blob: aae2efeef503213ccc6695735b6bebf7d4511c16 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Tegra host1x driver
*
* Copyright (c) 2010-2013, NVIDIA Corporation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <soc/tegra/common.h>
#define CREATE_TRACE_POINTS
#include <trace/events/host1x.h>
#undef CREATE_TRACE_POINTS
#if IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)
#include <asm/dma-iommu.h>
#endif
#include "bus.h"
#include "channel.h"
#include "context.h"
#include "debug.h"
#include "dev.h"
#include "intr.h"
#include "hw/host1x01.h"
#include "hw/host1x02.h"
#include "hw/host1x04.h"
#include "hw/host1x05.h"
#include "hw/host1x06.h"
#include "hw/host1x07.h"
#include "hw/host1x08.h"
void host1x_common_writel(struct host1x *host1x, u32 v, u32 r)
{
writel(v, host1x->common_regs + r);
}
void host1x_hypervisor_writel(struct host1x *host1x, u32 v, u32 r)
{
writel(v, host1x->hv_regs + r);
}
u32 host1x_hypervisor_readl(struct host1x *host1x, u32 r)
{
return readl(host1x->hv_regs + r);
}
void host1x_sync_writel(struct host1x *host1x, u32 v, u32 r)
{
void __iomem *sync_regs = host1x->regs + host1x->info->sync_offset;
writel(v, sync_regs + r);
}
u32 host1x_sync_readl(struct host1x *host1x, u32 r)
{
void __iomem *sync_regs = host1x->regs + host1x->info->sync_offset;
return readl(sync_regs + r);
}
void host1x_ch_writel(struct host1x_channel *ch, u32 v, u32 r)
{
writel(v, ch->regs + r);
}
u32 host1x_ch_readl(struct host1x_channel *ch, u32 r)
{
return readl(ch->regs + r);
}
static const struct host1x_info host1x01_info = {
.nb_channels = 8,
.nb_pts = 32,
.nb_mlocks = 16,
.nb_bases = 8,
.init = host1x01_init,
.sync_offset = 0x3000,
.dma_mask = DMA_BIT_MASK(32),
.has_wide_gather = false,
.has_hypervisor = false,
.num_sid_entries = 0,
.sid_table = NULL,
.reserve_vblank_syncpts = true,
};
static const struct host1x_info host1x02_info = {
.nb_channels = 9,
.nb_pts = 32,
.nb_mlocks = 16,
.nb_bases = 12,
.init = host1x02_init,
.sync_offset = 0x3000,
.dma_mask = DMA_BIT_MASK(32),
.has_wide_gather = false,
.has_hypervisor = false,
.num_sid_entries = 0,
.sid_table = NULL,
.reserve_vblank_syncpts = true,
};
static const struct host1x_info host1x04_info = {
.nb_channels = 12,
.nb_pts = 192,
.nb_mlocks = 16,
.nb_bases = 64,
.init = host1x04_init,
.sync_offset = 0x2100,
.dma_mask = DMA_BIT_MASK(34),
.has_wide_gather = false,
.has_hypervisor = false,
.num_sid_entries = 0,
.sid_table = NULL,
.reserve_vblank_syncpts = false,
};
static const struct host1x_info host1x05_info = {
.nb_channels = 14,
.nb_pts = 192,
.nb_mlocks = 16,
.nb_bases = 64,
.init = host1x05_init,
.sync_offset = 0x2100,
.dma_mask = DMA_BIT_MASK(34),
.has_wide_gather = false,
.has_hypervisor = false,
.num_sid_entries = 0,
.sid_table = NULL,
.reserve_vblank_syncpts = false,
};
static const struct host1x_sid_entry tegra186_sid_table[] = {
{
/* VIC */
.base = 0x1af0,
.offset = 0x30,
.limit = 0x34
},
{
/* NVDEC */
.base = 0x1b00,
.offset = 0x30,
.limit = 0x34
},
};
static const struct host1x_info host1x06_info = {
.nb_channels = 63,
.nb_pts = 576,
.nb_mlocks = 24,
.nb_bases = 16,
.init = host1x06_init,
.sync_offset = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.has_wide_gather = true,
.has_hypervisor = true,
.num_sid_entries = ARRAY_SIZE(tegra186_sid_table),
.sid_table = tegra186_sid_table,
.reserve_vblank_syncpts = false,
};
static const struct host1x_sid_entry tegra194_sid_table[] = {
{
/* VIC */
.base = 0x1af0,
.offset = 0x30,
.limit = 0x34
},
{
/* NVDEC */
.base = 0x1b00,
.offset = 0x30,
.limit = 0x34
},
{
/* NVDEC1 */
.base = 0x1bc0,
.offset = 0x30,
.limit = 0x34
},
};
static const struct host1x_info host1x07_info = {
.nb_channels = 63,
.nb_pts = 704,
.nb_mlocks = 32,
.nb_bases = 0,
.init = host1x07_init,
.sync_offset = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.has_wide_gather = true,
.has_hypervisor = true,
.num_sid_entries = ARRAY_SIZE(tegra194_sid_table),
.sid_table = tegra194_sid_table,
.reserve_vblank_syncpts = false,
};
/*
* Tegra234 has two stream ID protection tables, one for setting stream IDs
* through the channel path via SETSTREAMID, and one for setting them via
* MMIO. We program each engine's data stream ID in the channel path table
* and firmware stream ID in the MMIO path table.
