| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015, 2016 ARM Ltd. |
| */ |
| |
| #include <linux/irqchip/arm-gic.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <kvm/arm_vgic.h> |
| #include <asm/kvm_mmu.h> |
| |
| #include "vgic.h" |
| |
| static inline void vgic_v2_write_lr(int lr, u32 val) |
| { |
| void __iomem *base = kvm_vgic_global_state.vctrl_base; |
| |
| writel_relaxed(val, base + GICH_LR0 + (lr * 4)); |
| } |
| |
| void vgic_v2_init_lrs(void) |
| { |
| int i; |
| |
| for (i = 0; i < kvm_vgic_global_state.nr_lr; i++) |
| vgic_v2_write_lr(i, 0); |
| } |
| |
| void vgic_v2_set_underflow(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2; |
| |
| cpuif->vgic_hcr |= GICH_HCR_UIE; |
| } |
| |
| static bool lr_signals_eoi_mi(u32 lr_val) |
| { |
| return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) && |
| !(lr_val & GICH_LR_HW); |
| } |
| |
| /* |
| * transfer the content of the LRs back into the corresponding ap_list: |
| * - active bit is transferred as is |
| * - pending bit is |
| * - transferred as is in case of edge sensitive IRQs |
| * - set to the line-level (resample time) for level sensitive IRQs |
| */ |
| void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2; |
| int lr; |
| |
| DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); |
| |
| cpuif->vgic_hcr &= ~GICH_HCR_UIE; |
| |
| for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) { |
| u32 val = cpuif->vgic_lr[lr]; |
| u32 cpuid, intid = val & GICH_LR_VIRTUALID; |
| struct vgic_irq *irq; |
| bool deactivated; |
| |
| /* Extract the source vCPU id from the LR */ |
| cpuid = val & GICH_LR_PHYSID_CPUID; |
| cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; |
| cpuid &= 7; |
| |
| /* Notify fds when the guest EOI'ed a level-triggered SPI */ |
| if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) |
| kvm_notify_acked_irq(vcpu->kvm, 0, |
| intid - VGIC_NR_PRIVATE_IRQS); |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid); |
| |
| raw_spin_lock(&irq->irq_lock); |
| |
| /* Always preserve the active bit, note deactivation */ |
| deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT); |
| irq->active = !!(val & GICH_LR_ACTIVE_BIT); |
| |
| if (irq->active && vgic_irq_is_sgi(intid)) |
| irq->active_source = cpuid; |
| |
| /* Edge is the only case where we preserve the pending bit */ |
| if (irq->config == VGIC_CONFIG_EDGE && |
| (val & GICH_LR_PENDING_BIT)) { |
| irq->pending_latch = true; |
| |
| if (vgic_irq_is_sgi(intid)) |
| irq->source |= (1 << cpuid); |
| } |
| |
| /* |
| * Clear soft pending state when level irqs have been acked. |
| */ |
| if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE)) |
| irq->pending_latch = false; |
| |
| /* Handle resampling for mapped interrupts if required */ |
| vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT); |
| |
| raw_spin_unlock(&irq->irq_lock); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| cpuif->used_lrs = 0; |
| } |
| |
| /* |
| * Populates the particular LR with the state of a given IRQ: |
| * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq |
| * - for a level sensitive IRQ the pending state value is unchanged; |
| * it is dictated directly by the input level |
| * |
| * If @irq describes an SGI with multiple sources, we choose the |
| * lowest-numbered source VCPU and clear that bit in the source bitmap. |
| * |
| * The irq_lock must be held by the caller. |
| */ |
| void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) |
| { |
| u32 val = irq->intid; |
| bool allow_pending = true; |
| |
| if (irq->active) { |
| val |= GICH_LR_ACTIVE_BIT; |
| if (vgic_irq_is_sgi(irq->intid)) |
| val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; |
| if (vgic_irq_is_multi_sgi(irq)) { |
| allow_pending = false; |
| val |= GICH_LR_EOI; |
| } |
| } |
| |
| if (irq->group) |
| val |= GICH_LR_GROUP1; |
| |
| if (irq->hw && !vgic_irq_needs_resampling(irq)) { |
| val |= GICH_LR_HW; |
| val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT; |
| /* |
| * Never set pending+active on a HW interrupt, as the |
| * pending state is kept at the physical distributor |
| * level. |
| */ |
| if (irq->active) |
| allow_pending = false; |
| } else { |
| if (irq->config == VGIC_CONFIG_LEVEL) { |
| val |= GICH_LR_EOI; |
| |
| /* |
| * Software resampling doesn't work very well |
| * if we allow P+A, so let's not do that. |
| */ |
| if (irq->active) |
| allow_pending = false; |
| } |
| } |
| |
| if (allow_pending && irq_is_pending(irq)) { |
| val |= GICH_LR_PENDING_BIT; |
