| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for SiS7019 Audio Accelerator |
| * |
| * Copyright (C) 2004-2007, David Dillow |
| * Written by David Dillow <dave@thedillows.org> |
| * Inspired by the Trident 4D-WaveDX/NX driver. |
| * |
| * All rights reserved. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/time.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <sound/core.h> |
| #include <sound/ac97_codec.h> |
| #include <sound/initval.h> |
| #include "sis7019.h" |
| |
| MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); |
| MODULE_DESCRIPTION("SiS7019"); |
| MODULE_LICENSE("GPL"); |
| |
| static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ |
| static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ |
| static bool enable = 1; |
| static int codecs = 1; |
| |
| module_param(index, int, 0444); |
| MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); |
| module_param(id, charp, 0444); |
| MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); |
| module_param(enable, bool, 0444); |
| MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); |
| module_param(codecs, int, 0444); |
| MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); |
| |
| static const struct pci_device_id snd_sis7019_ids[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); |
| |
| /* There are three timing modes for the voices. |
| * |
| * For both playback and capture, when the buffer is one or two periods long, |
| * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt |
| * to let us know when the periods have ended. |
| * |
| * When performing playback with more than two periods per buffer, we set |
| * the "Stop Sample Offset" and tell the hardware to interrupt us when we |
| * reach it. We then update the offset and continue on until we are |
| * interrupted for the next period. |
| * |
| * Capture channels do not have a SSO, so we allocate a playback channel to |
| * use as a timer for the capture periods. We use the SSO on the playback |
| * channel to clock out virtual periods, and adjust the virtual period length |
| * to maintain synchronization. This algorithm came from the Trident driver. |
| * |
| * FIXME: It'd be nice to make use of some of the synth features in the |
| * hardware, but a woeful lack of documentation is a significant roadblock. |
| */ |
| struct voice { |
| u16 flags; |
| #define VOICE_IN_USE 1 |
| #define VOICE_CAPTURE 2 |
| #define VOICE_SSO_TIMING 4 |
| #define VOICE_SYNC_TIMING 8 |
| u16 sync_cso; |
| u16 period_size; |
| u16 buffer_size; |
| u16 sync_period_size; |
| u16 sync_buffer_size; |
| u32 sso; |
| u32 vperiod; |
| struct snd_pcm_substream *substream; |
| struct voice *timing; |
| void __iomem *ctrl_base; |
| void __iomem *wave_base; |
| void __iomem *sync_base; |
| int num; |
| }; |
| |
| /* We need four pages to store our wave parameters during a suspend. If |
| * we're not doing power management, we still need to allocate a page |
| * for the silence buffer. |
| */ |
| #ifdef CONFIG_PM_SLEEP |
| #define SIS_SUSPEND_PAGES 4 |
| #else |
| #define SIS_SUSPEND_PAGES 1 |
| #endif |
| |
| struct sis7019 { |
| unsigned long ioport; |
| void __iomem *ioaddr; |
| int irq; |
| int codecs_present; |
| |
| struct pci_dev *pci; |
| struct snd_pcm *pcm; |
| struct snd_card *card; |
| struct snd_ac97 *ac97[3]; |
| |
| /* Protect against more than one thread hitting the AC97 |
| * registers (in a more polite manner than pounding the hardware |
| * semaphore) |
| */ |
| struct mutex ac97_mutex; |
| |
| /* voice_lock protects allocation/freeing of the voice descriptions |
| */ |
| spinlock_t voice_lock; |
| |
| struct voice voices[64]; |
| struct voice capture_voice; |
| |
| /* Allocate pages to store the internal wave state during |
| * suspends. When we're operating, this can be used as a silence |
| * buffer for a timing channel. |
| */ |
| void *suspend_state[SIS_SUSPEND_PAGES]; |
| |
| int silence_users; |
| dma_addr_t silence_dma_addr; |
| }; |
| |
| /* These values are also used by the module param 'codecs' to indicate |
| * which codecs should be present. |
| */ |
| #define SIS_PRIMARY_CODEC_PRESENT 0x0001 |
| #define SIS_SECONDARY_CODEC_PRESENT 0x0002 |
| #define SIS_TERTIARY_CODEC_PRESENT 0x0004 |
| |
| /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a |
| * documented range of 8-0xfff8 samples. Given that they are 0-based, |
| * that places our period/buffer range at 9-0xfff9 samples. That makes the |
| * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and |
| * max samples / min samples gives us the max periods in a buffer. |
| * |
| * We'll add a constraint upon open that limits the period and buffer sample |
| * size to values that are legal for the hardware. |
| */ |
| static const struct snd_pcm_hardware sis_playback_hw_info = { |
| .info = (SNDRV_PCM_INFO_MMAP | |
| SNDRV_PCM_INFO_MMAP_VALID | |
| SNDRV_PCM_INFO_INTERLEAVED | |
| SNDRV_PCM_INFO_BLOCK_TRANSFER | |
| SNDRV_PCM_INFO_SYNC_START | |
| SNDRV_PCM_INFO_RESUME), |
| .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | |
| SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), |
| .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, |