*/
static const struct host1x_sid_entry tegra234_sid_table[] = {
{
/* VIC channel */
.base = 0x17b8,
.offset = 0x30,
.limit = 0x30
},
{
/* VIC MMIO */
.base = 0x1688,
.offset = 0x34,
.limit = 0x34
},
{
/* NVDEC channel */
.base = 0x17c8,
.offset = 0x30,
.limit = 0x30,
},
{
/* NVDEC MMIO */
.base = 0x1698,
.offset = 0x34,
.limit = 0x34,
},
};
static const struct host1x_info host1x08_info = {
.nb_channels = 63,
.nb_pts = 1024,
.nb_mlocks = 24,
.nb_bases = 0,
.init = host1x08_init,
.sync_offset = 0x0,
.dma_mask = DMA_BIT_MASK(40),
.has_wide_gather = true,
.has_hypervisor = true,
.has_common = true,
.num_sid_entries = ARRAY_SIZE(tegra234_sid_table),
.sid_table = tegra234_sid_table,
.streamid_vm_table = { 0x1004, 128 },
.classid_vm_table = { 0x1404, 25 },
.mmio_vm_table = { 0x1504, 25 },
.reserve_vblank_syncpts = false,
};
static const struct of_device_id host1x_of_match[] = {
{ .compatible = "nvidia,tegra234-host1x", .data = &host1x08_info, },
{ .compatible = "nvidia,tegra194-host1x", .data = &host1x07_info, },
{ .compatible = "nvidia,tegra186-host1x", .data = &host1x06_info, },
{ .compatible = "nvidia,tegra210-host1x", .data = &host1x05_info, },
{ .compatible = "nvidia,tegra124-host1x", .data = &host1x04_info, },
{ .compatible = "nvidia,tegra114-host1x", .data = &host1x02_info, },
{ .compatible = "nvidia,tegra30-host1x", .data = &host1x01_info, },
{ .compatible = "nvidia,tegra20-host1x", .data = &host1x01_info, },
{ },
};
MODULE_DEVICE_TABLE(of, host1x_of_match);
static void host1x_setup_virtualization_tables(struct host1x *host)
{
const struct host1x_info *info = host->info;
unsigned int i;
if (!info->has_hypervisor)
return;
for (i = 0; i < info->num_sid_entries; i++) {
const struct host1x_sid_entry *entry = &info->sid_table[i];
host1x_hypervisor_writel(host, entry->offset, entry->base);
host1x_hypervisor_writel(host, entry->limit, entry->base + 4);
}
for (i = 0; i < info->streamid_vm_table.count; i++) {
/* Allow access to all stream IDs to all VMs. */
host1x_hypervisor_writel(host, 0xff, info->streamid_vm_table.base + 4 * i);
}
for (i = 0; i < info->classid_vm_table.count; i++) {
/* Allow access to all classes to all VMs. */
host1x_hypervisor_writel(host, 0xff, info->classid_vm_table.base + 4 * i);
}
for (i = 0; i < info->mmio_vm_table.count; i++) {
/* Use VM1 (that's us) as originator VMID for engine MMIO accesses. */
host1x_hypervisor_writel(host, 0x1, info->mmio_vm_table.base + 4 * i);
}
}
static bool host1x_wants_iommu(struct host1x *host1x)
{
/* Our IOMMU usage policy doesn't currently play well with GART */
if (of_machine_is_compatible("nvidia,tegra20"))
return false;
/*
* If we support addressing a maximum of 32 bits of physical memory
* and if the host1x firewall is enabled, there's no need to enable
* IOMMU support. This can happen for example on Tegra20, Tegra30
* and Tegra114.
