blob: 397ff4fe9df89fac4b6b01d1e19a2c03409fc442 [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "gf100.h"
#include "ctxgf100.h"
#include "fuc/os.h"
#include <core/client.h>
#include <core/firmware.h>
#include <core/option.h>
#include <subdev/acr.h>
#include <subdev/fb.h>
#include <subdev/mc.h>
#include <subdev/pmu.h>
#include <subdev/therm.h>
#include <subdev/timer.h>
#include <engine/fifo.h>
#include <nvif/class.h>
#include <nvif/cl9097.h>
#include <nvif/if900d.h>
#include <nvif/unpack.h>
/*******************************************************************************
* Zero Bandwidth Clear
******************************************************************************/
static void
gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
if (gr->zbc_color[zbc].format) {
nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
}
nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
nvkm_wr32(device, 0x405820, zbc);
nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
}
static int
gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
const u32 ds[4], const u32 l2[4])
{
struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
int zbc = -ENOSPC, i;
for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
if (gr->zbc_color[i].format) {
if (gr->zbc_color[i].format != format)
continue;
if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
gr->zbc_color[i].ds)))
continue;
if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
gr->zbc_color[i].l2))) {
WARN_ON(1);
return -EINVAL;
}
return i;
} else {
zbc = (zbc < 0) ? i : zbc;
}
}
if (zbc < 0)
return zbc;
memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
gr->zbc_color[zbc].format = format;
nvkm_ltc_zbc_color_get(ltc, zbc, l2);
gr->func->zbc->clear_color(gr, zbc);
return zbc;
}
static void
gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
if (gr->zbc_depth[zbc].format)
nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
nvkm_wr32(device, 0x405820, zbc);
nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
}
static int
gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
const u32 ds, const u32 l2)
{
struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
int zbc = -ENOSPC, i;
for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
if (gr->zbc_depth[i].format) {
if (gr->zbc_depth[i].format != format)
continue;
if (gr->zbc_depth[i].ds != ds)
continue;
if (gr->zbc_depth[i].l2 != l2) {
WARN_ON(1);
return -EINVAL;
}
return i;
} else {
zbc = (zbc < 0) ? i : zbc;
}
}
if (zbc < 0)
return zbc;
gr->zbc_depth[zbc].format = format;
gr->zbc_depth[zbc].ds = ds;
gr->zbc_depth[zbc].l2 = l2;
nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
gr->func->zbc->clear_depth(gr, zbc);
return zbc;
}
const struct gf100_gr_func_zbc
gf100_gr_zbc = {
.clear_color = gf100_gr_zbc_clear_color,
.clear_depth = gf100_gr_zbc_clear_depth,
};
/*******************************************************************************
* Graphics object classes
******************************************************************************/
#define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
struct gf100_gr_object {
struct nvkm_object object;
struct gf100_gr_chan *chan;
};
static int
gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
{
struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
union {
struct fermi_a_zbc_color_v0 v0;
} *args = data;
int ret = -ENOSYS;
if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
switch (args->v0.format) {
case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
ret = gf100_gr_zbc_color_get(gr, args->v0.format,
args->v0.ds,
args->v0.l2);
if (ret >= 0) {
args->v0.index = ret;
return 0;
}
break;
default:
return -EINVAL;
}
}
return ret;
}
static int
gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
{
struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
union {
struct fermi_a_zbc_depth_v0 v0;
} *args = data;
int ret = -ENOSYS;
if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
switch (args->v0.format) {
case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
args->v0.ds,
args->v0.l2);
return (ret >= 0) ? 0 : -ENOSPC;
default:
return -EINVAL;
}
}
return ret;
}
static int
gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
{
nvif_ioctl(object, "fermi mthd %08x\n", mthd);
switch (mthd) {
case FERMI_A_ZBC_COLOR:
return gf100_fermi_mthd_zbc_color(object, data, size);
case FERMI_A_ZBC_DEPTH:
return gf100_fermi_mthd_zbc_depth(object, data, size);
default:
break;
}
return -EINVAL;
}
const struct nvkm_object_func
gf100_fermi = {
.mthd = gf100_fermi_mthd,
};
static void
gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
{
nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
}
static bool
gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
{
switch (class & 0x00ff) {
case 0x97:
case 0xc0:
switch (mthd) {
case 0x1528:
gf100_gr_mthd_set_shader_exceptions(device, data);
return true;
default:
break;
}
break;
default:
break;
}
return false;
}
static const struct nvkm_object_func
gf100_gr_object_func = {
};
static int
gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
struct gf100_gr_object *object;
if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
return -ENOMEM;
*pobject = &object->object;
nvkm_object_ctor(oclass->base.func ? oclass->base.func :
&gf100_gr_object_func, oclass, &object->object);
object->chan = chan;
return 0;
}
static int
gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
{
struct gf100_gr *gr = gf100_gr(base);
int c = 0;
while (gr->func->sclass[c].oclass) {
if (c++ == index) {
*sclass = gr->func->sclass[index];
sclass->ctor = gf100_gr_object_new;
return index;
}
}
return c;
}
/*******************************************************************************
* PGRAPH context
******************************************************************************/
static int
gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
int align, struct nvkm_gpuobj **pgpuobj)
{
struct gf100_gr_chan *chan = gf100_gr_chan(object);
struct gf100_gr *gr = chan->gr;
int ret, i;
ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
align, false, parent, pgpuobj);
if (ret)
return ret;
nvkm_kmap(*pgpuobj);
for (i = 0; i < gr->size; i += 4)
nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
if (!gr->firmware) {
nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
} else {
nvkm_wo32(*pgpuobj, 0xf4, 0);
nvkm_wo32(*pgpuobj, 0xf8, 0);
nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
nvkm_wo32(*pgpuobj, 0x1c, 1);
nvkm_wo32(*pgpuobj, 0x20, 0);
nvkm_wo32(*pgpuobj, 0x28, 0);
nvkm_wo32(*pgpuobj, 0x2c, 0);
}
nvkm_done(*pgpuobj);
return 0;
}
static void *
gf100_gr_chan_dtor(struct nvkm_object *object)
{
struct gf100_gr_chan *chan = gf100_gr_chan(object);
int i;
for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
nvkm_memory_unref(&chan->data[i].mem);
}
nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
nvkm_memory_unref(&chan->mmio);
nvkm_vmm_unref(&chan->vmm);
return chan;
}
static const struct nvkm_object_func
gf100_gr_chan = {
.dtor = gf100_gr_chan_dtor,
.bind = gf100_gr_chan_bind,
};
static int
gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
const struct nvkm_oclass *oclass,
struct nvkm_object **pobject)
{
struct gf100_gr *gr = gf100_gr(base);
struct gf100_gr_data *data = gr->mmio_data;
struct gf100_gr_mmio *mmio = gr->mmio_list;
struct gf100_gr_chan *chan;
struct gf100_vmm_map_v0 args = { .priv = 1 };
struct nvkm_device *device = gr->base.engine.subdev.device;
int ret, i;
if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
return -ENOMEM;
nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
chan->gr = gr;
chan->vmm = nvkm_vmm_ref(fifoch->vmm);
*pobject = &chan->object;
/* allocate memory for a "mmio list" buffer that's used by the HUB
* fuc to modify some per-context register settings on first load
* of the context.