| .rate_min = 4000, |
| .rate_max = 48000, |
| .channels_min = 1, |
| .channels_max = 2, |
| .buffer_bytes_max = (0xfff9 * 4), |
| .period_bytes_min = 9, |
| .period_bytes_max = (0xfff9 * 4), |
| .periods_min = 1, |
| .periods_max = (0xfff9 / 9), |
| }; |
| |
| static const struct snd_pcm_hardware sis_capture_hw_info = { |
| .info = (SNDRV_PCM_INFO_MMAP | |
| SNDRV_PCM_INFO_MMAP_VALID | |
| SNDRV_PCM_INFO_INTERLEAVED | |
| SNDRV_PCM_INFO_BLOCK_TRANSFER | |
| SNDRV_PCM_INFO_SYNC_START | |
| SNDRV_PCM_INFO_RESUME), |
| .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | |
| SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), |
| .rates = SNDRV_PCM_RATE_48000, |
| .rate_min = 4000, |
| .rate_max = 48000, |
| .channels_min = 1, |
| .channels_max = 2, |
| .buffer_bytes_max = (0xfff9 * 4), |
| .period_bytes_min = 9, |
| .period_bytes_max = (0xfff9 * 4), |
| .periods_min = 1, |
| .periods_max = (0xfff9 / 9), |
| }; |
| |
| static void sis_update_sso(struct voice *voice, u16 period) |
| { |
| void __iomem *base = voice->ctrl_base; |
| |
| voice->sso += period; |
| if (voice->sso >= voice->buffer_size) |
| voice->sso -= voice->buffer_size; |
| |
| /* Enforce the documented hardware minimum offset */ |
| if (voice->sso < 8) |
| voice->sso = 8; |
| |
| /* The SSO is in the upper 16 bits of the register. */ |
| writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); |
| } |
| |
| static void sis_update_voice(struct voice *voice) |
| { |
| if (voice->flags & VOICE_SSO_TIMING) { |
| sis_update_sso(voice, voice->period_size); |
| } else if (voice->flags & VOICE_SYNC_TIMING) { |
| int sync; |
| |
| /* If we've not hit the end of the virtual period, update |
| * our records and keep going. |
| */ |
| if (voice->vperiod > voice->period_size) { |
| voice->vperiod -= voice->period_size; |
| if (voice->vperiod < voice->period_size) |
| sis_update_sso(voice, voice->vperiod); |
| else |
| sis_update_sso(voice, voice->period_size); |
| return; |
| } |
| |
| /* Calculate our relative offset between the target and |
| * the actual CSO value. Since we're operating in a loop, |
| * if the value is more than half way around, we can |
| * consider ourselves wrapped. |
| */ |
| sync = voice->sync_cso; |
| sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); |
| if (sync > (voice->sync_buffer_size / 2)) |
| sync -= voice->sync_buffer_size; |
| |
| /* If sync is positive, then we interrupted too early, and |
| * we'll need to come back in a few samples and try again. |
| * There's a minimum wait, as it takes some time for the DMA |
| * engine to startup, etc... |
| */ |
| if (sync > 0) { |
| if (sync < 16) |
| sync = 16; |
| sis_update_sso(voice, sync); |
| return; |
| } |
| |
| /* Ok, we interrupted right on time, or (hopefully) just |
| * a bit late. We'll adjst our next waiting period based |
| * on how close we got. |
| * |
| * We need to stay just behind the actual channel to ensure |
| * it really is past a period when we get our interrupt -- |
| * otherwise we'll fall into the early code above and have |
| * a minimum wait time, which makes us quite late here, |
| * eating into the user's time to refresh the buffer, esp. |
| * if using small periods. |
| * |
| * If we're less than 9 samples behind, we're on target. |
| * Otherwise, shorten the next vperiod by the amount we've |
| * been delayed. |
| */ |
| if (sync > -9) |
| voice->vperiod = voice->sync_period_size + 1; |
| else |
| voice->vperiod = voice->sync_period_size + sync + 10; |
| |
| if (voice->vperiod < voice->buffer_size) { |
| sis_update_sso(voice, voice->vperiod); |
| voice->vperiod = 0; |
| } else |
| sis_update_sso(voice, voice->period_size); |
| |
| sync = voice->sync_cso + voice->sync_period_size; |
| if (sync >= voice->sync_buffer_size) |
| sync -= voice->sync_buffer_size; |
| voice->sync_cso = sync; |
| } |
| |
| snd_pcm_period_elapsed(voice->substream); |
| } |
| |
| static void sis_voice_irq(u32 status, struct voice *voice) |
| { |
| int bit; |
| |
| while (status) { |
| bit = __ffs(status); |
| status >>= bit + 1; |
| voice += bit; |
| sis_update_voice(voice); |
| voice++; |
| } |
| } |
| |
| static irqreturn_t sis_interrupt(int irq, void *dev) |
| { |
| struct sis7019 *sis = dev; |
| unsigned long io = sis->ioport; |
| struct voice *voice; |
| u32 intr, status; |
| |
| /* We only use the DMA interrupts, and we don't enable any other |
| * source of interrupts. But, it is possible to see an interrupt |
| * status that didn't actually interrupt us, so eliminate anything |
| * we're not expecting to avoid falsely claiming an IRQ, and an |
| * ensuing endless loop. |
| */ |
| intr = inl(io + SIS_GISR); |
| intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | |
| SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; |
| if (!intr) |
| return IRQ_NONE; |
| |
| do { |
| status = inl(io + SIS_PISR_A); |
| if (status) { |
| sis_voice_irq(status, sis->voices); |
| outl(status, io + SIS_PISR_A); |
| } |
| |
| status = inl(io + SIS_PISR_B); |
| if (status) { |
| sis_voice_irq(status, &sis->voices[32]); |
| outl(status, io + SIS_PISR_B); |
| } |
| |