*
* Tegra124 and later can address up to 34 bits of physical memory and
* many platforms come equipped with more than 2 GiB of system memory,
* which requires crossing the 4 GiB boundary. But there's a catch: on
* SoCs before Tegra186 (i.e. Tegra124 and Tegra210), the host1x can
* only address up to 32 bits of memory in GATHER opcodes, which means
* that command buffers need to either be in the first 2 GiB of system
* memory (which could quickly lead to memory exhaustion), or command
* buffers need to be treated differently from other buffers (which is
* not possible with the current ABI).
*
* A third option is to use the IOMMU in these cases to make sure all
* buffers will be mapped into a 32-bit IOVA space that host1x can
* address. This allows all of the system memory to be used and works
* within the limitations of the host1x on these SoCs.
*
* In summary, default to enable IOMMU on Tegra124 and later. For any
* of the earlier SoCs, only use the IOMMU for additional safety when
* the host1x firewall is disabled.
*/
if (host1x->info->dma_mask <= DMA_BIT_MASK(32)) {
if (IS_ENABLED(CONFIG_TEGRA_HOST1X_FIREWALL))
return false;
}
return true;
}
static struct iommu_domain *host1x_iommu_attach(struct host1x *host)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(host->dev);
int err;
#if IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)
if (host->dev->archdata.mapping) {
struct dma_iommu_mapping *mapping =
to_dma_iommu_mapping(host->dev);
arm_iommu_detach_device(host->dev);
arm_iommu_release_mapping(mapping);
domain = iommu_get_domain_for_dev(host->dev);
}
#endif
/*
* We may not always want to enable IOMMU support (for example if the
* host1x firewall is already enabled and we don't support addressing
* more than 32 bits of physical memory), so check for that first.
*
* Similarly, if host1x is already attached to an IOMMU (via the DMA
* API), don't try to attach again.
*/
if (!host1x_wants_iommu(host) || domain)
return domain;
host->group = iommu_group_get(host->dev);
if (host->group) {
struct iommu_domain_geometry *geometry;
dma_addr_t start, end;
unsigned long order;
err = iova_cache_get();
if (err < 0)
goto put_group;
host->domain = iommu_domain_alloc(&platform_bus_type);
if (!host->domain) {
err = -ENOMEM;
goto put_cache;
}
err = iommu_attach_group(host->domain, host->group);
if (err) {
if (err == -ENODEV)
err = 0;
goto free_domain;
}
geometry = &host->domain->geometry;
start = geometry->aperture_start & host->info->dma_mask;
end = geometry->aperture_end & host->info->dma_mask;
order = __ffs(host->domain->pgsize_bitmap);
init_iova_domain(&host->iova, 1UL << order, start >> order);
host->iova_end = end;
domain = host->domain;
}
return domain;
free_domain:
iommu_domain_free(host->domain);
host->domain = NULL;
put_cache:
iova_cache_put();
put_group:
iommu_group_put(host->group);
host->group = NULL;
return ERR_PTR(err);
}
static int host1x_iommu_init(struct host1x *host)
{
u64 mask = host->info->dma_mask;
struct iommu_domain *domain;
int err;
domain = host1x_iommu_attach(host);
if (IS_ERR(domain)) {
err = PTR_ERR(domain);
dev_err(host->dev, "failed to attach to IOMMU: %d\n", err);
return err;
}
/*
* If we're not behind an IOMMU make sure we don't get push buffers
* that are allocated outside of the range addressable by the GATHER
* opcode.
*
* Newer generations of Tegra (Tegra186 and later) support a wide
* variant of the GATHER opcode that allows addressing more bits.
