| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | /* Copyright (c) 2018 Facebook */ | 
 |  | 
 | #include <uapi/linux/btf.h> | 
 | #include <uapi/linux/types.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/file.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/bpf_verifier.h> | 
 | #include <linux/btf.h> | 
 |  | 
 | /* BTF (BPF Type Format) is the meta data format which describes | 
 |  * the data types of BPF program/map.  Hence, it basically focus | 
 |  * on the C programming language which the modern BPF is primary | 
 |  * using. | 
 |  * | 
 |  * ELF Section: | 
 |  * ~~~~~~~~~~~ | 
 |  * The BTF data is stored under the ".BTF" ELF section | 
 |  * | 
 |  * struct btf_type: | 
 |  * ~~~~~~~~~~~~~~~ | 
 |  * Each 'struct btf_type' object describes a C data type. | 
 |  * Depending on the type it is describing, a 'struct btf_type' | 
 |  * object may be followed by more data.  F.e. | 
 |  * To describe an array, 'struct btf_type' is followed by | 
 |  * 'struct btf_array'. | 
 |  * | 
 |  * 'struct btf_type' and any extra data following it are | 
 |  * 4 bytes aligned. | 
 |  * | 
 |  * Type section: | 
 |  * ~~~~~~~~~~~~~ | 
 |  * The BTF type section contains a list of 'struct btf_type' objects. | 
 |  * Each one describes a C type.  Recall from the above section | 
 |  * that a 'struct btf_type' object could be immediately followed by extra | 
 |  * data in order to desribe some particular C types. | 
 |  * | 
 |  * type_id: | 
 |  * ~~~~~~~ | 
 |  * Each btf_type object is identified by a type_id.  The type_id | 
 |  * is implicitly implied by the location of the btf_type object in | 
 |  * the BTF type section.  The first one has type_id 1.  The second | 
 |  * one has type_id 2...etc.  Hence, an earlier btf_type has | 
 |  * a smaller type_id. | 
 |  * | 
 |  * A btf_type object may refer to another btf_type object by using | 
 |  * type_id (i.e. the "type" in the "struct btf_type"). | 
 |  * | 
 |  * NOTE that we cannot assume any reference-order. | 
 |  * A btf_type object can refer to an earlier btf_type object | 
 |  * but it can also refer to a later btf_type object. | 
 |  * | 
 |  * For example, to describe "const void *".  A btf_type | 
 |  * object describing "const" may refer to another btf_type | 
 |  * object describing "void *".  This type-reference is done | 
 |  * by specifying type_id: | 
 |  * | 
 |  * [1] CONST (anon) type_id=2 | 
 |  * [2] PTR (anon) type_id=0 | 
 |  * | 
 |  * The above is the btf_verifier debug log: | 
 |  *   - Each line started with "[?]" is a btf_type object | 
 |  *   - [?] is the type_id of the btf_type object. | 
 |  *   - CONST/PTR is the BTF_KIND_XXX | 
 |  *   - "(anon)" is the name of the type.  It just | 
 |  *     happens that CONST and PTR has no name. | 
 |  *   - type_id=XXX is the 'u32 type' in btf_type | 
 |  * | 
 |  * NOTE: "void" has type_id 0 | 
 |  * | 
 |  * String section: | 
 |  * ~~~~~~~~~~~~~~ | 
 |  * The BTF string section contains the names used by the type section. | 
 |  * Each string is referred by an "offset" from the beginning of the | 
 |  * string section. | 
 |  * | 
 |  * Each string is '\0' terminated. | 
 |  * | 
 |  * The first character in the string section must be '\0' | 
 |  * which is used to mean 'anonymous'. Some btf_type may not | 
 |  * have a name. | 
 |  */ | 
 |  | 
 | /* BTF verification: | 
 |  * | 
 |  * To verify BTF data, two passes are needed. | 
 |  * | 
 |  * Pass #1 | 
 |  * ~~~~~~~ | 
 |  * The first pass is to collect all btf_type objects to | 
 |  * an array: "btf->types". | 
 |  * | 
 |  * Depending on the C type that a btf_type is describing, | 
 |  * a btf_type may be followed by extra data.  We don't know | 
 |  * how many btf_type is there, and more importantly we don't | 
 |  * know where each btf_type is located in the type section. | 
 |  * | 
 |  * Without knowing the location of each type_id, most verifications | 
 |  * cannot be done.  e.g. an earlier btf_type may refer to a later | 
 |  * btf_type (recall the "const void *" above), so we cannot | 
 |  * check this type-reference in the first pass. | 
 |  * | 
 |  * In the first pass, it still does some verifications (e.g. | 
 |  * checking the name is a valid offset to the string section). | 
 |  * | 
 |  * Pass #2 | 
 |  * ~~~~~~~ | 
 |  * The main focus is to resolve a btf_type that is referring | 
 |  * to another type. | 
 |  * | 
 |  * We have to ensure the referring type: | 
 |  * 1) does exist in the BTF (i.e. in btf->types[]) | 
 |  * 2) does not cause a loop: | 
 |  *	struct A { | 
 |  *		struct B b; | 
 |  *	}; | 
 |  * | 
 |  *	struct B { | 
 |  *		struct A a; | 
 |  *	}; | 
 |  * | 
 |  * btf_type_needs_resolve() decides if a btf_type needs | 
 |  * to be resolved. | 
 |  * | 
 |  * The needs_resolve type implements the "resolve()" ops which | 
 |  * essentially does a DFS and detects backedge. | 
 |  * | 
 |  * During resolve (or DFS), different C types have different | 
 |  * "RESOLVED" conditions. | 
 |  * | 
 |  * When resolving a BTF_KIND_STRUCT, we need to resolve all its | 
 |  * members because a member is always referring to another | 
 |  * type.  A struct's member can be treated as "RESOLVED" if | 
 |  * it is referring to a BTF_KIND_PTR.  Otherwise, the | 
 |  * following valid C struct would be rejected: | 
 |  * | 
 |  *	struct A { | 
 |  *		int m; | 
 |  *		struct A *a; | 
 |  *	}; | 
 |  * | 
 |  * When resolving a BTF_KIND_PTR, it needs to keep resolving if | 
 |  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot | 
 |  * detect a pointer loop, e.g.: | 
 |  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + | 
 |  *                        ^                                         | | 
 |  *                        +-----------------------------------------+ | 
 |  * | 
 |  */ | 
 |  | 
 | #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE) | 
 | #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) | 
 | #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) | 
 | #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) | 
 | #define BITS_ROUNDUP_BYTES(bits) \ | 
 | 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) | 
 |  | 
 | #define BTF_INFO_MASK 0x0f00ffff | 
 | #define BTF_INT_MASK 0x0fffffff | 
 | #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) | 
 | #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) | 
 |  | 
 | /* 16MB for 64k structs and each has 16 members and | 
 |  * a few MB spaces for the string section. | 
 |  * The hard limit is S32_MAX. | 
 |  */ | 
 | #define BTF_MAX_SIZE (16 * 1024 * 1024) | 
 |  | 
 | #define for_each_member(i, struct_type, member)			\ | 
 | 	for (i = 0, member = btf_type_member(struct_type);	\ | 
 | 	     i < btf_type_vlen(struct_type);			\ | 
 | 	     i++, member++) | 
 |  | 
 | #define for_each_member_from(i, from, struct_type, member)		\ | 
 | 	for (i = from, member = btf_type_member(struct_type) + from;	\ | 
 | 	     i < btf_type_vlen(struct_type);				\ | 
 | 	     i++, member++) | 
 |  | 
 | static DEFINE_IDR(btf_idr); | 
 | static DEFINE_SPINLOCK(btf_idr_lock); | 
 |  | 
 | struct btf { | 
 | 	void *data; | 
 | 	struct btf_type **types; | 
 | 	u32 *resolved_ids; | 
 | 	u32 *resolved_sizes; | 
 | 	const char *strings; | 
 | 	void *nohdr_data; | 
 | 	struct btf_header hdr; | 
 | 	u32 nr_types; | 
 | 	u32 types_size; | 
 | 	u32 data_size; | 
 | 	refcount_t refcnt; | 
 | 	u32 id; | 
 | 	struct rcu_head rcu; | 
 | }; | 
 |  | 
 | enum verifier_phase { | 
 | 	CHECK_META, | 
 | 	CHECK_TYPE, | 
 | }; | 
 |  | 
 | struct resolve_vertex { | 
 | 	const struct btf_type *t; | 
 | 	u32 type_id; | 
 | 	u16 next_member; | 
 | }; | 
 |  | 
 | enum visit_state { | 
 | 	NOT_VISITED, | 
 | 	VISITED, | 
 | 	RESOLVED, | 
 | }; | 
 |  | 
 | enum resolve_mode { | 
 | 	RESOLVE_TBD,	/* To Be Determined */ | 
 | 	RESOLVE_PTR,	/* Resolving for Pointer */ | 
 | 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union | 
 | 					 * or array | 
 | 					 */ | 
 | }; | 
 |  | 
 | #define MAX_RESOLVE_DEPTH 32 | 
 |  | 
 | struct btf_sec_info { | 
 | 	u32 off; | 
 | 	u32 len; | 
 | }; | 
 |  | 
 | struct btf_verifier_env { | 
 | 	struct btf *btf; | 
 | 	u8 *visit_states; | 
 | 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; | 
 | 	struct bpf_verifier_log log; | 
 | 	u32 log_type_id; | 
 | 	u32 top_stack; | 
 | 	enum verifier_phase phase; | 
 | 	enum resolve_mode resolve_mode; | 
 | }; | 
 |  | 
 | static const char * const btf_kind_str[NR_BTF_KINDS] = { | 
 | 	[BTF_KIND_UNKN]		= "UNKNOWN", | 
 | 	[BTF_KIND_INT]		= "INT", | 
 | 	[BTF_KIND_PTR]		= "PTR", | 
 | 	[BTF_KIND_ARRAY]	= "ARRAY", | 
 | 	[BTF_KIND_STRUCT]	= "STRUCT", | 
 | 	[BTF_KIND_UNION]	= "UNION", | 
 | 	[BTF_KIND_ENUM]		= "ENUM", | 
 | 	[BTF_KIND_FWD]		= "FWD", | 