| status = inl(io + SIS_RISR); |
| if (status) { |
| voice = &sis->capture_voice; |
| if (!voice->timing) |
| snd_pcm_period_elapsed(voice->substream); |
| |
| outl(status, io + SIS_RISR); |
| } |
| |
| outl(intr, io + SIS_GISR); |
| intr = inl(io + SIS_GISR); |
| intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | |
| SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; |
| } while (intr); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static u32 sis_rate_to_delta(unsigned int rate) |
| { |
| u32 delta; |
| |
| /* This was copied from the trident driver, but it seems its gotten |
| * around a bit... nevertheless, it works well. |
| * |
| * We special case 44100 and 8000 since rounding with the equation |
| * does not give us an accurate enough value. For 11025 and 22050 |
| * the equation gives us the best answer. All other frequencies will |
| * also use the equation. JDW |
| */ |
| if (rate == 44100) |
| delta = 0xeb3; |
| else if (rate == 8000) |
| delta = 0x2ab; |
| else if (rate == 48000) |
| delta = 0x1000; |
| else |
| delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff; |
| return delta; |
| } |
| |
| static void __sis_map_silence(struct sis7019 *sis) |
| { |
| /* Helper function: must hold sis->voice_lock on entry */ |
| if (!sis->silence_users) |
| sis->silence_dma_addr = dma_map_single(&sis->pci->dev, |
| sis->suspend_state[0], |
| 4096, DMA_TO_DEVICE); |
| sis->silence_users++; |
| } |
| |
| static void __sis_unmap_silence(struct sis7019 *sis) |
| { |
| /* Helper function: must hold sis->voice_lock on entry */ |
| sis->silence_users--; |
| if (!sis->silence_users) |
| dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096, |
| DMA_TO_DEVICE); |
| } |
| |
| static void sis_free_voice(struct sis7019 *sis, struct voice *voice) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sis->voice_lock, flags); |
| if (voice->timing) { |
| __sis_unmap_silence(sis); |
| voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | |
| VOICE_SYNC_TIMING); |
| voice->timing = NULL; |
| } |
| voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); |
| spin_unlock_irqrestore(&sis->voice_lock, flags); |
| } |
| |
| static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) |
| { |
| /* Must hold the voice_lock on entry */ |
| struct voice *voice; |
| int i; |
| |
| for (i = 0; i < 64; i++) { |
| voice = &sis->voices[i]; |
| if (voice->flags & VOICE_IN_USE) |
| continue; |
| voice->flags |= VOICE_IN_USE; |
| goto found_one; |
| } |
| voice = NULL; |
| |
| found_one: |
| return voice; |
| } |
| |
| static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) |
| { |
| struct voice *voice; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sis->voice_lock, flags); |
| voice = __sis_alloc_playback_voice(sis); |
| spin_unlock_irqrestore(&sis->voice_lock, flags); |
| |
| return voice; |
| } |
| |
| static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *hw_params) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice = runtime->private_data; |
| unsigned int period_size, buffer_size; |
| unsigned long flags; |
| int needed; |
| |
| /* If there are one or two periods per buffer, we don't need a |
| * timing voice, as we can use the capture channel's interrupts |
| * to clock out the periods. |
| */ |
| period_size = params_period_size(hw_params); |
| buffer_size = params_buffer_size(hw_params); |
| needed = (period_size != buffer_size && |
| period_size != (buffer_size / 2)); |
| |
| if (needed && !voice->timing) { |
| spin_lock_irqsave(&sis->voice_lock, flags); |
| voice->timing = __sis_alloc_playback_voice(sis); |
| if (voice->timing) |
| __sis_map_silence(sis); |
| spin_unlock_irqrestore(&sis->voice_lock, flags); |
| if (!voice->timing) |
| return -ENOMEM; |
| voice->timing->substream = substream; |
| } else if (!needed && voice->timing) { |
| sis_free_voice(sis, voice); |
| voice->timing = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static int sis_playback_open(struct snd_pcm_substream *substream) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice; |
| |
| voice = sis_alloc_playback_voice(sis); |
| if (!voice) |
| return -EAGAIN; |
| |
| voice->substream = substream; |
| runtime->private_data = voice; |
| runtime->hw = sis_playback_hw_info; |
| snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, |
| 9, 0xfff9); |
| snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, |
| 9, 0xfff9); |
| snd_pcm_set_sync(substream); |
| return 0; |
| } |
| |
| static int sis_substream_close(struct snd_pcm_substream *substream) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice = runtime->private_data; |
| |
| sis_free_voice(sis, voice); |
| return 0; |
| } |
| |
| static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice = runtime->private_data; |
| void __iomem *ctrl_base = voice->ctrl_base; |
| void __iomem *wave_base = voice->wave_base; |
| u32 format, dma_addr, control, sso_eso, delta, reg; |
| u16 leo; |
| |
| /* We rely on the PCM core to ensure that the parameters for this |
| * substream do not change on us while we're programming the HW. |
| */ |
| format = 0; |
| if (snd_pcm_format_width(runtime->format) == 8) |