| |
| if (irq->config == VGIC_CONFIG_EDGE) |
| irq->pending_latch = false; |
| |
| if (vgic_irq_is_sgi(irq->intid)) { |
| u32 src = ffs(irq->source); |
| |
| if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", |
| irq->intid)) |
| return; |
| |
| val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; |
| irq->source &= ~(1 << (src - 1)); |
| if (irq->source) { |
| irq->pending_latch = true; |
| val |= GICH_LR_EOI; |
| } |
| } |
| } |
| |
| /* |
| * Level-triggered mapped IRQs are special because we only observe |
| * rising edges as input to the VGIC. We therefore lower the line |
| * level here, so that we can take new virtual IRQs. See |
| * vgic_v2_fold_lr_state for more info. |
| */ |
| if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) |
| irq->line_level = false; |
| |
| /* The GICv2 LR only holds five bits of priority. */ |
| val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT; |
| |
| vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val; |
| } |
| |
| void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr) |
| { |
| vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0; |
| } |
| |
| void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| u32 vmcr; |
| |
| vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) & |
| GICH_VMCR_ENABLE_GRP0_MASK; |
| vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) & |
| GICH_VMCR_ENABLE_GRP1_MASK; |
| vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) & |
| GICH_VMCR_ACK_CTL_MASK; |
| vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) & |
| GICH_VMCR_FIQ_EN_MASK; |
| vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) & |
| GICH_VMCR_CBPR_MASK; |
| vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) & |
| GICH_VMCR_EOI_MODE_MASK; |
| vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) & |
| GICH_VMCR_ALIAS_BINPOINT_MASK; |
| vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) & |
| GICH_VMCR_BINPOINT_MASK; |
| vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) << |
| GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK; |
| |
| cpu_if->vgic_vmcr = vmcr; |
| } |
| |
| void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| u32 vmcr; |
| |
| vmcr = cpu_if->vgic_vmcr; |
| |
| vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >> |
| GICH_VMCR_ENABLE_GRP0_SHIFT; |
| vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >> |
| GICH_VMCR_ENABLE_GRP1_SHIFT; |
| vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >> |
| GICH_VMCR_ACK_CTL_SHIFT; |
| vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >> |
| GICH_VMCR_FIQ_EN_SHIFT; |
| vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >> |
| GICH_VMCR_CBPR_SHIFT; |
| vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >> |
| GICH_VMCR_EOI_MODE_SHIFT; |
| |
| vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >> |
| GICH_VMCR_ALIAS_BINPOINT_SHIFT; |
| vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >> |
| GICH_VMCR_BINPOINT_SHIFT; |
| vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >> |
| GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT; |
| } |
| |
| void vgic_v2_enable(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * By forcing VMCR to zero, the GIC will restore the binary |
| * points to their reset values. Anything else resets to zero |
| * anyway. |
| */ |
| vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0; |
| |
| /* Get the show on the road... */ |
| vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN; |
| } |
| |
| /* check for overlapping regions and for regions crossing the end of memory */ |
| static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base) |
| { |
| if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base) |
| return false; |
| if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base) |
| return false; |
| |
| if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base) |
| return true; |
| if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base) |
| return true; |
| |
| return false; |
| } |
| |
| int vgic_v2_map_resources(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int ret = 0; |
| |
| if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || |
| IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) { |
| kvm_err("Need to set vgic cpu and dist addresses first\n"); |
| return -ENXIO; |
| } |
| |
| if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) { |
| kvm_err("VGIC CPU and dist frames overlap\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Initialize the vgic if this hasn't already been done on demand by |