 | 	[BTF_KIND_TYPEDEF]	= "TYPEDEF", | 
 | 	[BTF_KIND_VOLATILE]	= "VOLATILE", | 
 | 	[BTF_KIND_CONST]	= "CONST", | 
 | 	[BTF_KIND_RESTRICT]	= "RESTRICT", | 
 | }; | 
 |  | 
 | struct btf_kind_operations { | 
 | 	s32 (*check_meta)(struct btf_verifier_env *env, | 
 | 			  const struct btf_type *t, | 
 | 			  u32 meta_left); | 
 | 	int (*resolve)(struct btf_verifier_env *env, | 
 | 		       const struct resolve_vertex *v); | 
 | 	int (*check_member)(struct btf_verifier_env *env, | 
 | 			    const struct btf_type *struct_type, | 
 | 			    const struct btf_member *member, | 
 | 			    const struct btf_type *member_type); | 
 | 	void (*log_details)(struct btf_verifier_env *env, | 
 | 			    const struct btf_type *t); | 
 | 	void (*seq_show)(const struct btf *btf, const struct btf_type *t, | 
 | 			 u32 type_id, void *data, u8 bits_offsets, | 
 | 			 struct seq_file *m); | 
 | }; | 
 |  | 
 | static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; | 
 | static struct btf_type btf_void; | 
 |  | 
 | static bool btf_type_is_modifier(const struct btf_type *t) | 
 | { | 
 | 	/* Some of them is not strictly a C modifier | 
 | 	 * but they are grouped into the same bucket | 
 | 	 * for BTF concern: | 
 | 	 *   A type (t) that refers to another | 
 | 	 *   type through t->type AND its size cannot | 
 | 	 *   be determined without following the t->type. | 
 | 	 * | 
 | 	 * ptr does not fall into this bucket | 
 | 	 * because its size is always sizeof(void *). | 
 | 	 */ | 
 | 	switch (BTF_INFO_KIND(t->info)) { | 
 | 	case BTF_KIND_TYPEDEF: | 
 | 	case BTF_KIND_VOLATILE: | 
 | 	case BTF_KIND_CONST: | 
 | 	case BTF_KIND_RESTRICT: | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool btf_type_is_void(const struct btf_type *t) | 
 | { | 
 | 	/* void => no type and size info. | 
 | 	 * Hence, FWD is also treated as void. | 
 | 	 */ | 
 | 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD; | 
 | } | 
 |  | 
 | static bool btf_type_is_void_or_null(const struct btf_type *t) | 
 | { | 
 | 	return !t || btf_type_is_void(t); | 
 | } | 
 |  | 
 | /* union is only a special case of struct: | 
 |  * all its offsetof(member) == 0 | 
 |  */ | 
 | static bool btf_type_is_struct(const struct btf_type *t) | 
 | { | 
 | 	u8 kind = BTF_INFO_KIND(t->info); | 
 |  | 
 | 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; | 
 | } | 
 |  | 
 | static bool btf_type_is_array(const struct btf_type *t) | 
 | { | 
 | 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; | 
 | } | 
 |  | 
 | static bool btf_type_is_ptr(const struct btf_type *t) | 
 | { | 
 | 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; | 
 | } | 
 |  | 
 | static bool btf_type_is_int(const struct btf_type *t) | 
 | { | 
 | 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT; | 
 | } | 
 |  | 
 | /* What types need to be resolved? | 
 |  * | 
 |  * btf_type_is_modifier() is an obvious one. | 
 |  * | 
 |  * btf_type_is_struct() because its member refers to | 
 |  * another type (through member->type). | 
 |  | 
 |  * btf_type_is_array() because its element (array->type) | 
 |  * refers to another type.  Array can be thought of a | 
 |  * special case of struct while array just has the same | 
 |  * member-type repeated by array->nelems of times. | 
 |  */ | 
 | static bool btf_type_needs_resolve(const struct btf_type *t) | 
 | { | 
 | 	return btf_type_is_modifier(t) || | 
 | 		btf_type_is_ptr(t) || | 
 | 		btf_type_is_struct(t) || | 
 | 		btf_type_is_array(t); | 
 | } | 
 |  | 
 | /* t->size can be used */ | 
 | static bool btf_type_has_size(const struct btf_type *t) | 
 | { | 
 | 	switch (BTF_INFO_KIND(t->info)) { | 
 | 	case BTF_KIND_INT: | 
 | 	case BTF_KIND_STRUCT: | 
 | 	case BTF_KIND_UNION: | 
 | 	case BTF_KIND_ENUM: | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static const char *btf_int_encoding_str(u8 encoding) | 
 | { | 
 | 	if (encoding == 0) | 
 | 		return "(none)"; | 
 | 	else if (encoding == BTF_INT_SIGNED) | 
 | 		return "SIGNED"; | 
 | 	else if (encoding == BTF_INT_CHAR) | 
 | 		return "CHAR"; | 
 | 	else if (encoding == BTF_INT_BOOL) | 
 | 		return "BOOL"; | 
 | 	else | 
 | 		return "UNKN"; | 
 | } | 
 |  | 
 | static u16 btf_type_vlen(const struct btf_type *t) | 
 | { | 
 | 	return BTF_INFO_VLEN(t->info); | 
 | } | 
 |  | 
 | static u32 btf_type_int(const struct btf_type *t) | 
 | { | 
 | 	return *(u32 *)(t + 1); | 
 | } | 
 |  | 
 | static const struct btf_array *btf_type_array(const struct btf_type *t) | 
 | { | 
 | 	return (const struct btf_array *)(t + 1); | 
 | } | 
 |  | 
 | static const struct btf_member *btf_type_member(const struct btf_type *t) | 
 | { | 
 | 	return (const struct btf_member *)(t + 1); | 
 | } | 
 |  | 
 | static const struct btf_enum *btf_type_enum(const struct btf_type *t) | 
 | { | 
 | 	return (const struct btf_enum *)(t + 1); | 
 | } | 
 |  | 
 | static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) | 
 | { | 
 | 	return kind_ops[BTF_INFO_KIND(t->info)]; | 
 | } | 
 |  | 
 | static bool btf_name_offset_valid(const struct btf *btf, u32 offset) | 
 | { | 
 | 	return BTF_STR_OFFSET_VALID(offset) && | 
 | 		offset < btf->hdr.str_len; | 
 | } | 
 |  | 
 | static const char *btf_name_by_offset(const struct btf *btf, u32 offset) | 
 | { | 
 | 	if (!offset) | 
 | 		return "(anon)"; | 
 | 	else if (offset < btf->hdr.str_len) | 
 | 		return &btf->strings[offset]; | 
 | 	else | 
 | 		return "(invalid-name-offset)"; | 
 | } | 
 |  | 
 | static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) | 
 | { | 
 | 	if (type_id > btf->nr_types) | 
 | 		return NULL; | 
 |  | 
 | 	return btf->types[type_id]; | 
 | } | 
 |  | 
 | /* | 
 |  * Regular int is not a bit field and it must be either | 
 |  * u8/u16/u32/u64. | 
 |  */ | 
 | static bool btf_type_int_is_regular(const struct btf_type *t) | 
 | { | 
 | 	u16 nr_bits, nr_bytes; | 
 | 	u32 int_data; | 
 |  | 
 | 	int_data = btf_type_int(t); | 
 | 	nr_bits = BTF_INT_BITS(int_data); | 
 | 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); | 
 | 	if (BITS_PER_BYTE_MASKED(nr_bits) || | 
 | 	    BTF_INT_OFFSET(int_data) || | 
 | 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && | 
 | 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) { | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, | 
 | 					      const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	bpf_verifier_vlog(log, fmt, args); | 
 | 	va_end(args); | 
 | } | 
 |  | 
 | __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, | 
 | 					    const char *fmt, ...) | 
 | { | 
 | 	struct bpf_verifier_log *log = &env->log; | 
 | 	va_list args; | 
 |  | 
 | 	if (!bpf_verifier_log_needed(log)) | 
 | 		return; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	bpf_verifier_vlog(log, fmt, args); | 
 | 	va_end(args); | 
 | } | 
 |  | 
 | __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, | 
 | 						   const struct btf_type *t, | 
 | 						   bool log_details, | 
 | 						   const char *fmt, ...) | 
 | { | 
 | 	struct bpf_verifier_log *log = &env->log; | 
 | 	u8 kind = BTF_INFO_KIND(t->info); | 
 | 	struct btf *btf = env->btf; | 
 | 	va_list args; | 
 |  | 
 | 	if (!bpf_verifier_log_needed(log)) | 
 | 		return; | 
 |  | 
 | 	__btf_verifier_log(log, "[%u] %s %s%s", | 
 | 			   env->log_type_id, | 
 | 			   btf_kind_str[kind], | 
 | 			   btf_name_by_offset(btf, t->name_off), | 
 | 			   log_details ? " " : ""); | 
 |  | 
 | 	if (log_details) | 
 | 		btf_type_ops(t)->log_details(env, t); | 
 |  | 
 | 	if (fmt && *fmt) { | 
 | 		__btf_verifier_log(log, " "); | 
 | 		va_start(args, fmt); | 
 | 		bpf_verifier_vlog(log, fmt, args); | 
 | 		va_end(args); | 
 | 	} | 
 |  | 
 | 	__btf_verifier_log(log, "\n"); | 
 | } | 
 |  | 
 | #define btf_verifier_log_type(env, t, ...) \ | 
 | 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__) | 
 | #define btf_verifier_log_basic(env, t, ...) \ | 
 | 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__) | 
 |  | 
 | __printf(4, 5) | 
 | static void btf_verifier_log_member(struct btf_verifier_env *env, | 
 | 				    const struct btf_type *struct_type, | 
 | 				    const struct btf_member *member, | 
 | 				    const char *fmt, ...) | 
 | { | 
 | 	struct bpf_verifier_log *log = &env->log; | 
 | 	struct btf *btf = env->btf; | 
 | 	va_list args; | 
 |  | 
 | 	if (!bpf_verifier_log_needed(log)) | 
 | 		return; | 
 |  | 
 | 	/* The CHECK_META phase already did a btf dump. | 
 | 	 * | 
 | 	 * If member is logged again, it must hit an error in | 
 | 	 * parsing this member.  It is useful to print out which | 
 | 	 * struct this member belongs to. | 
 | 	 */ | 
 | 	if (env->phase != CHECK_META) | 
 | 		btf_verifier_log_type(env, struct_type, NULL); | 
 |  | 
 | 	__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", | 
 | 			   btf_name_by_offset(btf, member->name_off), | 