*/
ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
false, &chan->mmio);
if (ret)
return ret;
ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
if (ret)
return ret;
ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
chan->mmio_vma, &args, sizeof(args));
if (ret)
return ret;
/* allocate buffers referenced by mmio list */
for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
data->size, data->align, false,
&chan->data[i].mem);
if (ret)
return ret;
ret = nvkm_vmm_get(fifoch->vmm, 12,
nvkm_memory_size(chan->data[i].mem),
&chan->data[i].vma);
if (ret)
return ret;
args.priv = data->priv;
ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
chan->data[i].vma, &args, sizeof(args));
if (ret)
return ret;
data++;
}
/* finally, fill in the mmio list and point the context at it */
nvkm_kmap(chan->mmio);
for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
u32 addr = mmio->addr;
u32 data = mmio->data;
if (mmio->buffer >= 0) {
u64 info = chan->data[mmio->buffer].vma->addr;
data |= info >> mmio->shift;
}
nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
mmio++;
}
nvkm_done(chan->mmio);
return 0;
}
/*******************************************************************************
* PGRAPH register lists
******************************************************************************/
const struct gf100_gr_init
gf100_gr_init_main_0[] = {
{ 0x400080, 1, 0x04, 0x003083c2 },
{ 0x400088, 1, 0x04, 0x00006fe7 },
{ 0x40008c, 1, 0x04, 0x00000000 },
{ 0x400090, 1, 0x04, 0x00000030 },
{ 0x40013c, 1, 0x04, 0x013901f7 },
{ 0x400140, 1, 0x04, 0x00000100 },
{ 0x400144, 1, 0x04, 0x00000000 },
{ 0x400148, 1, 0x04, 0x00000110 },
{ 0x400138, 1, 0x04, 0x00000000 },
{ 0x400130, 2, 0x04, 0x00000000 },
{ 0x400124, 1, 0x04, 0x00000002 },
{}
};
const struct gf100_gr_init
gf100_gr_init_fe_0[] = {
{ 0x40415c, 1, 0x04, 0x00000000 },
{ 0x404170, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pri_0[] = {
{ 0x404488, 2, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_rstr2d_0[] = {
{ 0x407808, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pd_0[] = {
{ 0x406024, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_ds_0[] = {
{ 0x405844, 1, 0x04, 0x00ffffff },
{ 0x405850, 1, 0x04, 0x00000000 },
{ 0x405908, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_scc_0[] = {
{ 0x40803c, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_prop_0[] = {
{ 0x4184a0, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gpc_unk_0[] = {
{ 0x418604, 1, 0x04, 0x00000000 },
{ 0x418680, 1, 0x04, 0x00000000 },
{ 0x418714, 1, 0x04, 0x80000000 },
{ 0x418384, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_setup_0[] = {
{ 0x418814, 3, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_crstr_0[] = {
{ 0x418b04, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_setup_1[] = {
{ 0x4188c8, 1, 0x04, 0x80000000 },
{ 0x4188cc, 1, 0x04, 0x00000000 },
{ 0x4188d0, 1, 0x04, 0x00010000 },
{ 0x4188d4, 1, 0x04, 0x00000001 },
{}
};
const struct gf100_gr_init
gf100_gr_init_zcull_0[] = {
{ 0x418910, 1, 0x04, 0x00010001 },
{ 0x418914, 1, 0x04, 0x00000301 },
{ 0x418918, 1, 0x04, 0x00800000 },
{ 0x418980, 1, 0x04, 0x77777770 },
{ 0x418984, 3, 0x04, 0x77777777 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gpm_0[] = {
{ 0x418c04, 1, 0x04, 0x00000000 },
{ 0x418c88, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gpc_unk_1[] = {
{ 0x418d00, 1, 0x04, 0x00000000 },
{ 0x418f08, 1, 0x04, 0x00000000 },
{ 0x418e00, 1, 0x04, 0x00000050 },
{ 0x418e08, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gcc_0[] = {
{ 0x41900c, 1, 0x04, 0x00000000 },
{ 0x419018, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_tpccs_0[] = {
{ 0x419d08, 2, 0x04, 0x00000000 },
{ 0x419d10, 1, 0x04, 0x00000014 },
{}
};
const struct gf100_gr_init
gf100_gr_init_tex_0[] = {
{ 0x419ab0, 1, 0x04, 0x00000000 },
{ 0x419ab8, 1, 0x04, 0x000000e7 },
{ 0x419abc, 2, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pe_0[] = {
{ 0x41980c, 3, 0x04, 0x00000000 },
{ 0x419844, 1, 0x04, 0x00000000 },
{ 0x41984c, 1, 0x04, 0x00005bc5 },
{ 0x419850, 4, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_l1c_0[] = {
{ 0x419c98, 1, 0x04, 0x00000000 },
{ 0x419ca8, 1, 0x04, 0x80000000 },
{ 0x419cb4, 1, 0x04, 0x00000000 },
{ 0x419cb8, 1, 0x04, 0x00008bf4 },
{ 0x419cbc, 1, 0x04, 0x28137606 },
{ 0x419cc0, 2, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_wwdx_0[] = {
{ 0x419bd4, 1, 0x04, 0x00800000 },
{ 0x419bdc, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_tpccs_1[] = {
{ 0x419d2c, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_mpc_0[] = {
{ 0x419c0c, 1, 0x04, 0x00000000 },
{}
};
static const struct gf100_gr_init
gf100_gr_init_sm_0[] = {
{ 0x419e00, 1, 0x04, 0x00000000 },