| * accessing the vgic state from userspace. |
| */ |
| ret = vgic_init(kvm); |
| if (ret) { |
| kvm_err("Unable to initialize VGIC dynamic data structures\n"); |
| return ret; |
| } |
| |
| ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2); |
| if (ret) { |
| kvm_err("Unable to register VGIC MMIO regions\n"); |
| return ret; |
| } |
| |
| if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) { |
| ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base, |
| kvm_vgic_global_state.vcpu_base, |
| KVM_VGIC_V2_CPU_SIZE, true); |
| if (ret) { |
| kvm_err("Unable to remap VGIC CPU to VCPU\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap); |
| |
| /** |
| * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller |
| * @info: pointer to the GIC description |
| * |
| * Returns 0 if the VGICv2 has been probed successfully, returns an error code |
| * otherwise |
| */ |
| int vgic_v2_probe(const struct gic_kvm_info *info) |
| { |
| int ret; |
| u32 vtr; |
| |
| if (!info->vctrl.start) { |
| kvm_err("GICH not present in the firmware table\n"); |
| return -ENXIO; |
| } |
| |
| if (!PAGE_ALIGNED(info->vcpu.start) || |
| !PAGE_ALIGNED(resource_size(&info->vcpu))) { |
| kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n"); |
| |
| ret = create_hyp_io_mappings(info->vcpu.start, |
| resource_size(&info->vcpu), |
| &kvm_vgic_global_state.vcpu_base_va, |
| &kvm_vgic_global_state.vcpu_hyp_va); |
| if (ret) { |
| kvm_err("Cannot map GICV into hyp\n"); |
| goto out; |
| } |
| |
| static_branch_enable(&vgic_v2_cpuif_trap); |
| } |
| |
| ret = create_hyp_io_mappings(info->vctrl.start, |
| resource_size(&info->vctrl), |
| &kvm_vgic_global_state.vctrl_base, |
| &kvm_vgic_global_state.vctrl_hyp); |
| if (ret) { |
| kvm_err("Cannot map VCTRL into hyp\n"); |
| goto out; |
| } |
| |
| vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR); |
| kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1; |
| |
| ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); |
| if (ret) { |
| kvm_err("Cannot register GICv2 KVM device\n"); |
| goto out; |
| } |
| |
| kvm_vgic_global_state.can_emulate_gicv2 = true; |
| kvm_vgic_global_state.vcpu_base = info->vcpu.start; |
| kvm_vgic_global_state.type = VGIC_V2; |
| kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS; |
| |
| kvm_debug("vgic-v2@%llx\n", info->vctrl.start); |
| |
| return 0; |
| out: |
| if (kvm_vgic_global_state.vctrl_base) |
| iounmap(kvm_vgic_global_state.vctrl_base); |
| if (kvm_vgic_global_state.vcpu_base_va) |
| iounmap(kvm_vgic_global_state.vcpu_base_va); |
| |
| return ret; |
| } |
| |
| static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| u64 used_lrs = cpu_if->used_lrs; |
| u64 elrsr; |
| int i; |
| |
| elrsr = readl_relaxed(base + GICH_ELRSR0); |
| if (unlikely(used_lrs > 32)) |
| elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32; |
| |
| for (i = 0; i < used_lrs; i++) { |
| if (elrsr & (1UL << i)) |
| cpu_if->vgic_lr[i] &= ~GICH_LR_STATE; |
| else |
| cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4)); |
| |
| writel_relaxed(0, base + GICH_LR0 + (i * 4)); |
| } |
| } |
| |
| void vgic_v2_save_state(struct kvm_vcpu *vcpu) |
| { |
| void __iomem *base = kvm_vgic_global_state.vctrl_base; |
| u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; |
| |
| if (!base) |
| return; |
| |
| if (used_lrs) { |
| save_lrs(vcpu, base); |
| writel_relaxed(0, base + GICH_HCR); |
| } |
| } |
| |
| void vgic_v2_restore_state(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| void __iomem *base = kvm_vgic_global_state.vctrl_base; |
| u64 used_lrs = cpu_if->used_lrs; |
| int i; |
| |
| if (!base) |
| return; |
| |
| if (used_lrs) { |
| writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR); |
| for (i = 0; i < used_lrs; i++) { |
| writel_relaxed(cpu_if->vgic_lr[i], |
| base + GICH_LR0 + (i * 4)); |
| } |
| } |
| } |
| |
| void vgic_v2_load(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| |
| writel_relaxed(cpu_if->vgic_vmcr, |
| kvm_vgic_global_state.vctrl_base + GICH_VMCR); |
| writel_relaxed(cpu_if->vgic_apr, |
| kvm_vgic_global_state.vctrl_base + GICH_APR); |
| } |
| |
| void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| |
| cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR); |
| } |
| |
| void vgic_v2_put(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; |
| |
| vgic_v2_vmcr_sync(vcpu); |
| cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR); |
| } |