 | 			   member->type, member->offset); | 
 |  | 
 | 	if (fmt && *fmt) { | 
 | 		__btf_verifier_log(log, " "); | 
 | 		va_start(args, fmt); | 
 | 		bpf_verifier_vlog(log, fmt, args); | 
 | 		va_end(args); | 
 | 	} | 
 |  | 
 | 	__btf_verifier_log(log, "\n"); | 
 | } | 
 |  | 
 | static void btf_verifier_log_hdr(struct btf_verifier_env *env, | 
 | 				 u32 btf_data_size) | 
 | { | 
 | 	struct bpf_verifier_log *log = &env->log; | 
 | 	const struct btf *btf = env->btf; | 
 | 	const struct btf_header *hdr; | 
 |  | 
 | 	if (!bpf_verifier_log_needed(log)) | 
 | 		return; | 
 |  | 
 | 	hdr = &btf->hdr; | 
 | 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); | 
 | 	__btf_verifier_log(log, "version: %u\n", hdr->version); | 
 | 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); | 
 | 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); | 
 | 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off); | 
 | 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len); | 
 | 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off); | 
 | 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len); | 
 | 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); | 
 | } | 
 |  | 
 | static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) | 
 | { | 
 | 	struct btf *btf = env->btf; | 
 |  | 
 | 	/* < 2 because +1 for btf_void which is always in btf->types[0]. | 
 | 	 * btf_void is not accounted in btf->nr_types because btf_void | 
 | 	 * does not come from the BTF file. | 
 | 	 */ | 
 | 	if (btf->types_size - btf->nr_types < 2) { | 
 | 		/* Expand 'types' array */ | 
 |  | 
 | 		struct btf_type **new_types; | 
 | 		u32 expand_by, new_size; | 
 |  | 
 | 		if (btf->types_size == BTF_MAX_TYPE) { | 
 | 			btf_verifier_log(env, "Exceeded max num of types"); | 
 | 			return -E2BIG; | 
 | 		} | 
 |  | 
 | 		expand_by = max_t(u32, btf->types_size >> 2, 16); | 
 | 		new_size = min_t(u32, BTF_MAX_TYPE, | 
 | 				 btf->types_size + expand_by); | 
 |  | 
 | 		new_types = kvzalloc(new_size * sizeof(*new_types), | 
 | 				     GFP_KERNEL | __GFP_NOWARN); | 
 | 		if (!new_types) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (btf->nr_types == 0) | 
 | 			new_types[0] = &btf_void; | 
 | 		else | 
 | 			memcpy(new_types, btf->types, | 
 | 			       sizeof(*btf->types) * (btf->nr_types + 1)); | 
 |  | 
 | 		kvfree(btf->types); | 
 | 		btf->types = new_types; | 
 | 		btf->types_size = new_size; | 
 | 	} | 
 |  | 
 | 	btf->types[++(btf->nr_types)] = t; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_alloc_id(struct btf *btf) | 
 | { | 
 | 	int id; | 
 |  | 
 | 	idr_preload(GFP_KERNEL); | 
 | 	spin_lock_bh(&btf_idr_lock); | 
 | 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); | 
 | 	if (id > 0) | 
 | 		btf->id = id; | 
 | 	spin_unlock_bh(&btf_idr_lock); | 
 | 	idr_preload_end(); | 
 |  | 
 | 	if (WARN_ON_ONCE(!id)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	return id > 0 ? 0 : id; | 
 | } | 
 |  | 
 | static void btf_free_id(struct btf *btf) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * In map-in-map, calling map_delete_elem() on outer | 
 | 	 * map will call bpf_map_put on the inner map. | 
 | 	 * It will then eventually call btf_free_id() | 
 | 	 * on the inner map.  Some of the map_delete_elem() | 
 | 	 * implementation may have irq disabled, so | 
 | 	 * we need to use the _irqsave() version instead | 
 | 	 * of the _bh() version. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&btf_idr_lock, flags); | 
 | 	idr_remove(&btf_idr, btf->id); | 
 | 	spin_unlock_irqrestore(&btf_idr_lock, flags); | 
 | } | 
 |  | 
 | static void btf_free(struct btf *btf) | 
 | { | 
 | 	kvfree(btf->types); | 
 | 	kvfree(btf->resolved_sizes); | 
 | 	kvfree(btf->resolved_ids); | 
 | 	kvfree(btf->data); | 
 | 	kfree(btf); | 
 | } | 
 |  | 
 | static void btf_free_rcu(struct rcu_head *rcu) | 
 | { | 
 | 	struct btf *btf = container_of(rcu, struct btf, rcu); | 
 |  | 
 | 	btf_free(btf); | 
 | } | 
 |  | 
 | void btf_put(struct btf *btf) | 
 | { | 
 | 	if (btf && refcount_dec_and_test(&btf->refcnt)) { | 
 | 		btf_free_id(btf); | 
 | 		call_rcu(&btf->rcu, btf_free_rcu); | 
 | 	} | 
 | } | 
 |  | 
 | static int env_resolve_init(struct btf_verifier_env *env) | 
 | { | 
 | 	struct btf *btf = env->btf; | 
 | 	u32 nr_types = btf->nr_types; | 
 | 	u32 *resolved_sizes = NULL; | 
 | 	u32 *resolved_ids = NULL; | 
 | 	u8 *visit_states = NULL; | 
 |  | 
 | 	/* +1 for btf_void */ | 
 | 	resolved_sizes = kvzalloc((nr_types + 1) * sizeof(*resolved_sizes), | 
 | 				  GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!resolved_sizes) | 
 | 		goto nomem; | 
 |  | 
 | 	resolved_ids = kvzalloc((nr_types + 1) * sizeof(*resolved_ids), | 
 | 				GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!resolved_ids) | 
 | 		goto nomem; | 
 |  | 
 | 	visit_states = kvzalloc((nr_types + 1) * sizeof(*visit_states), | 
 | 				GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!visit_states) | 
 | 		goto nomem; | 
 |  | 
 | 	btf->resolved_sizes = resolved_sizes; | 
 | 	btf->resolved_ids = resolved_ids; | 
 | 	env->visit_states = visit_states; | 
 |  | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	kvfree(resolved_sizes); | 
 | 	kvfree(resolved_ids); | 
 | 	kvfree(visit_states); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void btf_verifier_env_free(struct btf_verifier_env *env) | 
 | { | 
 | 	kvfree(env->visit_states); | 
 | 	kfree(env); | 
 | } | 
 |  | 
 | static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, | 
 | 				     const struct btf_type *next_type) | 
 | { | 
 | 	switch (env->resolve_mode) { | 
 | 	case RESOLVE_TBD: | 
 | 		/* int, enum or void is a sink */ | 
 | 		return !btf_type_needs_resolve(next_type); | 
 | 	case RESOLVE_PTR: | 
 | 		/* int, enum, void, struct or array is a sink for ptr */ | 
 | 		return !btf_type_is_modifier(next_type) && | 
 | 			!btf_type_is_ptr(next_type); | 
 | 	case RESOLVE_STRUCT_OR_ARRAY: | 
 | 		/* int, enum, void or ptr is a sink for struct and array */ | 
 | 		return !btf_type_is_modifier(next_type) && | 
 | 			!btf_type_is_array(next_type) && | 
 | 			!btf_type_is_struct(next_type); | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static bool env_type_is_resolved(const struct btf_verifier_env *env, | 
 | 				 u32 type_id) | 
 | { | 
 | 	return env->visit_states[type_id] == RESOLVED; | 
 | } | 
 |  | 
 | static int env_stack_push(struct btf_verifier_env *env, | 
 | 			  const struct btf_type *t, u32 type_id) | 
 | { | 
 | 	struct resolve_vertex *v; | 
 |  | 
 | 	if (env->top_stack == MAX_RESOLVE_DEPTH) | 
 | 		return -E2BIG; | 
 |  | 
 | 	if (env->visit_states[type_id] != NOT_VISITED) | 
 | 		return -EEXIST; | 
 |  | 
 | 	env->visit_states[type_id] = VISITED; | 
 |  | 
 | 	v = &env->stack[env->top_stack++]; | 
 | 	v->t = t; | 
 | 	v->type_id = type_id; | 
 | 	v->next_member = 0; | 
 |  | 
 | 	if (env->resolve_mode == RESOLVE_TBD) { | 
 | 		if (btf_type_is_ptr(t)) | 
 | 			env->resolve_mode = RESOLVE_PTR; | 
 | 		else if (btf_type_is_struct(t) || btf_type_is_array(t)) | 
 | 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void env_stack_set_next_member(struct btf_verifier_env *env, | 
 | 				      u16 next_member) | 
 | { | 
 | 	env->stack[env->top_stack - 1].next_member = next_member; | 
 | } | 
 |  | 
 | static void env_stack_pop_resolved(struct btf_verifier_env *env, | 
 | 				   u32 resolved_type_id, | 
 | 				   u32 resolved_size) | 
 | { | 
 | 	u32 type_id = env->stack[--(env->top_stack)].type_id; | 
 | 	struct btf *btf = env->btf; | 
 |  | 
 | 	btf->resolved_sizes[type_id] = resolved_size; | 
 | 	btf->resolved_ids[type_id] = resolved_type_id; | 
 | 	env->visit_states[type_id] = RESOLVED; | 
 | } | 
 |  | 
 | static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) | 
 | { | 
 | 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; | 
 | } | 
 |  | 
 | /* The input param "type_id" must point to a needs_resolve type */ | 
 | static const struct btf_type *btf_type_id_resolve(const struct btf *btf, | 
 | 						  u32 *type_id) | 
 | { | 
 | 	*type_id = btf->resolved_ids[*type_id]; | 
 | 	return btf_type_by_id(btf, *type_id); | 
 | } | 
 |  | 
 | const struct btf_type *btf_type_id_size(const struct btf *btf, | 
 | 					u32 *type_id, u32 *ret_size) | 
 | { | 
 | 	const struct btf_type *size_type; | 
 | 	u32 size_type_id = *type_id; | 
 | 	u32 size = 0; | 
 |  | 
 | 	size_type = btf_type_by_id(btf, size_type_id); | 
 | 	if (btf_type_is_void_or_null(size_type)) | 
 | 		return NULL; | 
 |  | 
 | 	if (btf_type_has_size(size_type)) { | 
 | 		size = size_type->size; | 
 | 	} else if (btf_type_is_array(size_type)) { | 
 | 		size = btf->resolved_sizes[size_type_id]; | 
 | 	} else if (btf_type_is_ptr(size_type)) { | 
 | 		size = sizeof(void *); | 
 | 	} else { | 