{ 0x419ea0, 1, 0x04, 0x00000000 },
{ 0x419ea4, 1, 0x04, 0x00000100 },
{ 0x419ea8, 1, 0x04, 0x00001100 },
{ 0x419eac, 1, 0x04, 0x11100702 },
{ 0x419eb0, 1, 0x04, 0x00000003 },
{ 0x419eb4, 4, 0x04, 0x00000000 },
{ 0x419ec8, 1, 0x04, 0x06060618 },
{ 0x419ed0, 1, 0x04, 0x0eff0e38 },
{ 0x419ed4, 1, 0x04, 0x011104f1 },
{ 0x419edc, 1, 0x04, 0x00000000 },
{ 0x419f00, 1, 0x04, 0x00000000 },
{ 0x419f2c, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_be_0[] = {
{ 0x40880c, 1, 0x04, 0x00000000 },
{ 0x408910, 9, 0x04, 0x00000000 },
{ 0x408950, 1, 0x04, 0x00000000 },
{ 0x408954, 1, 0x04, 0x0000ffff },
{ 0x408984, 1, 0x04, 0x00000000 },
{ 0x408988, 1, 0x04, 0x08040201 },
{ 0x40898c, 1, 0x04, 0x80402010 },
{}
};
const struct gf100_gr_init
gf100_gr_init_fe_1[] = {
{ 0x4040f0, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pe_1[] = {
{ 0x419880, 1, 0x04, 0x00000002 },
{}
};
static const struct gf100_gr_pack
gf100_gr_pack_mmio[] = {
{ gf100_gr_init_main_0 },
{ gf100_gr_init_fe_0 },
{ gf100_gr_init_pri_0 },
{ gf100_gr_init_rstr2d_0 },
{ gf100_gr_init_pd_0 },
{ gf100_gr_init_ds_0 },
{ gf100_gr_init_scc_0 },
{ gf100_gr_init_prop_0 },
{ gf100_gr_init_gpc_unk_0 },
{ gf100_gr_init_setup_0 },
{ gf100_gr_init_crstr_0 },
{ gf100_gr_init_setup_1 },
{ gf100_gr_init_zcull_0 },
{ gf100_gr_init_gpm_0 },
{ gf100_gr_init_gpc_unk_1 },
{ gf100_gr_init_gcc_0 },
{ gf100_gr_init_tpccs_0 },
{ gf100_gr_init_tex_0 },
{ gf100_gr_init_pe_0 },
{ gf100_gr_init_l1c_0 },
{ gf100_gr_init_wwdx_0 },
{ gf100_gr_init_tpccs_1 },
{ gf100_gr_init_mpc_0 },
{ gf100_gr_init_sm_0 },
{ gf100_gr_init_be_0 },
{ gf100_gr_init_fe_1 },
{ gf100_gr_init_pe_1 },
{}
};
/*******************************************************************************
* PGRAPH engine/subdev functions
******************************************************************************/
static u32
gf100_gr_ctxsw_inst(struct nvkm_gr *gr)
{
return nvkm_rd32(gr->engine.subdev.device, 0x409b00);
}
static int
gf100_gr_fecs_ctrl_ctxsw(struct gf100_gr *gr, u32 mthd)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409804, 0xffffffff);
nvkm_wr32(device, 0x409840, 0xffffffff);
nvkm_wr32(device, 0x409500, 0xffffffff);
nvkm_wr32(device, 0x409504, mthd);
nvkm_msec(device, 2000,
u32 stat = nvkm_rd32(device, 0x409804);
if (stat == 0x00000002)
return -EIO;
if (stat == 0x00000001)
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_start_ctxsw(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
int ret = 0;
mutex_lock(&gr->fecs.mutex);
if (!--gr->fecs.disable) {
if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x39)))
gr->fecs.disable++;
}
mutex_unlock(&gr->fecs.mutex);
return ret;
}
static int
gf100_gr_fecs_stop_ctxsw(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
int ret = 0;
mutex_lock(&gr->fecs.mutex);
if (!gr->fecs.disable++) {
if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x38)))
gr->fecs.disable--;
}
mutex_unlock(&gr->fecs.mutex);
return ret;
}
int
gf100_gr_fecs_bind_pointer(struct gf100_gr *gr, u32 inst)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409840, 0x00000030);
nvkm_wr32(device, 0x409500, inst);
nvkm_wr32(device, 0x409504, 0x00000003);
nvkm_msec(device, 2000,
u32 stat = nvkm_rd32(device, 0x409800);
if (stat & 0x00000020)
return -EIO;
if (stat & 0x00000010)
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_set_reglist_virtual_address(struct gf100_gr *gr, u64 addr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409810, addr >> 8);
nvkm_wr32(device, 0x409800, 0x00000000);
nvkm_wr32(device, 0x409500, 0x00000001);
nvkm_wr32(device, 0x409504, 0x00000032);
nvkm_msec(device, 2000,
if (nvkm_rd32(device, 0x409800) == 0x00000001)
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_set_reglist_bind_instance(struct gf100_gr *gr, u32 inst)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409810, inst);
nvkm_wr32(device, 0x409800, 0x00000000);
nvkm_wr32(device, 0x409500, 0x00000001);
nvkm_wr32(device, 0x409504, 0x00000031);
nvkm_msec(device, 2000,
if (nvkm_rd32(device, 0x409800) == 0x00000001)
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_discover_reglist_image_size(struct gf100_gr *gr, u32 *psize)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409800, 0x00000000);
nvkm_wr32(device, 0x409500, 0x00000001);
nvkm_wr32(device, 0x409504, 0x00000030);
nvkm_msec(device, 2000,
if ((*psize = nvkm_rd32(device, 0x409800)))
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_elpg_bind(struct gf100_gr *gr)
{
u32 size;
int ret;
ret = gf100_gr_fecs_discover_reglist_image_size(gr, &size);
if (ret)
return ret;
/*XXX: We need to allocate + map the above into PMU's inst block,
* which which means we probably need a proper PMU before we
* even bother.
