cpu(wr_obj_rsp->change_status_dword) & |
| RSP_CHANGE_STATUS); |
| |
| if (cb_arg) { |
| if (cb_arg->cb) { |
| if (!status && mbox_status) |
| status = mbox_status; |
| cb_arg->cb(status, bytes_written, change_status, |
| cb_arg->arg); |
| } |
| |
| kfree(cb_arg); |
| } |
| |
| return 0; |
| } |
| |
| int |
| efct_hw_firmware_write(struct efct_hw *hw, struct efc_dma *dma, u32 size, |
| u32 offset, int last, |
| void (*cb)(int status, u32 bytes_written, |
| u32 change_status, void *arg), |
| void *arg) |
| { |
| int rc = -EIO; |
| u8 mbxdata[SLI4_BMBX_SIZE]; |
| struct efct_hw_fw_wr_cb_arg *cb_arg; |
| int noc = 0; |
| |
| cb_arg = kzalloc(sizeof(*cb_arg), GFP_KERNEL); |
| if (!cb_arg) |
| return -ENOMEM; |
| |
| cb_arg->cb = cb; |
| cb_arg->arg = arg; |
| |
| /* Write a portion of a firmware image to the device */ |
| if (!sli_cmd_common_write_object(&hw->sli, mbxdata, |
| noc, last, size, offset, "/prg/", |
| dma)) |
| rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT, |
| efct_hw_cb_fw_write, cb_arg); |
| |
| if (rc != 0) { |
| efc_log_debug(hw->os, "COMMON_WRITE_OBJECT failed\n"); |
| kfree(cb_arg); |
| } |
| |
| return rc; |
| } |
| |
| static int |
| efct_hw_cb_port_control(struct efct_hw *hw, int status, u8 *mqe, |
| void *arg) |
| { |
| return 0; |
| } |
| |
| int |
| efct_hw_port_control(struct efct_hw *hw, enum efct_hw_port ctrl, |
| uintptr_t value, |
| void (*cb)(int status, uintptr_t value, void *arg), |
| void *arg) |
| { |
| int rc = -EIO; |
| u8 link[SLI4_BMBX_SIZE]; |
| u32 speed = 0; |
| u8 reset_alpa = 0; |
| |
| switch (ctrl) { |
| case EFCT_HW_PORT_INIT: |
| if (!sli_cmd_config_link(&hw->sli, link)) |
| rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT, |
| efct_hw_cb_port_control, NULL); |
| |
| if (rc != 0) { |
| efc_log_err(hw->os, "CONFIG_LINK failed\n"); |
| break; |
| } |
| speed = hw->config.speed; |
| reset_alpa = (u8)(value & 0xff); |
| |
| rc = -EIO; |
| if (!sli_cmd_init_link(&hw->sli, link, speed, reset_alpa)) |
| rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT, |
| efct_hw_cb_port_control, NULL); |
| /* Free buffer on error, since no callback is coming */ |
| if (rc) |
| efc_log_err(hw->os, "INIT_LINK failed\n"); |
| break; |
| |
| case EFCT_HW_PORT_SHUTDOWN: |
| if (!sli_cmd_down_link(&hw->sli, link)) |
| rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT, |
| efct_hw_cb_port_control, NULL); |
| /* Free buffer on error, since no callback is coming */ |
| if (rc) |
| efc_log_err(hw->os, "DOWN_LINK failed\n"); |
| break; |
| |
| default: |
| efc_log_debug(hw->os, "unhandled control %#x\n", ctrl); |
| break; |
| } |
| |
| return rc; |
| } |
| |
| void |
| efct_hw_teardown(struct efct_hw *hw) |
| { |
| u32 i = 0; |
| u32 destroy_queues; |
| u32 free_memory; |
| struct efc_dma *dma; |
| struct efct *efct = hw->os; |
| |
| destroy_queues = (hw->state == EFCT_HW_STATE_ACTIVE); |
| free_memory = (hw->state != EFCT_HW_STATE_UNINITIALIZED); |
| |
| /* Cancel Sliport Healthcheck */ |
| if (hw->sliport_healthcheck) { |
| hw->sliport_healthcheck = 0; |
| efct_hw_config_sli_port_health_check(hw, 0, 0); |
| } |
| |
| if (hw->state != EFCT_HW_STATE_QUEUES_ALLOCATED) { |
| hw->state = EFCT_HW_STATE_TEARDOWN_IN_PROGRESS; |
| |
| efct_hw_flush(hw); |
| |
| if (list_empty(&hw->cmd_head)) |
| efc_log_debug(hw->os, |
| "All commands completed on MQ queue\n"); |
| else |
| efc_log_debug(hw->os, |
| "Some cmds still pending on MQ queue\n"); |
| |
| /* Cancel any remaining commands */ |
| efct_hw_command_cancel(hw); |
| } else { |
| hw->state = EFCT_HW_STATE_TEARDOWN_IN_PROGRESS; |
| } |
| |
| dma_free_coherent(&efct->pci->dev, |
| hw->rnode_mem.size, hw->rnode_mem.virt, |
| hw->rnode_mem.phys); |
| memset(&hw->rnode_mem, 0, sizeof(struct efc_dma)); |
| |
| if (hw->io) { |
| for (i = 0; i < hw->config.n_io; i++) { |
| if (hw->io[i] && hw->io[i]->sgl && |