*/
if (!domain && !host->info->has_wide_gather)
mask = DMA_BIT_MASK(32);
err = dma_coerce_mask_and_coherent(host->dev, mask);
if (err < 0) {
dev_err(host->dev, "failed to set DMA mask: %d\n", err);
return err;
}
return 0;
}
static void host1x_iommu_exit(struct host1x *host)
{
if (host->domain) {
put_iova_domain(&host->iova);
iommu_detach_group(host->domain, host->group);
iommu_domain_free(host->domain);
host->domain = NULL;
iova_cache_put();
iommu_group_put(host->group);
host->group = NULL;
}
}
static int host1x_get_resets(struct host1x *host)
{
int err;
host->resets[0].id = "mc";
host->resets[1].id = "host1x";
host->nresets = ARRAY_SIZE(host->resets);
err = devm_reset_control_bulk_get_optional_exclusive_released(
host->dev, host->nresets, host->resets);
if (err) {
dev_err(host->dev, "failed to get reset: %d\n", err);
return err;
}
return 0;
}
static int host1x_probe(struct platform_device *pdev)
{
struct host1x *host;
int err;
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->info = of_device_get_match_data(&pdev->dev);
if (host->info->has_hypervisor) {
host->regs = devm_platform_ioremap_resource_byname(pdev, "vm");
if (IS_ERR(host->regs))
return PTR_ERR(host->regs);
host->hv_regs = devm_platform_ioremap_resource_byname(pdev, "hypervisor");
if (IS_ERR(host->hv_regs))
return PTR_ERR(host->hv_regs);
if (host->info->has_common) {
host->common_regs = devm_platform_ioremap_resource_byname(pdev, "common");
if (IS_ERR(host->common_regs))
return PTR_ERR(host->common_regs);
}
} else {
host->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->regs))
return PTR_ERR(host->regs);
}
host->syncpt_irq = platform_get_irq(pdev, 0);
if (host->syncpt_irq < 0)
return host->syncpt_irq;
mutex_init(&host->devices_lock);
INIT_LIST_HEAD(&host->devices);
INIT_LIST_HEAD(&host->list);
host->dev = &pdev->dev;
/* set common host1x device data */
platform_set_drvdata(pdev, host);
host->dev->dma_parms = &host->dma_parms;
dma_set_max_seg_size(host->dev, UINT_MAX);
if (host->info->init) {
err = host->info->init(host);
if (err)
return err;
}
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
err = PTR_ERR(host->clk);
if (err != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to get clock: %d\n", err);
return err;
}
err = host1x_get_resets(host);
if (err)
return err;
host1x_bo_cache_init(&host->cache);
err = host1x_iommu_init(host);
if (err < 0) {
dev_err(&pdev->dev, "failed to setup IOMMU: %d\n", err);
goto destroy_cache;
}
err = host1x_channel_list_init(&host->channel_list,
host->info->nb_channels);
if (err) {
dev_err(&pdev->dev, "failed to initialize channel list\n");
goto iommu_exit;
}
err = host1x_memory_context_list_init(host);
if (err) {
dev_err(&pdev->dev, "failed to initialize context list\n");
goto free_channels;
}
err = host1x_syncpt_init(host);
if (err) {
dev_err(&pdev->dev, "failed to initialize syncpts\n");
goto free_contexts;
}
err = host1x_intr_init(host);
if (err) {
dev_err(&pdev->dev, "failed to initialize interrupts\n");
goto deinit_syncpt;
}
pm_runtime_enable(&pdev->dev);
err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
if (err)
goto pm_disable;
/* the driver's code isn't ready yet for the dynamic RPM */
err = pm_runtime_resume_and_get(&pdev->dev);
if (err)
goto pm_disable;
host1x_debug_init(host);
err = host1x_register(host);
if (err < 0)
goto deinit_debugfs;
err = devm_of_platform_populate(&pdev->dev);
if (err < 0)
goto unregister;
return 0;
unregister:
host1x_unregister(host);
deinit_debugfs:
host1x_debug_deinit(host);
pm_runtime_put_sync_suspend(&pdev->dev);
pm_disable:
pm_runtime_disable(&pdev->dev);