*/
ret = gf100_gr_fecs_set_reglist_bind_instance(gr, 0);
if (ret)
return ret;
return gf100_gr_fecs_set_reglist_virtual_address(gr, 0);
}
static int
gf100_gr_fecs_discover_pm_image_size(struct gf100_gr *gr, u32 *psize)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409840, 0xffffffff);
nvkm_wr32(device, 0x409500, 0x00000000);
nvkm_wr32(device, 0x409504, 0x00000025);
nvkm_msec(device, 2000,
if ((*psize = nvkm_rd32(device, 0x409800)))
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409840, 0xffffffff);
nvkm_wr32(device, 0x409500, 0x00000000);
nvkm_wr32(device, 0x409504, 0x00000016);
nvkm_msec(device, 2000,
if ((*psize = nvkm_rd32(device, 0x409800)))
return 0;
);
return -ETIMEDOUT;
}
static int
gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409840, 0xffffffff);
nvkm_wr32(device, 0x409500, 0x00000000);
nvkm_wr32(device, 0x409504, 0x00000010);
nvkm_msec(device, 2000,
if ((*psize = nvkm_rd32(device, 0x409800)))
return 0;
);
return -ETIMEDOUT;
}
static void
gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, 0x409840, 0xffffffff);
nvkm_wr32(device, 0x409500, timeout);
nvkm_wr32(device, 0x409504, 0x00000021);
}
static bool
gf100_gr_chsw_load(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
if (!gr->firmware) {
u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
if (trace & 0x00000040)
return true;
} else {
u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
if (mthd & 0x00080000)
return true;
}
return false;
}
int
gf100_gr_rops(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
}
void
gf100_gr_zbc_init(struct gf100_gr *gr)
{
const u32 zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const u32 one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
int index, c = ltc->zbc_min, d = ltc->zbc_min, s = ltc->zbc_min;
if (!gr->zbc_color[0].format) {
gf100_gr_zbc_color_get(gr, 1, & zero[0], &zero[4]); c++;
gf100_gr_zbc_color_get(gr, 2, & one[0], &one[4]); c++;
gf100_gr_zbc_color_get(gr, 4, &f32_0[0], &f32_0[4]); c++;
gf100_gr_zbc_color_get(gr, 4, &f32_1[0], &f32_1[4]); c++;
gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
if (gr->func->zbc->stencil_get) {
gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
}
}
for (index = c; index <= ltc->zbc_max; index++)
gr->func->zbc->clear_color(gr, index);
for (index = d; index <= ltc->zbc_max; index++)
gr->func->zbc->clear_depth(gr, index);
if (gr->func->zbc->clear_stencil) {
for (index = s; index <= ltc->zbc_max; index++)
gr->func->zbc->clear_stencil(gr, index);
}
}
/**
* Wait until GR goes idle. GR is considered idle if it is disabled by the
* MC (0x200) register, or GR is not busy and a context switch is not in
* progress.
*/
int
gf100_gr_wait_idle(struct gf100_gr *gr)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
bool gr_enabled, ctxsw_active, gr_busy;
do {
/*
* required to make sure FIFO_ENGINE_STATUS (0x2640) is
* up-to-date
*/
nvkm_rd32(device, 0x400700);
gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
if (!gr_enabled || (!gr_busy && !ctxsw_active))
return 0;
} while (time_before(jiffies, end_jiffies));
nvkm_error(subdev,
"wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
gr_enabled, ctxsw_active, gr_busy);
return -EAGAIN;
}
void
gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
const struct gf100_gr_pack *pack;
const struct gf100_gr_init *init;
pack_for_each_init(init, pack, p) {
u32 next = init->addr + init->count * init->pitch;
u32 addr = init->addr;
while (addr < next) {
nvkm_wr32(device, addr, init->data);
addr += init->pitch;
}
}
}
void
gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
const struct gf100_gr_pack *pack;
const struct gf100_gr_init *init;
u32 data = 0;
nvkm_wr32(device, 0x400208, 0x80000000);
pack_for_each_init(init, pack, p) {
u32 next = init->addr + init->count * init->pitch;
u32 addr = init->addr;
if ((pack == p && init == p->init) || data != init->data) {
nvkm_wr32(device, 0x400204, init->data);
data = init->data;
}
while (addr < next) {
nvkm_wr32(device, 0x400200, addr);
/**
* Wait for GR to go idle after submitting a
* GO_IDLE bundle
*/
if ((addr & 0xffff) == 0xe100)
gf100_gr_wait_idle(gr);
nvkm_msec(device, 2000,
if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
break;
);
addr += init->pitch;
}
}
nvkm_wr32(device, 0x400208, 0x00000000);
}
void
gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
const struct gf100_gr_pack *pack;
const struct gf100_gr_init *init;
u32 data = 0;
pack_for_each_init(init, pack, p) {
u32 ctrl = 0x80000000 | pack->type;
u32 next = init->addr + init->count * init->pitch;
u32 addr = init->addr;
if ((pack == p && init == p->init) || data != init->data) {
nvkm_wr32(device, 0x40448c, init->data);
data = init->data;
}
while (addr < next) {
nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
addr += init->pitch;
}
}
}
u64
gf100_gr_units(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
u64 cfg;
cfg = (u32)gr->gpc_nr;
cfg |= (u32)gr->tpc_total << 8;
cfg |= (u64)gr->rop_nr << 32;
return cfg;
}
static const struct nvkm_bitfield gf100_dispatch_error[] = {
{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
{}
};
static const struct nvkm_bitfield gf100_m2mf_error[] = {
{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
{}
};
static const struct nvkm_bitfield gf100_unk6_error[] = {
{ 0x00000001, "TEMP_TOO_SMALL" },
{}
};
static const struct nvkm_bitfield gf100_ccache_error[] = {
{ 0x00000001, "INTR" },
{ 0x00000002, "LDCONST_OOB" },
{}
};
static const struct nvkm_bitfield gf100_macro_error[] = {