 | 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) | 
 | 			return NULL; | 
 |  | 
 | 		size = btf->resolved_sizes[size_type_id]; | 
 | 		size_type_id = btf->resolved_ids[size_type_id]; | 
 | 		size_type = btf_type_by_id(btf, size_type_id); | 
 | 		if (btf_type_is_void(size_type)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	*type_id = size_type_id; | 
 | 	if (ret_size) | 
 | 		*ret_size = size; | 
 |  | 
 | 	return size_type; | 
 | } | 
 |  | 
 | static int btf_df_check_member(struct btf_verifier_env *env, | 
 | 			       const struct btf_type *struct_type, | 
 | 			       const struct btf_member *member, | 
 | 			       const struct btf_type *member_type) | 
 | { | 
 | 	btf_verifier_log_basic(env, struct_type, | 
 | 			       "Unsupported check_member"); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int btf_df_resolve(struct btf_verifier_env *env, | 
 | 			  const struct resolve_vertex *v) | 
 | { | 
 | 	btf_verifier_log_basic(env, v->t, "Unsupported resolve"); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, | 
 | 			    u32 type_id, void *data, u8 bits_offsets, | 
 | 			    struct seq_file *m) | 
 | { | 
 | 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); | 
 | } | 
 |  | 
 | static int btf_int_check_member(struct btf_verifier_env *env, | 
 | 				const struct btf_type *struct_type, | 
 | 				const struct btf_member *member, | 
 | 				const struct btf_type *member_type) | 
 | { | 
 | 	u32 int_data = btf_type_int(member_type); | 
 | 	u32 struct_bits_off = member->offset; | 
 | 	u32 struct_size = struct_type->size; | 
 | 	u32 nr_copy_bits; | 
 | 	u32 bytes_offset; | 
 |  | 
 | 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"bits_offset exceeds U32_MAX"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	struct_bits_off += BTF_INT_OFFSET(int_data); | 
 | 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
 | 	nr_copy_bits = BTF_INT_BITS(int_data) + | 
 | 		BITS_PER_BYTE_MASKED(struct_bits_off); | 
 |  | 
 | 	if (nr_copy_bits > BITS_PER_U64) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"nr_copy_bits exceeds 64"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (struct_size < bytes_offset || | 
 | 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member exceeds struct_size"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s32 btf_int_check_meta(struct btf_verifier_env *env, | 
 | 			      const struct btf_type *t, | 
 | 			      u32 meta_left) | 
 | { | 
 | 	u32 int_data, nr_bits, meta_needed = sizeof(int_data); | 
 | 	u16 encoding; | 
 |  | 
 | 	if (meta_left < meta_needed) { | 
 | 		btf_verifier_log_basic(env, t, | 
 | 				       "meta_left:%u meta_needed:%u", | 
 | 				       meta_left, meta_needed); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (btf_type_vlen(t)) { | 
 | 		btf_verifier_log_type(env, t, "vlen != 0"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	int_data = btf_type_int(t); | 
 | 	if (int_data & ~BTF_INT_MASK) { | 
 | 		btf_verifier_log_basic(env, t, "Invalid int_data:%x", | 
 | 				       int_data); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); | 
 |  | 
 | 	if (nr_bits > BITS_PER_U64) { | 
 | 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu", | 
 | 				      BITS_PER_U64); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { | 
 | 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only one of the encoding bits is allowed and it | 
 | 	 * should be sufficient for the pretty print purpose (i.e. decoding). | 
 | 	 * Multiple bits can be allowed later if it is found | 
 | 	 * to be insufficient. | 
 | 	 */ | 
 | 	encoding = BTF_INT_ENCODING(int_data); | 
 | 	if (encoding && | 
 | 	    encoding != BTF_INT_SIGNED && | 
 | 	    encoding != BTF_INT_CHAR && | 
 | 	    encoding != BTF_INT_BOOL) { | 
 | 		btf_verifier_log_type(env, t, "Unsupported encoding"); | 
 | 		return -ENOTSUPP; | 
 | 	} | 
 |  | 
 | 	btf_verifier_log_type(env, t, NULL); | 
 |  | 
 | 	return meta_needed; | 
 | } | 
 |  | 
 | static void btf_int_log(struct btf_verifier_env *env, | 
 | 			const struct btf_type *t) | 
 | { | 
 | 	int int_data = btf_type_int(t); | 
 |  | 
 | 	btf_verifier_log(env, | 
 | 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s", | 
 | 			 t->size, BTF_INT_OFFSET(int_data), | 
 | 			 BTF_INT_BITS(int_data), | 
 | 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); | 
 | } | 
 |  | 
 | static void btf_int_bits_seq_show(const struct btf *btf, | 
 | 				  const struct btf_type *t, | 
 | 				  void *data, u8 bits_offset, | 
 | 				  struct seq_file *m) | 
 | { | 
 | 	u32 int_data = btf_type_int(t); | 
 | 	u16 nr_bits = BTF_INT_BITS(int_data); | 
 | 	u16 total_bits_offset; | 
 | 	u16 nr_copy_bytes; | 
 | 	u16 nr_copy_bits; | 
 | 	u8 nr_upper_bits; | 
 | 	union { | 
 | 		u64 u64_num; | 
 | 		u8  u8_nums[8]; | 
 | 	} print_num; | 
 |  | 
 | 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); | 
 | 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset); | 
 | 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); | 
 | 	nr_copy_bits = nr_bits + bits_offset; | 
 | 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); | 
 |  | 
 | 	print_num.u64_num = 0; | 
 | 	memcpy(&print_num.u64_num, data, nr_copy_bytes); | 
 |  | 
 | 	/* Ditch the higher order bits */ | 
 | 	nr_upper_bits = BITS_PER_BYTE_MASKED(nr_copy_bits); | 
 | 	if (nr_upper_bits) { | 
 | 		/* We need to mask out some bits of the upper byte. */ | 
 | 		u8 mask = (1 << nr_upper_bits) - 1; | 
 |  | 
 | 		print_num.u8_nums[nr_copy_bytes - 1] &= mask; | 
 | 	} | 
 |  | 
 | 	print_num.u64_num >>= bits_offset; | 
 |  | 
 | 	seq_printf(m, "0x%llx", print_num.u64_num); | 
 | } | 
 |  | 
 | static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, | 
 | 			     u32 type_id, void *data, u8 bits_offset, | 
 | 			     struct seq_file *m) | 
 | { | 
 | 	u32 int_data = btf_type_int(t); | 
 | 	u8 encoding = BTF_INT_ENCODING(int_data); | 
 | 	bool sign = encoding & BTF_INT_SIGNED; | 
 | 	u32 nr_bits = BTF_INT_BITS(int_data); | 
 |  | 
 | 	if (bits_offset || BTF_INT_OFFSET(int_data) || | 
 | 	    BITS_PER_BYTE_MASKED(nr_bits)) { | 
 | 		btf_int_bits_seq_show(btf, t, data, bits_offset, m); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (nr_bits) { | 
 | 	case 64: | 
 | 		if (sign) | 
 | 			seq_printf(m, "%lld", *(s64 *)data); | 
 | 		else | 
 | 			seq_printf(m, "%llu", *(u64 *)data); | 
 | 		break; | 
 | 	case 32: | 
 | 		if (sign) | 
 | 			seq_printf(m, "%d", *(s32 *)data); | 
 | 		else | 
 | 			seq_printf(m, "%u", *(u32 *)data); | 
 | 		break; | 
 | 	case 16: | 
 | 		if (sign) | 
 | 			seq_printf(m, "%d", *(s16 *)data); | 
 | 		else | 
 | 			seq_printf(m, "%u", *(u16 *)data); | 
 | 		break; | 
 | 	case 8: | 
 | 		if (sign) | 
 | 			seq_printf(m, "%d", *(s8 *)data); | 
 | 		else | 
 | 			seq_printf(m, "%u", *(u8 *)data); | 
 | 		break; | 
 | 	default: | 
 | 		btf_int_bits_seq_show(btf, t, data, bits_offset, m); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct btf_kind_operations int_ops = { | 
 | 	.check_meta = btf_int_check_meta, | 
 | 	.resolve = btf_df_resolve, | 
 | 	.check_member = btf_int_check_member, | 
 | 	.log_details = btf_int_log, | 
 | 	.seq_show = btf_int_seq_show, | 
 | }; | 
 |  | 
 | static int btf_modifier_check_member(struct btf_verifier_env *env, | 
 | 				     const struct btf_type *struct_type, | 
 | 				     const struct btf_member *member, | 
 | 				     const struct btf_type *member_type) | 
 | { | 
 | 	const struct btf_type *resolved_type; | 
 | 	u32 resolved_type_id = member->type; | 
 | 	struct btf_member resolved_member; | 
 | 	struct btf *btf = env->btf; | 
 |  | 
 | 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); | 
 | 	if (!resolved_type) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Invalid member"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	resolved_member = *member; | 
 | 	resolved_member.type = resolved_type_id; | 
 |  | 
 | 	return btf_type_ops(resolved_type)->check_member(env, struct_type, | 
 | 							 &resolved_member, | 
 | 							 resolved_type); | 
 | } | 
 |  | 
 | static int btf_ptr_check_member(struct btf_verifier_env *env, | 
 | 				const struct btf_type *struct_type, | 
 | 				const struct btf_member *member, | 
 | 				const struct btf_type *member_type) | 
 | { | 
 | 	u32 struct_size, struct_bits_off, bytes_offset; | 
 |  | 
 | 	struct_size = struct_type->size; | 
 | 	struct_bits_off = member->offset; | 
 | 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
 |  | 
 | 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member is not byte aligned"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (struct_size - bytes_offset < sizeof(void *)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member exceeds struct_size"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_ref_type_check_meta(struct btf_verifier_env *env, | 