host1x_intr_deinit(host);
deinit_syncpt:
host1x_syncpt_deinit(host);
free_contexts:
host1x_memory_context_list_free(&host->context_list);
free_channels:
host1x_channel_list_free(&host->channel_list);
iommu_exit:
host1x_iommu_exit(host);
destroy_cache:
host1x_bo_cache_destroy(&host->cache);
return err;
}
static int host1x_remove(struct platform_device *pdev)
{
struct host1x *host = platform_get_drvdata(pdev);
host1x_unregister(host);
host1x_debug_deinit(host);
pm_runtime_force_suspend(&pdev->dev);
host1x_intr_deinit(host);
host1x_syncpt_deinit(host);
host1x_memory_context_list_free(&host->context_list);
host1x_channel_list_free(&host->channel_list);
host1x_iommu_exit(host);
host1x_bo_cache_destroy(&host->cache);
return 0;
}
static int __maybe_unused host1x_runtime_suspend(struct device *dev)
{
struct host1x *host = dev_get_drvdata(dev);
int err;
host1x_intr_stop(host);
host1x_syncpt_save(host);
err = reset_control_bulk_assert(host->nresets, host->resets);
if (err) {
dev_err(dev, "failed to assert reset: %d\n", err);
goto resume_host1x;
}
usleep_range(1000, 2000);
clk_disable_unprepare(host->clk);
reset_control_bulk_release(host->nresets, host->resets);
return 0;
resume_host1x:
host1x_setup_virtualization_tables(host);
host1x_syncpt_restore(host);
host1x_intr_start(host);
return err;
}
static int __maybe_unused host1x_runtime_resume(struct device *dev)
{
struct host1x *host = dev_get_drvdata(dev);
int err;
err = reset_control_bulk_acquire(host->nresets, host->resets);
if (err) {
dev_err(dev, "failed to acquire reset: %d\n", err);
return err;
}
err = clk_prepare_enable(host->clk);
if (err) {
dev_err(dev, "failed to enable clock: %d\n", err);
goto release_reset;
}
err = reset_control_bulk_deassert(host->nresets, host->resets);
if (err < 0) {
dev_err(dev, "failed to deassert reset: %d\n", err);
goto disable_clk;
}
host1x_setup_virtualization_tables(host);
host1x_syncpt_restore(host);
host1x_intr_start(host);
return 0;
disable_clk:
clk_disable_unprepare(host->clk);
release_reset:
reset_control_bulk_release(host->nresets, host->resets);
return err;
}
static const struct dev_pm_ops host1x_pm_ops = {
SET_RUNTIME_PM_OPS(host1x_runtime_suspend, host1x_runtime_resume,
NULL)
/* TODO: add system suspend-resume once driver will be ready for that */
};
static struct platform_driver tegra_host1x_driver = {
.driver = {
.name = "tegra-host1x",
.of_match_table = host1x_of_match,
.pm = &host1x_pm_ops,
},
.probe = host1x_probe,
.remove = host1x_remove,
};
static struct platform_driver * const drivers[] = {
&tegra_host1x_driver,
&tegra_mipi_driver,
};
static int __init tegra_host1x_init(void)
{
int err;
err = bus_register(&host1x_bus_type);
if (err < 0)
return err;
err = platform_register_drivers(drivers, ARRAY_SIZE(drivers));
if (err < 0)
bus_unregister(&host1x_bus_type);
return err;
}
module_init(tegra_host1x_init);
static void __exit tegra_host1x_exit(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
bus_unregister(&host1x_bus_type);
}
module_exit(tegra_host1x_exit);
/**
* host1x_get_dma_mask() - query the supported DMA mask for host1x
* @host1x: host1x instance
*
* Note that this returns the supported DMA mask for host1x, which can be
* different from the applicable DMA mask under certain circumstances.
*/
u64 host1x_get_dma_mask(struct host1x *host1x)
{
return host1x->info->dma_mask;
}
EXPORT_SYMBOL(host1x_get_dma_mask);
MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
MODULE_AUTHOR("Terje Bergstrom <tbergstrom@nvidia.com>");
MODULE_DESCRIPTION("Host1x driver for Tegra products");
MODULE_LICENSE("GPL");