| format |= SIS_PLAY_DMA_FORMAT_8BIT; |
| if (!snd_pcm_format_signed(runtime->format)) |
| format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; |
| if (runtime->channels == 1) |
| format |= SIS_PLAY_DMA_FORMAT_MONO; |
| |
| /* The baseline setup is for a single period per buffer, and |
| * we add bells and whistles as needed from there. |
| */ |
| dma_addr = runtime->dma_addr; |
| leo = runtime->buffer_size - 1; |
| control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; |
| sso_eso = leo; |
| |
| if (runtime->period_size == (runtime->buffer_size / 2)) { |
| control |= SIS_PLAY_DMA_INTR_AT_MLP; |
| } else if (runtime->period_size != runtime->buffer_size) { |
| voice->flags |= VOICE_SSO_TIMING; |
| voice->sso = runtime->period_size - 1; |
| voice->period_size = runtime->period_size; |
| voice->buffer_size = runtime->buffer_size; |
| |
| control &= ~SIS_PLAY_DMA_INTR_AT_LEO; |
| control |= SIS_PLAY_DMA_INTR_AT_SSO; |
| sso_eso |= (runtime->period_size - 1) << 16; |
| } |
| |
| delta = sis_rate_to_delta(runtime->rate); |
| |
| /* Ok, we're ready to go, set up the channel. |
| */ |
| writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); |
| writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); |
| writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); |
| writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); |
| |
| for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) |
| writel(0, wave_base + reg); |
| |
| writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); |
| writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); |
| writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | |
| SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | |
| SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, |
| wave_base + SIS_WAVE_CHANNEL_CONTROL); |
| |
| /* Force PCI writes to post. */ |
| readl(ctrl_base); |
| |
| return 0; |
| } |
| |
| static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| unsigned long io = sis->ioport; |
| struct snd_pcm_substream *s; |
| struct voice *voice; |
| void *chip; |
| int starting; |
| u32 record = 0; |
| u32 play[2] = { 0, 0 }; |
| |
| /* No locks needed, as the PCM core will hold the locks on the |
| * substreams, and the HW will only start/stop the indicated voices |
| * without changing the state of the others. |
| */ |
| switch (cmd) { |
| case SNDRV_PCM_TRIGGER_START: |
| case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: |
| case SNDRV_PCM_TRIGGER_RESUME: |
| starting = 1; |
| break; |
| case SNDRV_PCM_TRIGGER_STOP: |
| case SNDRV_PCM_TRIGGER_PAUSE_PUSH: |
| case SNDRV_PCM_TRIGGER_SUSPEND: |
| starting = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| snd_pcm_group_for_each_entry(s, substream) { |
| /* Make sure it is for us... */ |
| chip = snd_pcm_substream_chip(s); |
| if (chip != sis) |
| continue; |
| |
| voice = s->runtime->private_data; |
| if (voice->flags & VOICE_CAPTURE) { |
| record |= 1 << voice->num; |
| voice = voice->timing; |
| } |
| |
| /* voice could be NULL if this a recording stream, and it |
| * doesn't have an external timing channel. |
| */ |
| if (voice) |
| play[voice->num / 32] |= 1 << (voice->num & 0x1f); |
| |
| snd_pcm_trigger_done(s, substream); |
| } |
| |
| if (starting) { |
| if (record) |
| outl(record, io + SIS_RECORD_START_REG); |
| if (play[0]) |
| outl(play[0], io + SIS_PLAY_START_A_REG); |
| if (play[1]) |
| outl(play[1], io + SIS_PLAY_START_B_REG); |
| } else { |
| if (record) |
| outl(record, io + SIS_RECORD_STOP_REG); |
| if (play[0]) |
| outl(play[0], io + SIS_PLAY_STOP_A_REG); |
| if (play[1]) |
| outl(play[1], io + SIS_PLAY_STOP_B_REG); |
| } |
| return 0; |
| } |
| |
| static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice = runtime->private_data; |
| u32 cso; |
| |
| cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); |
| cso &= 0xffff; |
| return cso; |
| } |
| |
| static int sis_capture_open(struct snd_pcm_substream *substream) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice = &sis->capture_voice; |
| unsigned long flags; |
| |
| /* FIXME: The driver only supports recording from one channel |
| * at the moment, but it could support more. |
| */ |
| spin_lock_irqsave(&sis->voice_lock, flags); |
| if (voice->flags & VOICE_IN_USE) |
| voice = NULL; |
| else |
| voice->flags |= VOICE_IN_USE; |
| spin_unlock_irqrestore(&sis->voice_lock, flags); |
| |
| if (!voice) |
| return -EAGAIN; |
| |
| voice->substream = substream; |
| runtime->private_data = voice; |
| runtime->hw = sis_capture_hw_info; |
| runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; |
| snd_pcm_limit_hw_rates(runtime); |
| snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, |
| 9, 0xfff9); |
| snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, |
| 9, 0xfff9); |
| snd_pcm_set_sync(substream); |
| return 0; |
| } |
| |
| static int sis_capture_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *hw_params) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| int rc; |
| |
| rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, |
| params_rate(hw_params)); |
| if (rc) |
| goto out; |
| |