{ 0x00000001, "TOO_FEW_PARAMS" },
{ 0x00000002, "TOO_MANY_PARAMS" },
{ 0x00000004, "ILLEGAL_OPCODE" },
{ 0x00000008, "DOUBLE_BRANCH" },
{ 0x00000010, "WATCHDOG" },
{}
};
static const struct nvkm_bitfield gk104_sked_error[] = {
{ 0x00000040, "CTA_RESUME" },
{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
{ 0x00000800, "WARP_CSTACK_SIZE" },
{ 0x00001000, "TOTAL_TEMP_SIZE" },
{ 0x00002000, "REGISTER_COUNT" },
{ 0x00040000, "TOTAL_THREADS" },
{ 0x00100000, "PROGRAM_OFFSET" },
{ 0x00200000, "SHARED_MEMORY_SIZE" },
{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
{ 0x04000000, "TOTAL_REGISTER_COUNT" },
{}
};
static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
{ 0x00000002, "RT_PITCH_OVERRUN" },
{ 0x00000010, "RT_WIDTH_OVERRUN" },
{ 0x00000020, "RT_HEIGHT_OVERRUN" },
{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
{ 0x00000400, "RT_LINEAR_MISMATCH" },
{}
};
static void
gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
char error[128];
u32 trap[4];
trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
"format = %x, storage type = %x\n",
gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
(trap[2] >> 8) & 0x3f, trap[3] & 0xff);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
}
const struct nvkm_enum gf100_mp_warp_error[] = {
{ 0x01, "STACK_ERROR" },
{ 0x02, "API_STACK_ERROR" },
{ 0x03, "RET_EMPTY_STACK_ERROR" },
{ 0x04, "PC_WRAP" },
{ 0x05, "MISALIGNED_PC" },
{ 0x06, "PC_OVERFLOW" },
{ 0x07, "MISALIGNED_IMMC_ADDR" },
{ 0x08, "MISALIGNED_REG" },
{ 0x09, "ILLEGAL_INSTR_ENCODING" },
{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
{ 0x0b, "ILLEGAL_INSTR_PARAM" },
{ 0x0c, "INVALID_CONST_ADDR" },
{ 0x0d, "OOR_REG" },
{ 0x0e, "OOR_ADDR" },
{ 0x0f, "MISALIGNED_ADDR" },
{ 0x10, "INVALID_ADDR_SPACE" },
{ 0x11, "ILLEGAL_INSTR_PARAM2" },
{ 0x12, "INVALID_CONST_ADDR_LDC" },
{ 0x13, "GEOMETRY_SM_ERROR" },
{ 0x14, "DIVERGENT" },
{ 0x15, "WARP_EXIT" },
{}
};
const struct nvkm_bitfield gf100_mp_global_error[] = {
{ 0x00000001, "SM_TO_SM_FAULT" },
{ 0x00000002, "L1_ERROR" },
{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
{ 0x00000010, "BPT_INT" },
{ 0x00000020, "BPT_PAUSE" },
{ 0x00000040, "SINGLE_STEP_COMPLETE" },
{ 0x20000000, "ECC_SEC_ERROR" },
{ 0x40000000, "ECC_DED_ERROR" },
{ 0x80000000, "TIMEOUT" },
{}
};
void
gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
const struct nvkm_enum *warp;
char glob[128];
nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
"global %08x [%s] warp %04x [%s]\n",
gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
}
static void
gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
if (stat & 0x00000001) {
u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
stat &= ~0x00000001;
}
if (stat & 0x00000002) {
gr->func->trap_mp(gr, gpc, tpc);
stat &= ~0x00000002;
}
if (stat & 0x00000004) {
u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
stat &= ~0x00000004;
}
if (stat & 0x00000008) {
u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
stat &= ~0x00000008;
}
if (stat & 0x00000010) {
u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
stat &= ~0x00000010;
}
if (stat) {
nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
}
}
static void
gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
int tpc;
if (stat & 0x00000001) {
gf100_gr_trap_gpc_rop(gr, gpc);
stat &= ~0x00000001;
}
if (stat & 0x00000002) {
u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
stat &= ~0x00000002;
}
if (stat & 0x00000004) {
u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
stat &= ~0x00000004;
}
if (stat & 0x00000008) {
u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
stat &= ~0x00000009;
}
for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
u32 mask = 0x00010000 << tpc;
if (stat & mask) {
gf100_gr_trap_tpc(gr, gpc, tpc);
nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
stat &= ~mask;
}
}
if (stat) {
nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
}
}
static void
gf100_gr_trap_intr(struct gf100_gr *gr)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
char error[128];
u32 trap = nvkm_rd32(device, 0x400108);
int rop, gpc;
if (trap & 0x00000001) {
u32 stat = nvkm_rd32(device, 0x404000);
nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
stat & 0x3fffffff);
nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
nvkm_wr32(device, 0x404000, 0xc0000000);
nvkm_wr32(device, 0x400108, 0x00000001);
trap &= ~0x00000001;
}
if (trap & 0x00000002) {
u32 stat = nvkm_rd32(device, 0x404600);
nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
stat & 0x3fffffff);
nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
nvkm_wr32(device, 0x404600, 0xc0000000);
nvkm_wr32(device, 0x400108, 0x00000002);
trap &= ~0x00000002;
}
if (trap & 0x00000008) {
u32 stat = nvkm_rd32(device, 0x408030);
nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
stat & 0x3fffffff);
nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
nvkm_wr32(device, 0x408030, 0xc0000000);
nvkm_wr32(device, 0x400108, 0x00000008);
trap &= ~0x00000008;
}
if (trap & 0x00000010) {
u32 stat = nvkm_rd32(device, 0x405840);
nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
stat, stat & 0xffffff, (stat >> 24) & 0x3f);
nvkm_wr32(device, 0x405840, 0xc0000000);
nvkm_wr32(device, 0x400108, 0x00000010);
trap &= ~0x00000010;
}
if (trap & 0x00000040) {
u32 stat = nvkm_rd32(device, 0x40601c);
nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
stat & 0x3fffffff);
nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