 | 				   const struct btf_type *t, | 
 | 				   u32 meta_left) | 
 | { | 
 | 	if (btf_type_vlen(t)) { | 
 | 		btf_verifier_log_type(env, t, "vlen != 0"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!BTF_TYPE_ID_VALID(t->type)) { | 
 | 		btf_verifier_log_type(env, t, "Invalid type_id"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	btf_verifier_log_type(env, t, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_modifier_resolve(struct btf_verifier_env *env, | 
 | 				const struct resolve_vertex *v) | 
 | { | 
 | 	const struct btf_type *t = v->t; | 
 | 	const struct btf_type *next_type; | 
 | 	u32 next_type_id = t->type; | 
 | 	struct btf *btf = env->btf; | 
 | 	u32 next_type_size = 0; | 
 |  | 
 | 	next_type = btf_type_by_id(btf, next_type_id); | 
 | 	if (!next_type) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* "typedef void new_void", "const void"...etc */ | 
 | 	if (btf_type_is_void(next_type)) | 
 | 		goto resolved; | 
 |  | 
 | 	if (!env_type_is_resolve_sink(env, next_type) && | 
 | 	    !env_type_is_resolved(env, next_type_id)) | 
 | 		return env_stack_push(env, next_type, next_type_id); | 
 |  | 
 | 	/* Figure out the resolved next_type_id with size. | 
 | 	 * They will be stored in the current modifier's | 
 | 	 * resolved_ids and resolved_sizes such that it can | 
 | 	 * save us a few type-following when we use it later (e.g. in | 
 | 	 * pretty print). | 
 | 	 */ | 
 | 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && | 
 | 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | resolved: | 
 | 	env_stack_pop_resolved(env, next_type_id, next_type_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_ptr_resolve(struct btf_verifier_env *env, | 
 | 			   const struct resolve_vertex *v) | 
 | { | 
 | 	const struct btf_type *next_type; | 
 | 	const struct btf_type *t = v->t; | 
 | 	u32 next_type_id = t->type; | 
 | 	struct btf *btf = env->btf; | 
 | 	u32 next_type_size = 0; | 
 |  | 
 | 	next_type = btf_type_by_id(btf, next_type_id); | 
 | 	if (!next_type) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* "void *" */ | 
 | 	if (btf_type_is_void(next_type)) | 
 | 		goto resolved; | 
 |  | 
 | 	if (!env_type_is_resolve_sink(env, next_type) && | 
 | 	    !env_type_is_resolved(env, next_type_id)) | 
 | 		return env_stack_push(env, next_type, next_type_id); | 
 |  | 
 | 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, | 
 | 	 * the modifier may have stopped resolving when it was resolved | 
 | 	 * to a ptr (last-resolved-ptr). | 
 | 	 * | 
 | 	 * We now need to continue from the last-resolved-ptr to | 
 | 	 * ensure the last-resolved-ptr will not referring back to | 
 | 	 * the currenct ptr (t). | 
 | 	 */ | 
 | 	if (btf_type_is_modifier(next_type)) { | 
 | 		const struct btf_type *resolved_type; | 
 | 		u32 resolved_type_id; | 
 |  | 
 | 		resolved_type_id = next_type_id; | 
 | 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id); | 
 |  | 
 | 		if (btf_type_is_ptr(resolved_type) && | 
 | 		    !env_type_is_resolve_sink(env, resolved_type) && | 
 | 		    !env_type_is_resolved(env, resolved_type_id)) | 
 | 			return env_stack_push(env, resolved_type, | 
 | 					      resolved_type_id); | 
 | 	} | 
 |  | 
 | 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && | 
 | 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid type_id"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | resolved: | 
 | 	env_stack_pop_resolved(env, next_type_id, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btf_modifier_seq_show(const struct btf *btf, | 
 | 				  const struct btf_type *t, | 
 | 				  u32 type_id, void *data, | 
 | 				  u8 bits_offset, struct seq_file *m) | 
 | { | 
 | 	t = btf_type_id_resolve(btf, &type_id); | 
 |  | 
 | 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); | 
 | } | 
 |  | 
 | static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, | 
 | 			     u32 type_id, void *data, u8 bits_offset, | 
 | 			     struct seq_file *m) | 
 | { | 
 | 	/* It is a hashed value */ | 
 | 	seq_printf(m, "%p", *(void **)data); | 
 | } | 
 |  | 
 | static void btf_ref_type_log(struct btf_verifier_env *env, | 
 | 			     const struct btf_type *t) | 
 | { | 
 | 	btf_verifier_log(env, "type_id=%u", t->type); | 
 | } | 
 |  | 
 | static struct btf_kind_operations modifier_ops = { | 
 | 	.check_meta = btf_ref_type_check_meta, | 
 | 	.resolve = btf_modifier_resolve, | 
 | 	.check_member = btf_modifier_check_member, | 
 | 	.log_details = btf_ref_type_log, | 
 | 	.seq_show = btf_modifier_seq_show, | 
 | }; | 
 |  | 
 | static struct btf_kind_operations ptr_ops = { | 
 | 	.check_meta = btf_ref_type_check_meta, | 
 | 	.resolve = btf_ptr_resolve, | 
 | 	.check_member = btf_ptr_check_member, | 
 | 	.log_details = btf_ref_type_log, | 
 | 	.seq_show = btf_ptr_seq_show, | 
 | }; | 
 |  | 
 | static s32 btf_fwd_check_meta(struct btf_verifier_env *env, | 
 | 			      const struct btf_type *t, | 
 | 			      u32 meta_left) | 
 | { | 
 | 	if (btf_type_vlen(t)) { | 
 | 		btf_verifier_log_type(env, t, "vlen != 0"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (t->type) { | 
 | 		btf_verifier_log_type(env, t, "type != 0"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	btf_verifier_log_type(env, t, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btf_kind_operations fwd_ops = { | 
 | 	.check_meta = btf_fwd_check_meta, | 
 | 	.resolve = btf_df_resolve, | 
 | 	.check_member = btf_df_check_member, | 
 | 	.log_details = btf_ref_type_log, | 
 | 	.seq_show = btf_df_seq_show, | 
 | }; | 
 |  | 
 | static int btf_array_check_member(struct btf_verifier_env *env, | 
 | 				  const struct btf_type *struct_type, | 
 | 				  const struct btf_member *member, | 
 | 				  const struct btf_type *member_type) | 
 | { | 
 | 	u32 struct_bits_off = member->offset; | 
 | 	u32 struct_size, bytes_offset; | 
 | 	u32 array_type_id, array_size; | 
 | 	struct btf *btf = env->btf; | 
 |  | 
 | 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member is not byte aligned"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	array_type_id = member->type; | 
 | 	btf_type_id_size(btf, &array_type_id, &array_size); | 
 | 	struct_size = struct_type->size; | 
 | 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
 | 	if (struct_size - bytes_offset < array_size) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member exceeds struct_size"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s32 btf_array_check_meta(struct btf_verifier_env *env, | 
 | 				const struct btf_type *t, | 
 | 				u32 meta_left) | 
 | { | 
 | 	const struct btf_array *array = btf_type_array(t); | 
 | 	u32 meta_needed = sizeof(*array); | 
 |  | 
 | 	if (meta_left < meta_needed) { | 
 | 		btf_verifier_log_basic(env, t, | 
 | 				       "meta_left:%u meta_needed:%u", | 
 | 				       meta_left, meta_needed); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (btf_type_vlen(t)) { | 
 | 		btf_verifier_log_type(env, t, "vlen != 0"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (t->size) { | 
 | 		btf_verifier_log_type(env, t, "size != 0"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Array elem type and index type cannot be in type void, | 
 | 	 * so !array->type and !array->index_type are not allowed. | 
 | 	 */ | 
 | 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { | 
 | 		btf_verifier_log_type(env, t, "Invalid elem"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { | 
 | 		btf_verifier_log_type(env, t, "Invalid index"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	btf_verifier_log_type(env, t, NULL); | 
 |  | 
 | 	return meta_needed; | 
 | } | 
 |  | 
 | static int btf_array_resolve(struct btf_verifier_env *env, | 
 | 			     const struct resolve_vertex *v) | 
 | { | 
 | 	const struct btf_array *array = btf_type_array(v->t); | 
 | 	const struct btf_type *elem_type, *index_type; | 
 | 	u32 elem_type_id, index_type_id; | 
 | 	struct btf *btf = env->btf; | 
 | 	u32 elem_size; | 
 |  | 
 | 	/* Check array->index_type */ | 
 | 	index_type_id = array->index_type; | 
 | 	index_type = btf_type_by_id(btf, index_type_id); | 
 | 	if (btf_type_is_void_or_null(index_type)) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid index"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!env_type_is_resolve_sink(env, index_type) && | 
 | 	    !env_type_is_resolved(env, index_type_id)) | 
 | 		return env_stack_push(env, index_type, index_type_id); | 
 |  | 
 | 	index_type = btf_type_id_size(btf, &index_type_id, NULL); | 
 | 	if (!index_type || !btf_type_is_int(index_type) || | 
 | 	    !btf_type_int_is_regular(index_type)) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid index"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Check array->type */ | 