| rc = sis_alloc_timing_voice(substream, hw_params); |
| |
| out: |
| return rc; |
| } |
| |
| static void sis_prepare_timing_voice(struct voice *voice, |
| struct snd_pcm_substream *substream) |
| { |
| struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *timing = voice->timing; |
| void __iomem *play_base = timing->ctrl_base; |
| void __iomem *wave_base = timing->wave_base; |
| u16 buffer_size, period_size; |
| u32 format, control, sso_eso, delta; |
| u32 vperiod, sso, reg; |
| |
| /* Set our initial buffer and period as large as we can given a |
| * single page of silence. |
| */ |
| buffer_size = 4096 / runtime->channels; |
| buffer_size /= snd_pcm_format_size(runtime->format, 1); |
| period_size = buffer_size; |
| |
| /* Initially, we want to interrupt just a bit behind the end of |
| * the period we're clocking out. 12 samples seems to give a good |
| * delay. |
| * |
| * We want to spread our interrupts throughout the virtual period, |
| * so that we don't end up with two interrupts back to back at the |
| * end -- this helps minimize the effects of any jitter. Adjust our |
| * clocking period size so that the last period is at least a fourth |
| * of a full period. |
| * |
| * This is all moot if we don't need to use virtual periods. |
| */ |
| vperiod = runtime->period_size + 12; |
| if (vperiod > period_size) { |
| u16 tail = vperiod % period_size; |
| u16 quarter_period = period_size / 4; |
| |
| if (tail && tail < quarter_period) { |
| u16 loops = vperiod / period_size; |
| |
| tail = quarter_period - tail; |
| tail += loops - 1; |
| tail /= loops; |
| period_size -= tail; |
| } |
| |
| sso = period_size - 1; |
| } else { |
| /* The initial period will fit inside the buffer, so we |
| * don't need to use virtual periods -- disable them. |
| */ |
| period_size = runtime->period_size; |
| sso = vperiod - 1; |
| vperiod = 0; |
| } |
| |
| /* The interrupt handler implements the timing synchronization, so |
| * setup its state. |
| */ |
| timing->flags |= VOICE_SYNC_TIMING; |
| timing->sync_base = voice->ctrl_base; |
| timing->sync_cso = runtime->period_size; |
| timing->sync_period_size = runtime->period_size; |
| timing->sync_buffer_size = runtime->buffer_size; |
| timing->period_size = period_size; |
| timing->buffer_size = buffer_size; |
| timing->sso = sso; |
| timing->vperiod = vperiod; |
| |
| /* Using unsigned samples with the all-zero silence buffer |
| * forces the output to the lower rail, killing playback. |
| * So ignore unsigned vs signed -- it doesn't change the timing. |
| */ |
| format = 0; |
| if (snd_pcm_format_width(runtime->format) == 8) |
| format = SIS_CAPTURE_DMA_FORMAT_8BIT; |
| if (runtime->channels == 1) |
| format |= SIS_CAPTURE_DMA_FORMAT_MONO; |
| |
| control = timing->buffer_size - 1; |
| control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; |
| sso_eso = timing->buffer_size - 1; |
| sso_eso |= timing->sso << 16; |
| |
| delta = sis_rate_to_delta(runtime->rate); |
| |
| /* We've done the math, now configure the channel. |
| */ |
| writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); |
| writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); |
| writel(control, play_base + SIS_PLAY_DMA_CONTROL); |
| writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); |
| |
| for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) |
| writel(0, wave_base + reg); |
| |
| writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); |
| writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); |
| writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | |
| SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | |
| SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, |
| wave_base + SIS_WAVE_CHANNEL_CONTROL); |
| } |
| |
| static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct voice *voice = runtime->private_data; |
| void __iomem *rec_base = voice->ctrl_base; |
| u32 format, dma_addr, control; |
| u16 leo; |
| |
| /* We rely on the PCM core to ensure that the parameters for this |
| * substream do not change on us while we're programming the HW. |
| */ |
| format = 0; |
| if (snd_pcm_format_width(runtime->format) == 8) |
| format = SIS_CAPTURE_DMA_FORMAT_8BIT; |
| if (!snd_pcm_format_signed(runtime->format)) |
| format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; |
| if (runtime->channels == 1) |
| format |= SIS_CAPTURE_DMA_FORMAT_MONO; |
| |
| dma_addr = runtime->dma_addr; |
| leo = runtime->buffer_size - 1; |
| control = leo | SIS_CAPTURE_DMA_LOOP; |
| |
| /* If we've got more than two periods per buffer, then we have |
| * use a timing voice to clock out the periods. Otherwise, we can |
| * use the capture channel's interrupts. |
| */ |
| if (voice->timing) { |
| sis_prepare_timing_voice(voice, substream); |
| } else { |
| control |= SIS_CAPTURE_DMA_INTR_AT_LEO; |
| if (runtime->period_size != runtime->buffer_size) |
| control |= SIS_CAPTURE_DMA_INTR_AT_MLP; |
| } |
| |
| writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); |
| writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); |
| writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); |
| |