nvkm_wr32(device, 0x40601c, 0xc0000000);
nvkm_wr32(device, 0x400108, 0x00000040);
trap &= ~0x00000040;
}
if (trap & 0x00000080) {
u32 stat = nvkm_rd32(device, 0x404490);
u32 pc = nvkm_rd32(device, 0x404494);
u32 op = nvkm_rd32(device, 0x40449c);
nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
stat & 0x1fffffff);
nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
stat, error, pc & 0x7ff,
(pc & 0x10000000) ? "" : " (invalid)",
op);
nvkm_wr32(device, 0x404490, 0xc0000000);
nvkm_wr32(device, 0x400108, 0x00000080);
trap &= ~0x00000080;
}
if (trap & 0x00000100) {
u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
if (stat)
nvkm_wr32(device, 0x407020, 0x40000000);
nvkm_wr32(device, 0x400108, 0x00000100);
trap &= ~0x00000100;
}
if (trap & 0x01000000) {
u32 stat = nvkm_rd32(device, 0x400118);
for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
u32 mask = 0x00000001 << gpc;
if (stat & mask) {
gf100_gr_trap_gpc(gr, gpc);
nvkm_wr32(device, 0x400118, mask);
stat &= ~mask;
}
}
nvkm_wr32(device, 0x400108, 0x01000000);
trap &= ~0x01000000;
}
if (trap & 0x02000000) {
for (rop = 0; rop < gr->rop_nr; rop++) {
u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
nvkm_error(subdev, "ROP%d %08x %08x\n",
rop, statz, statc);
nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
}
nvkm_wr32(device, 0x400108, 0x02000000);
trap &= ~0x02000000;
}
if (trap) {
nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
nvkm_wr32(device, 0x400108, trap);
}
}
static void
gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
nvkm_error(subdev, "%06x - done %08x\n", base,
nvkm_rd32(device, base + 0x400));
nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
nvkm_rd32(device, base + 0x800),
nvkm_rd32(device, base + 0x804),
nvkm_rd32(device, base + 0x808),
nvkm_rd32(device, base + 0x80c));
nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
nvkm_rd32(device, base + 0x810),
nvkm_rd32(device, base + 0x814),
nvkm_rd32(device, base + 0x818),
nvkm_rd32(device, base + 0x81c));
}
void
gf100_gr_ctxctl_debug(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
u32 gpc;
gf100_gr_ctxctl_debug_unit(gr, 0x409000);
for (gpc = 0; gpc < gpcnr; gpc++)
gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
}
static void
gf100_gr_ctxctl_isr(struct gf100_gr *gr)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 stat = nvkm_rd32(device, 0x409c18);
if (!gr->firmware && (stat & 0x00000001)) {
u32 code = nvkm_rd32(device, 0x409814);
if (code == E_BAD_FWMTHD) {
u32 class = nvkm_rd32(device, 0x409808);
u32 addr = nvkm_rd32(device, 0x40980c);
u32 subc = (addr & 0x00070000) >> 16;
u32 mthd = (addr & 0x00003ffc);
u32 data = nvkm_rd32(device, 0x409810);
nvkm_error(subdev, "FECS MTHD subc %d class %04x "
"mthd %04x data %08x\n",
subc, class, mthd, data);
} else {
nvkm_error(subdev, "FECS ucode error %d\n", code);
}
nvkm_wr32(device, 0x409c20, 0x00000001);
stat &= ~0x00000001;
}
if (!gr->firmware && (stat & 0x00080000)) {
nvkm_error(subdev, "FECS watchdog timeout\n");
gf100_gr_ctxctl_debug(gr);
nvkm_wr32(device, 0x409c20, 0x00080000);
stat &= ~0x00080000;
}
if (stat) {
nvkm_error(subdev, "FECS %08x\n", stat);
gf100_gr_ctxctl_debug(gr);
nvkm_wr32(device, 0x409c20, stat);
}
}
static void
gf100_gr_intr(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_fifo_chan *chan;
unsigned long flags;
u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
u32 stat = nvkm_rd32(device, 0x400100);
u32 addr = nvkm_rd32(device, 0x400704);
u32 mthd = (addr & 0x00003ffc);
u32 subc = (addr & 0x00070000) >> 16;
u32 data = nvkm_rd32(device, 0x400708);
u32 code = nvkm_rd32(device, 0x400110);
u32 class;
const char *name = "unknown";
int chid = -1;
chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
if (chan) {
name = chan->object.client->name;
chid = chan->chid;
}
if (device->card_type < NV_E0 || subc < 4)
class = nvkm_rd32(device, 0x404200 + (subc * 4));
else
class = 0x0000;
if (stat & 0x00000001) {
/*
* notifier interrupt, only needed for cyclestats
* can be safely ignored
*/
nvkm_wr32(device, 0x400100, 0x00000001);
stat &= ~0x00000001;
}
if (stat & 0x00000010) {
if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
"subc %d class %04x mthd %04x data %08x\n",
chid, inst << 12, name, subc,
class, mthd, data);
}
nvkm_wr32(device, 0x400100, 0x00000010);
stat &= ~0x00000010;
}
if (stat & 0x00000020) {
nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
"subc %d class %04x mthd %04x data %08x\n",
chid, inst << 12, name, subc, class, mthd, data);
nvkm_wr32(device, 0x400100, 0x00000020);
stat &= ~0x00000020;
}
if (stat & 0x00100000) {
const struct nvkm_enum *en =
nvkm_enum_find(nv50_data_error_names, code);
nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
"subc %d class %04x mthd %04x data %08x\n",
code, en ? en->name : "", chid, inst << 12,
name, subc, class, mthd, data);
nvkm_wr32(device, 0x400100, 0x00100000);
stat &= ~0x00100000;
}
if (stat & 0x00200000) {
nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
chid, inst << 12, name);
gf100_gr_trap_intr(gr);
nvkm_wr32(device, 0x400100, 0x00200000);
stat &= ~0x00200000;
}
if (stat & 0x00080000) {
gf100_gr_ctxctl_isr(gr);
nvkm_wr32(device, 0x400100, 0x00080000);
stat &= ~0x00080000;
}
if (stat) {
nvkm_error(subdev, "intr %08x\n", stat);
nvkm_wr32(device, 0x400100, stat);
}
nvkm_wr32(device, 0x400500, 0x00010001);
nvkm_fifo_chan_put(device->fifo, flags, &chan);
}
static void
gf100_gr_init_fw(struct nvkm_falcon *falcon,