 | 	elem_type_id = array->type; | 
 | 	elem_type = btf_type_by_id(btf, elem_type_id); | 
 | 	if (btf_type_is_void_or_null(elem_type)) { | 
 | 		btf_verifier_log_type(env, v->t, | 
 | 				      "Invalid elem"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!env_type_is_resolve_sink(env, elem_type) && | 
 | 	    !env_type_is_resolved(env, elem_type_id)) | 
 | 		return env_stack_push(env, elem_type, elem_type_id); | 
 |  | 
 | 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); | 
 | 	if (!elem_type) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid elem"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { | 
 | 		btf_verifier_log_type(env, v->t, "Invalid array of int"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (array->nelems && elem_size > U32_MAX / array->nelems) { | 
 | 		btf_verifier_log_type(env, v->t, | 
 | 				      "Array size overflows U32_MAX"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btf_array_log(struct btf_verifier_env *env, | 
 | 			  const struct btf_type *t) | 
 | { | 
 | 	const struct btf_array *array = btf_type_array(t); | 
 |  | 
 | 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", | 
 | 			 array->type, array->index_type, array->nelems); | 
 | } | 
 |  | 
 | static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, | 
 | 			       u32 type_id, void *data, u8 bits_offset, | 
 | 			       struct seq_file *m) | 
 | { | 
 | 	const struct btf_array *array = btf_type_array(t); | 
 | 	const struct btf_kind_operations *elem_ops; | 
 | 	const struct btf_type *elem_type; | 
 | 	u32 i, elem_size, elem_type_id; | 
 |  | 
 | 	elem_type_id = array->type; | 
 | 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); | 
 | 	elem_ops = btf_type_ops(elem_type); | 
 | 	seq_puts(m, "["); | 
 | 	for (i = 0; i < array->nelems; i++) { | 
 | 		if (i) | 
 | 			seq_puts(m, ","); | 
 |  | 
 | 		elem_ops->seq_show(btf, elem_type, elem_type_id, data, | 
 | 				   bits_offset, m); | 
 | 		data += elem_size; | 
 | 	} | 
 | 	seq_puts(m, "]"); | 
 | } | 
 |  | 
 | static struct btf_kind_operations array_ops = { | 
 | 	.check_meta = btf_array_check_meta, | 
 | 	.resolve = btf_array_resolve, | 
 | 	.check_member = btf_array_check_member, | 
 | 	.log_details = btf_array_log, | 
 | 	.seq_show = btf_array_seq_show, | 
 | }; | 
 |  | 
 | static int btf_struct_check_member(struct btf_verifier_env *env, | 
 | 				   const struct btf_type *struct_type, | 
 | 				   const struct btf_member *member, | 
 | 				   const struct btf_type *member_type) | 
 | { | 
 | 	u32 struct_bits_off = member->offset; | 
 | 	u32 struct_size, bytes_offset; | 
 |  | 
 | 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member is not byte aligned"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	struct_size = struct_type->size; | 
 | 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
 | 	if (struct_size - bytes_offset < member_type->size) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member exceeds struct_size"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s32 btf_struct_check_meta(struct btf_verifier_env *env, | 
 | 				 const struct btf_type *t, | 
 | 				 u32 meta_left) | 
 | { | 
 | 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; | 
 | 	const struct btf_member *member; | 
 | 	struct btf *btf = env->btf; | 
 | 	u32 struct_size = t->size; | 
 | 	u32 meta_needed; | 
 | 	u16 i; | 
 |  | 
 | 	meta_needed = btf_type_vlen(t) * sizeof(*member); | 
 | 	if (meta_left < meta_needed) { | 
 | 		btf_verifier_log_basic(env, t, | 
 | 				       "meta_left:%u meta_needed:%u", | 
 | 				       meta_left, meta_needed); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	btf_verifier_log_type(env, t, NULL); | 
 |  | 
 | 	for_each_member(i, t, member) { | 
 | 		if (!btf_name_offset_valid(btf, member->name_off)) { | 
 | 			btf_verifier_log_member(env, t, member, | 
 | 						"Invalid member name_offset:%u", | 
 | 						member->name_off); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* A member cannot be in type void */ | 
 | 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { | 
 | 			btf_verifier_log_member(env, t, member, | 
 | 						"Invalid type_id"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (is_union && member->offset) { | 
 | 			btf_verifier_log_member(env, t, member, | 
 | 						"Invalid member bits_offset"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { | 
 | 			btf_verifier_log_member(env, t, member, | 
 | 						"Memmber bits_offset exceeds its struct size"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		btf_verifier_log_member(env, t, member, NULL); | 
 | 	} | 
 |  | 
 | 	return meta_needed; | 
 | } | 
 |  | 
 | static int btf_struct_resolve(struct btf_verifier_env *env, | 
 | 			      const struct resolve_vertex *v) | 
 | { | 
 | 	const struct btf_member *member; | 
 | 	int err; | 
 | 	u16 i; | 
 |  | 
 | 	/* Before continue resolving the next_member, | 
 | 	 * ensure the last member is indeed resolved to a | 
 | 	 * type with size info. | 
 | 	 */ | 
 | 	if (v->next_member) { | 
 | 		const struct btf_type *last_member_type; | 
 | 		const struct btf_member *last_member; | 
 | 		u16 last_member_type_id; | 
 |  | 
 | 		last_member = btf_type_member(v->t) + v->next_member - 1; | 
 | 		last_member_type_id = last_member->type; | 
 | 		if (WARN_ON_ONCE(!env_type_is_resolved(env, | 
 | 						       last_member_type_id))) | 
 | 			return -EINVAL; | 
 |  | 
 | 		last_member_type = btf_type_by_id(env->btf, | 
 | 						  last_member_type_id); | 
 | 		err = btf_type_ops(last_member_type)->check_member(env, v->t, | 
 | 							last_member, | 
 | 							last_member_type); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	for_each_member_from(i, v->next_member, v->t, member) { | 
 | 		u32 member_type_id = member->type; | 
 | 		const struct btf_type *member_type = btf_type_by_id(env->btf, | 
 | 								member_type_id); | 
 |  | 
 | 		if (btf_type_is_void_or_null(member_type)) { | 
 | 			btf_verifier_log_member(env, v->t, member, | 
 | 						"Invalid member"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!env_type_is_resolve_sink(env, member_type) && | 
 | 		    !env_type_is_resolved(env, member_type_id)) { | 
 | 			env_stack_set_next_member(env, i + 1); | 
 | 			return env_stack_push(env, member_type, member_type_id); | 
 | 		} | 
 |  | 
 | 		err = btf_type_ops(member_type)->check_member(env, v->t, | 
 | 							      member, | 
 | 							      member_type); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	env_stack_pop_resolved(env, 0, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btf_struct_log(struct btf_verifier_env *env, | 
 | 			   const struct btf_type *t) | 
 | { | 
 | 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); | 
 | } | 
 |  | 
 | static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, | 
 | 				u32 type_id, void *data, u8 bits_offset, | 
 | 				struct seq_file *m) | 
 | { | 
 | 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; | 
 | 	const struct btf_member *member; | 
 | 	u32 i; | 
 |  | 
 | 	seq_puts(m, "{"); | 
 | 	for_each_member(i, t, member) { | 
 | 		const struct btf_type *member_type = btf_type_by_id(btf, | 
 | 								member->type); | 
 | 		u32 member_offset = member->offset; | 
 | 		u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); | 
 | 		u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); | 
 | 		const struct btf_kind_operations *ops; | 
 |  | 
 | 		if (i) | 
 | 			seq_puts(m, seq); | 
 |  | 
 | 		ops = btf_type_ops(member_type); | 
 | 		ops->seq_show(btf, member_type, member->type, | 
 | 			      data + bytes_offset, bits8_offset, m); | 
 | 	} | 
 | 	seq_puts(m, "}"); | 
 | } | 
 |  | 
 | static struct btf_kind_operations struct_ops = { | 
 | 	.check_meta = btf_struct_check_meta, | 
 | 	.resolve = btf_struct_resolve, | 
 | 	.check_member = btf_struct_check_member, | 
 | 	.log_details = btf_struct_log, | 
 | 	.seq_show = btf_struct_seq_show, | 
 | }; | 
 |  | 
 | static int btf_enum_check_member(struct btf_verifier_env *env, | 
 | 				 const struct btf_type *struct_type, | 
 | 				 const struct btf_member *member, | 
 | 				 const struct btf_type *member_type) | 
 | { | 
 | 	u32 struct_bits_off = member->offset; | 
 | 	u32 struct_size, bytes_offset; | 
 |  | 
 | 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member is not byte aligned"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	struct_size = struct_type->size; | 
 | 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); | 
 | 	if (struct_size - bytes_offset < sizeof(int)) { | 
 | 		btf_verifier_log_member(env, struct_type, member, | 
 | 					"Member exceeds struct_size"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s32 btf_enum_check_meta(struct btf_verifier_env *env, | 
 | 			       const struct btf_type *t, | 
 | 			       u32 meta_left) | 