| /* Force the writes to post. */ |
| readl(rec_base); |
| |
| return 0; |
| } |
| |
| static const struct snd_pcm_ops sis_playback_ops = { |
| .open = sis_playback_open, |
| .close = sis_substream_close, |
| .prepare = sis_pcm_playback_prepare, |
| .trigger = sis_pcm_trigger, |
| .pointer = sis_pcm_pointer, |
| }; |
| |
| static const struct snd_pcm_ops sis_capture_ops = { |
| .open = sis_capture_open, |
| .close = sis_substream_close, |
| .hw_params = sis_capture_hw_params, |
| .prepare = sis_pcm_capture_prepare, |
| .trigger = sis_pcm_trigger, |
| .pointer = sis_pcm_pointer, |
| }; |
| |
| static int sis_pcm_create(struct sis7019 *sis) |
| { |
| struct snd_pcm *pcm; |
| int rc; |
| |
| /* We have 64 voices, and the driver currently records from |
| * only one channel, though that could change in the future. |
| */ |
| rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); |
| if (rc) |
| return rc; |
| |
| pcm->private_data = sis; |
| strcpy(pcm->name, "SiS7019"); |
| sis->pcm = pcm; |
| |
| snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); |
| snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); |
| |
| /* Try to preallocate some memory, but it's not the end of the |
| * world if this fails. |
| */ |
| snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, |
| &sis->pci->dev, 64*1024, 128*1024); |
| |
| return 0; |
| } |
| |
| static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) |
| { |
| unsigned long io = sis->ioport; |
| unsigned short val = 0xffff; |
| u16 status; |
| u16 rdy; |
| int count; |
| static const u16 codec_ready[3] = { |
| SIS_AC97_STATUS_CODEC_READY, |
| SIS_AC97_STATUS_CODEC2_READY, |
| SIS_AC97_STATUS_CODEC3_READY, |
| }; |
| |
| rdy = codec_ready[codec]; |
| |
| |
| /* Get the AC97 semaphore -- software first, so we don't spin |
| * pounding out IO reads on the hardware semaphore... |
| */ |
| mutex_lock(&sis->ac97_mutex); |
| |
| count = 0xffff; |
| while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) |
| udelay(1); |
| |
| if (!count) |
| goto timeout; |
| |
| /* ... and wait for any outstanding commands to complete ... |
| */ |
| count = 0xffff; |
| do { |
| status = inw(io + SIS_AC97_STATUS); |
| if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) |
| break; |
| |
| udelay(1); |
| } while (--count); |
| |
| if (!count) |
| goto timeout_sema; |
| |
| /* ... before sending our command and waiting for it to finish ... |
| */ |
| outl(cmd, io + SIS_AC97_CMD); |
| udelay(10); |
| |
| count = 0xffff; |
| while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) |
| udelay(1); |
| |
| /* ... and reading the results (if any). |
| */ |
| val = inl(io + SIS_AC97_CMD) >> 16; |
| |
| timeout_sema: |
| outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); |
| timeout: |
| mutex_unlock(&sis->ac97_mutex); |
| |
| if (!count) { |
| dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", |
| codec, cmd); |
| } |
| |
| return val; |
| } |
| |
| static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, |
| unsigned short val) |
| { |
| static const u32 cmd[3] = { |
| SIS_AC97_CMD_CODEC_WRITE, |
| SIS_AC97_CMD_CODEC2_WRITE, |
| SIS_AC97_CMD_CODEC3_WRITE, |
| }; |
| sis_ac97_rw(ac97->private_data, ac97->num, |
| (val << 16) | (reg << 8) | cmd[ac97->num]); |
| } |
| |
| static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) |
| { |
| static const u32 cmd[3] = { |
| SIS_AC97_CMD_CODEC_READ, |
| SIS_AC97_CMD_CODEC2_READ, |
| SIS_AC97_CMD_CODEC3_READ, |
| }; |
| return sis_ac97_rw(ac97->private_data, ac97->num, |
| (reg << 8) | cmd[ac97->num]); |
| } |
| |
| static int sis_mixer_create(struct sis7019 *sis) |
| { |
| struct snd_ac97_bus *bus; |
| struct snd_ac97_template ac97; |
| static const struct snd_ac97_bus_ops ops = { |
| .write = sis_ac97_write, |
| .read = sis_ac97_read, |
| }; |
| int rc; |
| |
| memset(&ac97, 0, sizeof(ac97)); |
| ac97.private_data = sis; |
| |
| rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); |
| if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) |
| rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); |
| ac97.num = 1; |
| if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) |
| rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); |
| ac97.num = 2; |
| if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) |
| rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); |
| |
| /* If we return an error here, then snd_card_free() should |
| * free up any ac97 codecs that got created, as well as the bus. |
| */ |
| return rc; |
| } |
| |
| static void sis_chip_free(struct snd_card *card) |
| { |
| struct sis7019 *sis = card->private_data; |
| |
| /* Reset the chip, and disable all interrputs. |
| */ |
| outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); |
| udelay(25); |
| outl(0, sis->ioport + SIS_GCR); |
| outl(0, sis->ioport + SIS_GIER); |
| |
| /* Now, free everything we allocated. |
| */ |
| if (sis->irq >= 0) |
| free_irq(sis->irq, sis); |
| } |
| |
| static int sis_chip_init(struct sis7019 *sis) |
| { |
| unsigned long io = sis->ioport; |
| void __iomem *ioaddr = sis->ioaddr; |
| unsigned long timeout; |
| u16 status; |
| int count; |