struct nvkm_blob *code, struct nvkm_blob *data)
{
nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
}
static void
gf100_gr_init_csdata(struct gf100_gr *gr,
const struct gf100_gr_pack *pack,
u32 falcon, u32 starstar, u32 base)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
const struct gf100_gr_pack *iter;
const struct gf100_gr_init *init;
u32 addr = ~0, prev = ~0, xfer = 0;
u32 star, temp;
nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
star = nvkm_rd32(device, falcon + 0x01c4);
temp = nvkm_rd32(device, falcon + 0x01c4);
if (temp > star)
star = temp;
nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
pack_for_each_init(init, iter, pack) {
u32 head = init->addr - base;
u32 tail = head + init->count * init->pitch;
while (head < tail) {
if (head != prev + 4 || xfer >= 32) {
if (xfer) {
u32 data = ((--xfer << 26) | addr);
nvkm_wr32(device, falcon + 0x01c4, data);
star += 4;
}
addr = head;
xfer = 0;
}
prev = head;
xfer = xfer + 1;
head = head + init->pitch;
}
}
nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
nvkm_wr32(device, falcon + 0x01c4, star + 4);
}
/* Initialize context from an external (secure or not) firmware */
static int
gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 lsf_mask = 0;
int ret;
/* load fuc microcode */
nvkm_mc_unk260(device, 0);
/* securely-managed falcons must be reset using secure boot */
if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_FECS)) {
gf100_gr_init_fw(&gr->fecs.falcon, &gr->fecs.inst,
&gr->fecs.data);
} else {
lsf_mask |= BIT(NVKM_ACR_LSF_FECS);
}
if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_GPCCS)) {
gf100_gr_init_fw(&gr->gpccs.falcon, &gr->gpccs.inst,
&gr->gpccs.data);
} else {
lsf_mask |= BIT(NVKM_ACR_LSF_GPCCS);
}
if (lsf_mask) {
ret = nvkm_acr_bootstrap_falcons(device, lsf_mask);
if (ret)
return ret;
}
nvkm_mc_unk260(device, 1);
/* start both of them running */
nvkm_wr32(device, 0x409840, 0xffffffff);
nvkm_wr32(device, 0x41a10c, 0x00000000);
nvkm_wr32(device, 0x40910c, 0x00000000);
nvkm_falcon_start(&gr->gpccs.falcon);
nvkm_falcon_start(&gr->fecs.falcon);
if (nvkm_msec(device, 2000,
if (nvkm_rd32(device, 0x409800) & 0x00000001)
break;
) < 0)
return -EBUSY;
gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);
/* Determine how much memory is required to store main context image. */
ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
if (ret)
return ret;
/* Determine how much memory is required to store ZCULL image. */
ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
if (ret)
return ret;
/* Determine how much memory is required to store PerfMon image. */
ret = gf100_gr_fecs_discover_pm_image_size(gr, &gr->size_pm);
if (ret)
return ret;
/*XXX: We (likely) require PMU support to even bother with this.
*
* Also, it seems like not all GPUs support ELPG. Traces I
* have here show RM enabling it on Kepler/Turing, but none
* of the GPUs between those. NVGPU decides this by PCIID.
*/
if (0) {
ret = gf100_gr_fecs_elpg_bind(gr);
if (ret)
return ret;
}
/* Generate golden context image. */
if (gr->data == NULL) {
int ret = gf100_grctx_generate(gr);
if (ret) {
nvkm_error(subdev, "failed to construct context\n");
return ret;
}
}
return 0;
}
static int
gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
{
const struct gf100_grctx_func *grctx = gr->func->grctx;
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
if (!gr->func->fecs.ucode) {
return -ENOSYS;
}
/* load HUB microcode */
nvkm_mc_unk260(device, 0);
nvkm_falcon_load_dmem(&gr->fecs.falcon,
gr->func->fecs.ucode->data.data, 0x0,
gr->func->fecs.ucode->data.size, 0);
nvkm_falcon_load_imem(&gr->fecs.falcon,
gr->func->fecs.ucode->code.data, 0x0,
gr->func->fecs.ucode->code.size, 0, 0, false);
/* load GPC microcode */
nvkm_falcon_load_dmem(&gr->gpccs.falcon,
gr->func->gpccs.ucode->data.data, 0x0,
gr->func->gpccs.ucode->data.size, 0);
nvkm_falcon_load_imem(&gr->gpccs.falcon,
gr->func->gpccs.ucode->code.data, 0x0,
gr->func->gpccs.ucode->code.size, 0, 0, false);
nvkm_mc_unk260(device, 1);
/* load register lists */
gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
/* start HUB ucode running, it'll init the GPCs */
nvkm_wr32(device, 0x40910c, 0x00000000);
nvkm_wr32(device, 0x409100, 0x00000002);
if (nvkm_msec(device, 2000,
if (nvkm_rd32(device, 0x409800) & 0x80000000)
break;
) < 0) {
gf100_gr_ctxctl_debug(gr);
return -EBUSY;
}
gr->size = nvkm_rd32(device, 0x409804);
if (gr->data == NULL) {
int ret = gf100_grctx_generate(gr);
if (ret) {
nvkm_error(subdev, "failed to construct context\n");
return ret;
}
}
return 0;
}
int
gf100_gr_init_ctxctl(struct gf100_gr *gr)
{
int ret;
if (gr->firmware)
ret = gf100_gr_init_ctxctl_ext(gr);
else
ret = gf100_gr_init_ctxctl_int(gr);
return ret;
}
void
gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
{
int tpc, gpc;
for (tpc = 0; tpc < gr->tpc_max; tpc++) {
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
if (tpc < gr->tpc_nr[gpc]) {
gr->sm[gr->sm_nr].gpc = gpc;
gr->sm[gr->sm_nr].tpc = tpc;
gr->sm_nr++;
}
}
}
}
void
gf100_gr_oneinit_tiles(struct gf100_gr *gr)
{
static const u8 primes[] = {
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
};
int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
u32 mul_factor, comm_denom;
u8 gpc_map[GPC_MAX];
bool sorted;
switch (gr->tpc_total) {
case 15: gr->screen_tile_row_offset = 0x06; break;
case 14: gr->screen_tile_row_offset = 0x05; break;
case 13: gr->screen_tile_row_offset = 0x02; break;
case 11: gr->screen_tile_row_offset = 0x07; break;