 | { | 
 | 	const struct btf_enum *enums = btf_type_enum(t); | 
 | 	struct btf *btf = env->btf; | 
 | 	u16 i, nr_enums; | 
 | 	u32 meta_needed; | 
 |  | 
 | 	nr_enums = btf_type_vlen(t); | 
 | 	meta_needed = nr_enums * sizeof(*enums); | 
 |  | 
 | 	if (meta_left < meta_needed) { | 
 | 		btf_verifier_log_basic(env, t, | 
 | 				       "meta_left:%u meta_needed:%u", | 
 | 				       meta_left, meta_needed); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (t->size != sizeof(int)) { | 
 | 		btf_verifier_log_type(env, t, "Expected size:%zu", | 
 | 				      sizeof(int)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	btf_verifier_log_type(env, t, NULL); | 
 |  | 
 | 	for (i = 0; i < nr_enums; i++) { | 
 | 		if (!btf_name_offset_valid(btf, enums[i].name_off)) { | 
 | 			btf_verifier_log(env, "\tInvalid name_offset:%u", | 
 | 					 enums[i].name_off); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		btf_verifier_log(env, "\t%s val=%d\n", | 
 | 				 btf_name_by_offset(btf, enums[i].name_off), | 
 | 				 enums[i].val); | 
 | 	} | 
 |  | 
 | 	return meta_needed; | 
 | } | 
 |  | 
 | static void btf_enum_log(struct btf_verifier_env *env, | 
 | 			 const struct btf_type *t) | 
 | { | 
 | 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); | 
 | } | 
 |  | 
 | static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, | 
 | 			      u32 type_id, void *data, u8 bits_offset, | 
 | 			      struct seq_file *m) | 
 | { | 
 | 	const struct btf_enum *enums = btf_type_enum(t); | 
 | 	u32 i, nr_enums = btf_type_vlen(t); | 
 | 	int v = *(int *)data; | 
 |  | 
 | 	for (i = 0; i < nr_enums; i++) { | 
 | 		if (v == enums[i].val) { | 
 | 			seq_printf(m, "%s", | 
 | 				   btf_name_by_offset(btf, enums[i].name_off)); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	seq_printf(m, "%d", v); | 
 | } | 
 |  | 
 | static struct btf_kind_operations enum_ops = { | 
 | 	.check_meta = btf_enum_check_meta, | 
 | 	.resolve = btf_df_resolve, | 
 | 	.check_member = btf_enum_check_member, | 
 | 	.log_details = btf_enum_log, | 
 | 	.seq_show = btf_enum_seq_show, | 
 | }; | 
 |  | 
 | static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { | 
 | 	[BTF_KIND_INT] = &int_ops, | 
 | 	[BTF_KIND_PTR] = &ptr_ops, | 
 | 	[BTF_KIND_ARRAY] = &array_ops, | 
 | 	[BTF_KIND_STRUCT] = &struct_ops, | 
 | 	[BTF_KIND_UNION] = &struct_ops, | 
 | 	[BTF_KIND_ENUM] = &enum_ops, | 
 | 	[BTF_KIND_FWD] = &fwd_ops, | 
 | 	[BTF_KIND_TYPEDEF] = &modifier_ops, | 
 | 	[BTF_KIND_VOLATILE] = &modifier_ops, | 
 | 	[BTF_KIND_CONST] = &modifier_ops, | 
 | 	[BTF_KIND_RESTRICT] = &modifier_ops, | 
 | }; | 
 |  | 
 | static s32 btf_check_meta(struct btf_verifier_env *env, | 
 | 			  const struct btf_type *t, | 
 | 			  u32 meta_left) | 
 | { | 
 | 	u32 saved_meta_left = meta_left; | 
 | 	s32 var_meta_size; | 
 |  | 
 | 	if (meta_left < sizeof(*t)) { | 
 | 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", | 
 | 				 env->log_type_id, meta_left, sizeof(*t)); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	meta_left -= sizeof(*t); | 
 |  | 
 | 	if (t->info & ~BTF_INFO_MASK) { | 
 | 		btf_verifier_log(env, "[%u] Invalid btf_info:%x", | 
 | 				 env->log_type_id, t->info); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || | 
 | 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { | 
 | 		btf_verifier_log(env, "[%u] Invalid kind:%u", | 
 | 				 env->log_type_id, BTF_INFO_KIND(t->info)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!btf_name_offset_valid(env->btf, t->name_off)) { | 
 | 		btf_verifier_log(env, "[%u] Invalid name_offset:%u", | 
 | 				 env->log_type_id, t->name_off); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); | 
 | 	if (var_meta_size < 0) | 
 | 		return var_meta_size; | 
 |  | 
 | 	meta_left -= var_meta_size; | 
 |  | 
 | 	return saved_meta_left - meta_left; | 
 | } | 
 |  | 
 | static int btf_check_all_metas(struct btf_verifier_env *env) | 
 | { | 
 | 	struct btf *btf = env->btf; | 
 | 	struct btf_header *hdr; | 
 | 	void *cur, *end; | 
 |  | 
 | 	hdr = &btf->hdr; | 
 | 	cur = btf->nohdr_data + hdr->type_off; | 
 | 	end = btf->nohdr_data + hdr->type_len; | 
 |  | 
 | 	env->log_type_id = 1; | 
 | 	while (cur < end) { | 
 | 		struct btf_type *t = cur; | 
 | 		s32 meta_size; | 
 |  | 
 | 		meta_size = btf_check_meta(env, t, end - cur); | 
 | 		if (meta_size < 0) | 
 | 			return meta_size; | 
 |  | 
 | 		btf_add_type(env, t); | 
 | 		cur += meta_size; | 
 | 		env->log_type_id++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_resolve(struct btf_verifier_env *env, | 
 | 		       const struct btf_type *t, u32 type_id) | 
 | { | 
 | 	const struct resolve_vertex *v; | 
 | 	int err = 0; | 
 |  | 
 | 	env->resolve_mode = RESOLVE_TBD; | 
 | 	env_stack_push(env, t, type_id); | 
 | 	while (!err && (v = env_stack_peak(env))) { | 
 | 		env->log_type_id = v->type_id; | 
 | 		err = btf_type_ops(v->t)->resolve(env, v); | 
 | 	} | 
 |  | 
 | 	env->log_type_id = type_id; | 
 | 	if (err == -E2BIG) | 
 | 		btf_verifier_log_type(env, t, | 
 | 				      "Exceeded max resolving depth:%u", | 
 | 				      MAX_RESOLVE_DEPTH); | 
 | 	else if (err == -EEXIST) | 
 | 		btf_verifier_log_type(env, t, "Loop detected"); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool btf_resolve_valid(struct btf_verifier_env *env, | 
 | 			      const struct btf_type *t, | 
 | 			      u32 type_id) | 
 | { | 
 | 	struct btf *btf = env->btf; | 
 |  | 
 | 	if (!env_type_is_resolved(env, type_id)) | 
 | 		return false; | 
 |  | 
 | 	if (btf_type_is_struct(t)) | 
 | 		return !btf->resolved_ids[type_id] && | 
 | 			!btf->resolved_sizes[type_id]; | 
 |  | 
 | 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { | 
 | 		t = btf_type_id_resolve(btf, &type_id); | 
 | 		return t && !btf_type_is_modifier(t); | 
 | 	} | 
 |  | 
 | 	if (btf_type_is_array(t)) { | 
 | 		const struct btf_array *array = btf_type_array(t); | 
 | 		const struct btf_type *elem_type; | 
 | 		u32 elem_type_id = array->type; | 
 | 		u32 elem_size; | 
 |  | 
 | 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); | 
 | 		return elem_type && !btf_type_is_modifier(elem_type) && | 
 | 			(array->nelems * elem_size == | 
 | 			 btf->resolved_sizes[type_id]); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int btf_check_all_types(struct btf_verifier_env *env) | 
 | { | 
 | 	struct btf *btf = env->btf; | 
 | 	u32 type_id; | 
 | 	int err; | 
 |  | 
 | 	err = env_resolve_init(env); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	env->phase++; | 
 | 	for (type_id = 1; type_id <= btf->nr_types; type_id++) { | 
 | 		const struct btf_type *t = btf_type_by_id(btf, type_id); | 
 |  | 
 | 		env->log_type_id = type_id; | 
 | 		if (btf_type_needs_resolve(t) && | 
 | 		    !env_type_is_resolved(env, type_id)) { | 
 | 			err = btf_resolve(env, t, type_id); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		if (btf_type_needs_resolve(t) && | 
 | 		    !btf_resolve_valid(env, t, type_id)) { | 
 | 			btf_verifier_log_type(env, t, "Invalid resolve state"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_parse_type_sec(struct btf_verifier_env *env) | 
 | { | 
 | 	const struct btf_header *hdr = &env->btf->hdr; | 
 | 	int err; | 
 |  | 
 | 	/* Type section must align to 4 bytes */ | 
 | 	if (hdr->type_off & (sizeof(u32) - 1)) { | 
 | 		btf_verifier_log(env, "Unaligned type_off"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!hdr->type_len) { | 
 | 		btf_verifier_log(env, "No type found"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = btf_check_all_metas(env); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return btf_check_all_types(env); | 
 | } | 
 |  | 
 | static int btf_parse_str_sec(struct btf_verifier_env *env) | 
 | { | 
 | 	const struct btf_header *hdr; | 
 | 	struct btf *btf = env->btf; | 
 | 	const char *start, *end; | 
 |  | 
 | 	hdr = &btf->hdr; | 
 | 	start = btf->nohdr_data + hdr->str_off; | 
 | 	end = start + hdr->str_len; | 
 |  | 
 | 	if (end != btf->data + btf->data_size) { | 
 | 		btf_verifier_log(env, "String section is not at the end"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || | 
 | 	    start[0] || end[-1]) { | 
 | 		btf_verifier_log(env, "Invalid string section"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	btf->strings = start; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const size_t btf_sec_info_offset[] = { | 
 | 	offsetof(struct btf_header, type_off), | 
 | 	offsetof(struct btf_header, str_off), | 
 | }; | 
 |  | 
 | static int btf_sec_info_cmp(const void *a, const void *b) | 
 | { | 
 | 	const struct btf_sec_info *x = a; | 
 | 	const struct btf_sec_info *y = b; | 
 |  | 
 | 	return (int)(x->off - y->off) ? : (int)(x->len - y->len); | 
 | } | 
 |  | 
 | static int btf_check_sec_info(struct btf_verifier_env *env, | 