| int i; |
| |
| /* Reset the audio controller |
| */ |
| outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); |
| udelay(25); |
| outl(0, io + SIS_GCR); |
| |
| /* Get the AC-link semaphore, and reset the codecs |
| */ |
| count = 0xffff; |
| while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) |
| udelay(1); |
| |
| if (!count) |
| return -EIO; |
| |
| outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); |
| udelay(250); |
| |
| count = 0xffff; |
| while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) |
| udelay(1); |
| |
| /* Command complete, we can let go of the semaphore now. |
| */ |
| outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); |
| if (!count) |
| return -EIO; |
| |
| /* Now that we've finished the reset, find out what's attached. |
| * There are some codec/board combinations that take an extremely |
| * long time to come up. 350+ ms has been observed in the field, |
| * so we'll give them up to 500ms. |
| */ |
| sis->codecs_present = 0; |
| timeout = msecs_to_jiffies(500) + jiffies; |
| while (time_before_eq(jiffies, timeout)) { |
| status = inl(io + SIS_AC97_STATUS); |
| if (status & SIS_AC97_STATUS_CODEC_READY) |
| sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; |
| if (status & SIS_AC97_STATUS_CODEC2_READY) |
| sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; |
| if (status & SIS_AC97_STATUS_CODEC3_READY) |
| sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; |
| |
| if (sis->codecs_present == codecs) |
| break; |
| |
| msleep(1); |
| } |
| |
| /* All done, check for errors. |
| */ |
| if (!sis->codecs_present) { |
| dev_err(&sis->pci->dev, "could not find any codecs\n"); |
| return -EIO; |
| } |
| |
| if (sis->codecs_present != codecs) { |
| dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", |
| sis->codecs_present, codecs); |
| } |
| |
| /* Let the hardware know that the audio driver is alive, |
| * and enable PCM slots on the AC-link for L/R playback (3 & 4) and |
| * record channels. We're going to want to use Variable Rate Audio |
| * for recording, to avoid needlessly resampling from 48kHZ. |
| */ |
| outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); |
| outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | |
| SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | |
| SIS_AC97_CONF_PCM_CAP_LR_ENABLE | |
| SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); |
| |
| /* All AC97 PCM slots should be sourced from sub-mixer 0. |
| */ |
| outl(0, io + SIS_AC97_PSR); |
| |
| /* There is only one valid DMA setup for a PCI environment. |
| */ |
| outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); |
| |
| /* Reset the synchronization groups for all of the channels |
| * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. |
| * we'll need to change how we handle these. Until then, we just |
| * assign sub-mixer 0 to all playback channels, and avoid any |
| * attenuation on the audio. |
| */ |
| outl(0, io + SIS_PLAY_SYNC_GROUP_A); |
| outl(0, io + SIS_PLAY_SYNC_GROUP_B); |
| outl(0, io + SIS_PLAY_SYNC_GROUP_C); |
| outl(0, io + SIS_PLAY_SYNC_GROUP_D); |
| outl(0, io + SIS_MIXER_SYNC_GROUP); |
| |
| for (i = 0; i < 64; i++) { |
| writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); |
| writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | |
| SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); |
| } |
| |
| /* Don't attenuate any audio set for the wave amplifier. |
| * |
| * FIXME: Maximum attenuation is set for the music amp, which will |
| * need to change if we start using the synth engine. |
| */ |
| outl(0xffff0000, io + SIS_WEVCR); |
| |
| /* Ensure that the wave engine is in normal operating mode. |
| */ |
| outl(0, io + SIS_WECCR); |
| |
| /* Go ahead and enable the DMA interrupts. They won't go live |
| * until we start a channel. |
| */ |
| outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | |
| SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int sis_suspend(struct device *dev) |
| { |
| struct snd_card *card = dev_get_drvdata(dev); |
| struct sis7019 *sis = card->private_data; |
| void __iomem *ioaddr = sis->ioaddr; |
| int i; |
| |
| snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); |
| if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) |
| snd_ac97_suspend(sis->ac97[0]); |
| if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) |
| snd_ac97_suspend(sis->ac97[1]); |
| if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) |
| snd_ac97_suspend(sis->ac97[2]); |
| |
| /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. |
| */ |
| if (sis->irq >= 0) { |
| free_irq(sis->irq, sis); |
| sis->irq = -1; |
| } |
| |
| /* Save the internal state away |
| */ |
| for (i = 0; i < 4; i++) { |
| memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); |
| ioaddr += 4096; |
| } |
| |
| return 0; |
| } |
| |
| static int sis_resume(struct device *dev) |
| { |
| struct pci_dev *pci = to_pci_dev(dev); |
| struct snd_card *card = dev_get_drvdata(dev); |
| struct sis7019 *sis = card->private_data; |
| void __iomem *ioaddr = sis->ioaddr; |
| int i; |
| |
| if (sis_chip_init(sis)) { |