| hw->io[i]->sgl->virt) { |
| dma_free_coherent(&efct->pci->dev, |
| hw->io[i]->sgl->size, |
| hw->io[i]->sgl->virt, |
| hw->io[i]->sgl->phys); |
| } |
| kfree(hw->io[i]); |
| hw->io[i] = NULL; |
| } |
| kfree(hw->io); |
| hw->io = NULL; |
| kfree(hw->wqe_buffs); |
| hw->wqe_buffs = NULL; |
| } |
| |
| dma = &hw->xfer_rdy; |
| dma_free_coherent(&efct->pci->dev, |
| dma->size, dma->virt, dma->phys); |
| memset(dma, 0, sizeof(struct efc_dma)); |
| |
| dma = &hw->loop_map; |
| dma_free_coherent(&efct->pci->dev, |
| dma->size, dma->virt, dma->phys); |
| memset(dma, 0, sizeof(struct efc_dma)); |
| |
| for (i = 0; i < hw->wq_count; i++) |
| sli_queue_free(&hw->sli, &hw->wq[i], destroy_queues, |
| free_memory); |
| |
| for (i = 0; i < hw->rq_count; i++) |
| sli_queue_free(&hw->sli, &hw->rq[i], destroy_queues, |
| free_memory); |
| |
| for (i = 0; i < hw->mq_count; i++) |
| sli_queue_free(&hw->sli, &hw->mq[i], destroy_queues, |
| free_memory); |
| |
| for (i = 0; i < hw->cq_count; i++) |
| sli_queue_free(&hw->sli, &hw->cq[i], destroy_queues, |
| free_memory); |
| |
| for (i = 0; i < hw->eq_count; i++) |
| sli_queue_free(&hw->sli, &hw->eq[i], destroy_queues, |
| free_memory); |
| |
| /* Free rq buffers */ |
| efct_hw_rx_free(hw); |
| |
| efct_hw_queue_teardown(hw); |
| |
| kfree(hw->wq_cpu_array); |
| |
| sli_teardown(&hw->sli); |
| |
| /* record the fact that the queues are non-functional */ |
| hw->state = EFCT_HW_STATE_UNINITIALIZED; |
| |
| /* free sequence free pool */ |
| kfree(hw->seq_pool); |
| hw->seq_pool = NULL; |
| |
| /* free hw_wq_callback pool */ |
| efct_hw_reqtag_pool_free(hw); |
| |
| mempool_destroy(hw->cmd_ctx_pool); |
| mempool_destroy(hw->mbox_rqst_pool); |
| |
| /* Mark HW setup as not having been called */ |
| hw->hw_setup_called = false; |
| } |
| |
| static int |
| efct_hw_sli_reset(struct efct_hw *hw, enum efct_hw_reset reset, |
| enum efct_hw_state prev_state) |
| { |
| int rc = 0; |
| |
| switch (reset) { |
| case EFCT_HW_RESET_FUNCTION: |
| efc_log_debug(hw->os, "issuing function level reset\n"); |
| if (sli_reset(&hw->sli)) { |
| efc_log_err(hw->os, "sli_reset failed\n"); |
| rc = -EIO; |
| } |
| break; |
| case EFCT_HW_RESET_FIRMWARE: |
| efc_log_debug(hw->os, "issuing firmware reset\n"); |
| if (sli_fw_reset(&hw->sli)) { |
| efc_log_err(hw->os, "sli_soft_reset failed\n"); |
| rc = -EIO; |
| } |
| /* |
| * Because the FW reset leaves the FW in a non-running state, |
| * follow that with a regular reset. |
| */ |
| efc_log_debug(hw->os, "issuing function level reset\n"); |
| if (sli_reset(&hw->sli)) { |
| efc_log_err(hw->os, "sli_reset failed\n"); |
| rc = -EIO; |
| } |
| break; |
| default: |
| efc_log_err(hw->os, "unknown type - no reset performed\n"); |
| hw->state = prev_state; |
| rc = -EINVAL; |
| break; |
| } |
| |
| return rc; |
| } |
| |
| int |
| efct_hw_reset(struct efct_hw *hw, enum efct_hw_reset reset) |
| { |
| int rc = 0; |
| enum efct_hw_state prev_state = hw->state; |
| |
| if (hw->state != EFCT_HW_STATE_ACTIVE) |
| efc_log_debug(hw->os, |
| "HW state %d is not active\n", hw->state); |
| |
| hw->state = EFCT_HW_STATE_RESET_IN_PROGRESS; |
| |
| /* |
| * If the prev_state is already reset/teardown in progress, |
| * don't continue further |
| */ |
| if (prev_state == EFCT_HW_STATE_RESET_IN_PROGRESS || |
| prev_state == EFCT_HW_STATE_TEARDOWN_IN_PROGRESS) |
| return efct_hw_sli_reset(hw, reset, prev_state); |
| |
| if (prev_state != EFCT_HW_STATE_UNINITIALIZED) { |
| efct_hw_flush(hw); |
| |
| if (list_empty(&hw->cmd_head)) |
| efc_log_debug(hw->os, |
| "All commands completed on MQ queue\n"); |
| else |
| efc_log_err(hw->os, |
| "Some commands still pending on MQ queue\n"); |
| } |
| |
| /* Reset the chip */ |
| rc = efct_hw_sli_reset(hw, reset, prev_state); |
| if (rc == -EINVAL) |
| return -EIO; |
| |
| return rc; |
| } |