 | 			      u32 btf_data_size) | 
 | { | 
 | 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; | 
 | 	u32 total, expected_total, i; | 
 | 	const struct btf_header *hdr; | 
 | 	const struct btf *btf; | 
 |  | 
 | 	btf = env->btf; | 
 | 	hdr = &btf->hdr; | 
 |  | 
 | 	/* Populate the secs from hdr */ | 
 | 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) | 
 | 		secs[i] = *(struct btf_sec_info *)((void *)hdr + | 
 | 						   btf_sec_info_offset[i]); | 
 |  | 
 | 	sort(secs, ARRAY_SIZE(btf_sec_info_offset), | 
 | 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); | 
 |  | 
 | 	/* Check for gaps and overlap among sections */ | 
 | 	total = 0; | 
 | 	expected_total = btf_data_size - hdr->hdr_len; | 
 | 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { | 
 | 		if (expected_total < secs[i].off) { | 
 | 			btf_verifier_log(env, "Invalid section offset"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (total < secs[i].off) { | 
 | 			/* gap */ | 
 | 			btf_verifier_log(env, "Unsupported section found"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (total > secs[i].off) { | 
 | 			btf_verifier_log(env, "Section overlap found"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (expected_total - total < secs[i].len) { | 
 | 			btf_verifier_log(env, | 
 | 					 "Total section length too long"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		total += secs[i].len; | 
 | 	} | 
 |  | 
 | 	/* There is data other than hdr and known sections */ | 
 | 	if (expected_total != total) { | 
 | 		btf_verifier_log(env, "Unsupported section found"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btf_parse_hdr(struct btf_verifier_env *env, void __user *btf_data, | 
 | 			 u32 btf_data_size) | 
 | { | 
 | 	const struct btf_header *hdr; | 
 | 	u32 hdr_len, hdr_copy; | 
 | 	/* | 
 | 	 * Minimal part of the "struct btf_header" that | 
 | 	 * contains the hdr_len. | 
 | 	 */ | 
 | 	struct btf_min_header { | 
 | 		u16	magic; | 
 | 		u8	version; | 
 | 		u8	flags; | 
 | 		u32	hdr_len; | 
 | 	} __user *min_hdr; | 
 | 	struct btf *btf; | 
 | 	int err; | 
 |  | 
 | 	btf = env->btf; | 
 | 	min_hdr = btf_data; | 
 |  | 
 | 	if (btf_data_size < sizeof(*min_hdr)) { | 
 | 		btf_verifier_log(env, "hdr_len not found"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (get_user(hdr_len, &min_hdr->hdr_len)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (btf_data_size < hdr_len) { | 
 | 		btf_verifier_log(env, "btf_header not found"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = bpf_check_uarg_tail_zero(btf_data, sizeof(btf->hdr), hdr_len); | 
 | 	if (err) { | 
 | 		if (err == -E2BIG) | 
 | 			btf_verifier_log(env, "Unsupported btf_header"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); | 
 | 	if (copy_from_user(&btf->hdr, btf_data, hdr_copy)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	hdr = &btf->hdr; | 
 |  | 
 | 	btf_verifier_log_hdr(env, btf_data_size); | 
 |  | 
 | 	if (hdr->magic != BTF_MAGIC) { | 
 | 		btf_verifier_log(env, "Invalid magic"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (hdr->version != BTF_VERSION) { | 
 | 		btf_verifier_log(env, "Unsupported version"); | 
 | 		return -ENOTSUPP; | 
 | 	} | 
 |  | 
 | 	if (hdr->flags) { | 
 | 		btf_verifier_log(env, "Unsupported flags"); | 
 | 		return -ENOTSUPP; | 
 | 	} | 
 |  | 
 | 	if (btf_data_size == hdr->hdr_len) { | 
 | 		btf_verifier_log(env, "No data"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = btf_check_sec_info(env, btf_data_size); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, | 
 | 			     u32 log_level, char __user *log_ubuf, u32 log_size) | 
 | { | 
 | 	struct btf_verifier_env *env = NULL; | 
 | 	struct bpf_verifier_log *log; | 
 | 	struct btf *btf = NULL; | 
 | 	u8 *data; | 
 | 	int err; | 
 |  | 
 | 	if (btf_data_size > BTF_MAX_SIZE) | 
 | 		return ERR_PTR(-E2BIG); | 
 |  | 
 | 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!env) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	log = &env->log; | 
 | 	if (log_level || log_ubuf || log_size) { | 
 | 		/* user requested verbose verifier output | 
 | 		 * and supplied buffer to store the verification trace | 
 | 		 */ | 
 | 		log->level = log_level; | 
 | 		log->ubuf = log_ubuf; | 
 | 		log->len_total = log_size; | 
 |  | 
 | 		/* log attributes have to be sane */ | 
 | 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || | 
 | 		    !log->level || !log->ubuf) { | 
 | 			err = -EINVAL; | 
 | 			goto errout; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!btf) { | 
 | 		err = -ENOMEM; | 
 | 		goto errout; | 
 | 	} | 
 | 	env->btf = btf; | 
 |  | 
 | 	err = btf_parse_hdr(env, btf_data, btf_data_size); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!data) { | 
 | 		err = -ENOMEM; | 
 | 		goto errout; | 
 | 	} | 
 |  | 
 | 	btf->data = data; | 
 | 	btf->data_size = btf_data_size; | 
 | 	btf->nohdr_data = btf->data + btf->hdr.hdr_len; | 
 |  | 
 | 	if (copy_from_user(data, btf_data, btf_data_size)) { | 
 | 		err = -EFAULT; | 
 | 		goto errout; | 
 | 	} | 
 |  | 
 | 	err = btf_parse_str_sec(env); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	err = btf_parse_type_sec(env); | 
 | 	if (err) | 
 | 		goto errout; | 
 |  | 
 | 	if (log->level && bpf_verifier_log_full(log)) { | 
 | 		err = -ENOSPC; | 
 | 		goto errout; | 
 | 	} | 
 |  | 
 | 	btf_verifier_env_free(env); | 
 | 	refcount_set(&btf->refcnt, 1); | 
 | 	return btf; | 
 |  | 
 | errout: | 
 | 	btf_verifier_env_free(env); | 
 | 	if (btf) | 
 | 		btf_free(btf); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, | 
 | 		       struct seq_file *m) | 
 | { | 
 | 	const struct btf_type *t = btf_type_by_id(btf, type_id); | 
 |  | 
 | 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); | 
 | } | 
 |  | 
 | static int btf_release(struct inode *inode, struct file *filp) | 
 | { | 
 | 	btf_put(filp->private_data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct file_operations btf_fops = { | 
 | 	.release	= btf_release, | 
 | }; | 
 |  | 
 | static int __btf_new_fd(struct btf *btf) | 
 | { | 
 | 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); | 
 | } | 
 |  | 
 | int btf_new_fd(const union bpf_attr *attr) | 
 | { | 
 | 	struct btf *btf; | 
 | 	int ret; | 
 |  | 
 | 	btf = btf_parse(u64_to_user_ptr(attr->btf), | 
 | 			attr->btf_size, attr->btf_log_level, | 
 | 			u64_to_user_ptr(attr->btf_log_buf), | 
 | 			attr->btf_log_size); | 
 | 	if (IS_ERR(btf)) | 
 | 		return PTR_ERR(btf); | 
 |  | 
 | 	ret = btf_alloc_id(btf); | 
 | 	if (ret) { | 
 | 		btf_free(btf); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The BTF ID is published to the userspace. | 
 | 	 * All BTF free must go through call_rcu() from | 
 | 	 * now on (i.e. free by calling btf_put()). | 
 | 	 */ | 
 |  | 
 | 	ret = __btf_new_fd(btf); | 
 | 	if (ret < 0) | 
 | 		btf_put(btf); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct btf *btf_get_by_fd(int fd) | 
 | { | 
 | 	struct btf *btf; | 
 | 	struct fd f; | 
 |  | 
 | 	f = fdget(fd); | 
 |  | 
 | 	if (!f.file) | 
 | 		return ERR_PTR(-EBADF); | 
 |  | 
 | 	if (f.file->f_op != &btf_fops) { | 
 | 		fdput(f); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	btf = f.file->private_data; | 
 | 	refcount_inc(&btf->refcnt); | 
 | 	fdput(f); | 
 |  | 
 | 	return btf; | 
 | } | 
 |  | 
 | int btf_get_info_by_fd(const struct btf *btf, | 
 | 		       const union bpf_attr *attr, | 
 | 		       union bpf_attr __user *uattr) | 
 | { | 
 | 	struct bpf_btf_info __user *uinfo; | 
 | 	struct bpf_btf_info info = {}; | 
 | 	u32 info_copy, btf_copy; | 
 | 	void __user *ubtf; | 
 | 	u32 uinfo_len; | 
 |  | 
 | 	uinfo = u64_to_user_ptr(attr->info.info); | 
 | 	uinfo_len = attr->info.info_len; | 
 |  | 
 | 	info_copy = min_t(u32, uinfo_len, sizeof(info)); | 
 | 	if (copy_from_user(&info, uinfo, info_copy)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	info.id = btf->id; | 
 | 	ubtf = u64_to_user_ptr(info.btf); | 
 | 	btf_copy = min_t(u32, btf->data_size, info.btf_size); | 
 | 	if (copy_to_user(ubtf, btf->data, btf_copy)) | 
 | 		return -EFAULT; | 
 | 	info.btf_size = btf->data_size; | 
 |  | 
 | 	if (copy_to_user(uinfo, &info, info_copy) || | 
 | 	    put_user(info_copy, &uattr->info.info_len)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btf_get_fd_by_id(u32 id) | 
 | { | 
 | 	struct btf *btf; | 
 | 	int fd; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	btf = idr_find(&btf_idr, id); | 
 | 	if (!btf || !refcount_inc_not_zero(&btf->refcnt)) | 
 | 		btf = ERR_PTR(-ENOENT); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (IS_ERR(btf)) | 
 | 		return PTR_ERR(btf); | 
 |  | 
 | 	fd = __btf_new_fd(btf); | 
 | 	if (fd < 0) | 
 | 		btf_put(btf); | 
 |  | 
 | 	return fd; | 
 | } | 
 |  | 
 | u32 btf_id(const struct btf *btf) | 
 | { | 
 | 	return btf->id; | 
 | } |