| dev_err(&pci->dev, "unable to re-init controller\n"); |
| goto error; |
| } |
| |
| if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, |
| KBUILD_MODNAME, sis)) { |
| dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); |
| goto error; |
| } |
| |
| /* Restore saved state, then clear out the page we use for the |
| * silence buffer. |
| */ |
| for (i = 0; i < 4; i++) { |
| memcpy_toio(ioaddr, sis->suspend_state[i], 4096); |
| ioaddr += 4096; |
| } |
| |
| memset(sis->suspend_state[0], 0, 4096); |
| |
| sis->irq = pci->irq; |
| |
| if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) |
| snd_ac97_resume(sis->ac97[0]); |
| if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) |
| snd_ac97_resume(sis->ac97[1]); |
| if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) |
| snd_ac97_resume(sis->ac97[2]); |
| |
| snd_power_change_state(card, SNDRV_CTL_POWER_D0); |
| return 0; |
| |
| error: |
| snd_card_disconnect(card); |
| return -EIO; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); |
| #define SIS_PM_OPS &sis_pm |
| #else |
| #define SIS_PM_OPS NULL |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static int sis_alloc_suspend(struct sis7019 *sis) |
| { |
| int i; |
| |
| /* We need 16K to store the internal wave engine state during a |
| * suspend, but we don't need it to be contiguous, so play nice |
| * with the memory system. We'll also use this area for a silence |
| * buffer. |
| */ |
| for (i = 0; i < SIS_SUSPEND_PAGES; i++) { |
| sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096, |
| GFP_KERNEL); |
| if (!sis->suspend_state[i]) |
| return -ENOMEM; |
| } |
| memset(sis->suspend_state[0], 0, 4096); |
| |
| return 0; |
| } |
| |
| static int sis_chip_create(struct snd_card *card, |
| struct pci_dev *pci) |
| { |
| struct sis7019 *sis = card->private_data; |
| struct voice *voice; |
| int rc; |
| int i; |
| |
| rc = pcim_enable_device(pci); |
| if (rc) |
| return rc; |
| |
| rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30)); |
| if (rc < 0) { |
| dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); |
| return -ENXIO; |
| } |
| |
| mutex_init(&sis->ac97_mutex); |
| spin_lock_init(&sis->voice_lock); |
| sis->card = card; |
| sis->pci = pci; |
| sis->irq = -1; |
| sis->ioport = pci_resource_start(pci, 0); |
| |
| rc = pci_request_regions(pci, "SiS7019"); |
| if (rc) { |
| dev_err(&pci->dev, "unable request regions\n"); |
| return rc; |
| } |
| |
| sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000); |
| if (!sis->ioaddr) { |
| dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); |
| return -EIO; |
| } |
| |
| rc = sis_alloc_suspend(sis); |
| if (rc < 0) { |
| dev_err(&pci->dev, "unable to allocate state storage\n"); |
| return rc; |
| } |
| |
| rc = sis_chip_init(sis); |
| if (rc) |
| return rc; |
| card->private_free = sis_chip_free; |
| |
| rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, |
| sis); |
| if (rc) { |
| dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); |
| return rc; |
| } |
| |
| sis->irq = pci->irq; |
| card->sync_irq = sis->irq; |
| pci_set_master(pci); |
| |
| for (i = 0; i < 64; i++) { |
| voice = &sis->voices[i]; |
| voice->num = i; |
| voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); |
| voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); |
| } |
| |
| voice = &sis->capture_voice; |
| voice->flags = VOICE_CAPTURE; |
| voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; |
| voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); |
| |
| return 0; |
| } |
| |
| static int snd_sis7019_probe(struct pci_dev *pci, |
| const struct pci_device_id *pci_id) |
| { |
| struct snd_card *card; |
| struct sis7019 *sis; |
| int rc; |
| |
| if (!enable) |
| return -ENOENT; |
| |
| /* The user can specify which codecs should be present so that we |
| * can wait for them to show up if they are slow to recover from |
| * the AC97 cold reset. We default to a single codec, the primary. |
| * |
| * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. |
| */ |
| codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | |
| SIS_TERTIARY_CODEC_PRESENT; |
| if (!codecs) |
| codecs = SIS_PRIMARY_CODEC_PRESENT; |
| |
| rc = snd_card_new(&pci->dev, index, id, THIS_MODULE, |
| sizeof(*sis), &card); |
| if (rc < 0) |
| return rc; |
| |
| strcpy(card->driver, "SiS7019"); |
| strcpy(card->shortname, "SiS7019"); |
| rc = sis_chip_create(card, pci); |
| if (rc) |
| return rc; |
| |
| sis = card->private_data; |
| |
| rc = sis_mixer_create(sis); |
| if (rc) |
| return rc; |
| |
| rc = sis_pcm_create(sis); |
| if (rc) |
| return rc; |
| |
| snprintf(card->longname, sizeof(card->longname), |
| "%s Audio Accelerator with %s at 0x%lx, irq %d", |
| card->shortname, snd_ac97_get_short_name(sis->ac97[0]), |
| sis->ioport, sis->irq); |
| |
| rc = snd_card_register(card); |
| if (rc) |
| return rc; |
| |
| pci_set_drvdata(pci, card); |
| return 0; |
| } |
| |
| static struct pci_driver sis7019_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = snd_sis7019_ids, |
| .probe = snd_sis7019_probe, |
| .driver = { |
| .pm = SIS_PM_OPS, |
| }, |
| }; |
| |
| module_pci_driver(sis7019_driver); |