case 10: gr->screen_tile_row_offset = 0x06; break;
case 7:
case 5: gr->screen_tile_row_offset = 0x01; break;
case 3: gr->screen_tile_row_offset = 0x02; break;
case 2:
case 1: gr->screen_tile_row_offset = 0x01; break;
default: gr->screen_tile_row_offset = 0x03;
for (i = 0; i < ARRAY_SIZE(primes); i++) {
if (gr->tpc_total % primes[i]) {
gr->screen_tile_row_offset = primes[i];
break;
}
}
break;
}
/* Sort GPCs by TPC count, highest-to-lowest. */
for (i = 0; i < gr->gpc_nr; i++)
gpc_map[i] = i;
sorted = false;
while (!sorted) {
for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
if (gr->tpc_nr[gpc_map[i + 1]] >
gr->tpc_nr[gpc_map[i + 0]]) {
u8 swap = gpc_map[i];
gpc_map[i + 0] = gpc_map[i + 1];
gpc_map[i + 1] = swap;
sorted = false;
}
}
}
/* Determine tile->GPC mapping */
mul_factor = gr->gpc_nr * gr->tpc_max;
if (mul_factor & 1)
mul_factor = 2;
else
mul_factor = 1;
comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
for (i = 0; i < gr->gpc_nr; i++) {
init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
run_err[i] = init_frac[i] + init_err[i];
}
for (i = 0; i < gr->tpc_total;) {
for (j = 0; j < gr->gpc_nr; j++) {
if ((run_err[j] * 2) >= comm_denom) {
gr->tile[i++] = gpc_map[j];
run_err[j] += init_frac[j] - comm_denom;
} else {
run_err[j] += init_frac[j];
}
}
}
}
static int
gf100_gr_oneinit(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
int i, j;
nvkm_pmu_pgob(device->pmu, false);
gr->rop_nr = gr->func->rops(gr);
gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
for (i = 0; i < gr->gpc_nr; i++) {
gr->tpc_nr[i] = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
gr->tpc_total += gr->tpc_nr[i];
gr->ppc_nr[i] = gr->func->ppc_nr;
for (j = 0; j < gr->ppc_nr[i]; j++) {
gr->ppc_tpc_mask[i][j] =
nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
if (gr->ppc_tpc_mask[i][j] == 0)
continue;
gr->ppc_mask[i] |= (1 << j);
gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
if (gr->ppc_tpc_min == 0 ||
gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
}
}
memset(gr->tile, 0xff, sizeof(gr->tile));
gr->func->oneinit_tiles(gr);
gr->func->oneinit_sm_id(gr);
return 0;
}
static int
gf100_gr_init_(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
struct nvkm_subdev *subdev = &base->engine.subdev;
struct nvkm_device *device = subdev->device;
bool reset = device->chipset == 0x137 || device->chipset == 0x138;
u32 ret;
/* On certain GP107/GP108 boards, we trigger a weird issue where
* GR will stop responding to PRI accesses after we've asked the
* SEC2 RTOS to boot the GR falcons. This happens with far more
* frequency when cold-booting a board (ie. returning from D3).
*
* The root cause for this is not known and has proven difficult
* to isolate, with many avenues being dead-ends.
*
* A workaround was discovered by Karol, whereby putting GR into
* reset for an extended period right before initialisation
* prevents the problem from occuring.
*
* XXX: As RM does not require any such workaround, this is more
* of a hack than a true fix.
*/
reset = nvkm_boolopt(device->cfgopt, "NvGrResetWar", reset);
if (reset) {
nvkm_mask(device, 0x000200, 0x00001000, 0x00000000);
nvkm_rd32(device, 0x000200);
msleep(50);
nvkm_mask(device, 0x000200, 0x00001000, 0x00001000);
nvkm_rd32(device, 0x000200);
}
nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
ret = nvkm_falcon_get(&gr->fecs.falcon, subdev);
if (ret)
return ret;
ret = nvkm_falcon_get(&gr->gpccs.falcon, subdev);
if (ret)
return ret;
return gr->func->init(gr);
}
static int
gf100_gr_fini(struct nvkm_gr *base, bool suspend)
{
struct gf100_gr *gr = gf100_gr(base);
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
nvkm_falcon_put(&gr->gpccs.falcon, subdev);
nvkm_falcon_put(&gr->fecs.falcon, subdev);
return 0;
}
static void *
gf100_gr_dtor(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
kfree(gr->data);
nvkm_falcon_dtor(&gr->gpccs.falcon);
nvkm_falcon_dtor(&gr->fecs.falcon);
nvkm_blob_dtor(&gr->fecs.inst);
nvkm_blob_dtor(&gr->fecs.data);
nvkm_blob_dtor(&gr->gpccs.inst);
nvkm_blob_dtor(&gr->gpccs.data);
vfree(gr->bundle);
vfree(gr->method);
vfree(gr->sw_ctx);
vfree(gr->sw_nonctx);
return gr;
}
static const struct nvkm_gr_func
gf100_gr_ = {
.dtor = gf100_gr_dtor,
.oneinit = gf100_gr_oneinit,
.init = gf100_gr_init_,
.fini = gf100_gr_fini,
.intr = gf100_gr_intr,
.units = gf100_gr_units,
.chan_new = gf100_gr_chan_new,
.object_get = gf100_gr_object_get,
.chsw_load = gf100_gr_chsw_load,
.ctxsw.pause = gf100_gr_fecs_stop_ctxsw,
.ctxsw.resume = gf100_gr_fecs_start_ctxsw,
.ctxsw.inst = gf100_gr_ctxsw_inst,
};
static const struct nvkm_falcon_func
gf100_gr_flcn = {
.fbif = 0x600,
.load_imem = nvkm_falcon_v1_load_imem,
.load_dmem = nvkm_falcon_v1_load_dmem,
.read_dmem = nvkm_falcon_v1_read_dmem,
.bind_context = nvkm_falcon_v1_bind_context,
.wait_for_halt = nvkm_falcon_v1_wait_for_halt,
.clear_interrupt = nvkm_falcon_v1_clear_interrupt,
.set_start_addr = nvkm_falcon_v1_set_start_addr,
.start = nvkm_falcon_v1_start,
.enable = nvkm_falcon_v1_enable,
.disable = nvkm_falcon_v1_disable,
};
int
gf100_gr_new_(const struct gf100_gr_fwif *fwif, struct nvkm_device *device,
enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
{
struct gf100_gr *gr;
int ret;
if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
return -ENOMEM;
*pgr = &gr->base;
ret = nvkm_gr_ctor(&gf100_gr_, device, type, inst, true, &gr->base);
if (ret)
return ret;
fwif = nvkm_firmware_load(&gr->base.engine.subdev, fwif, "Gr", gr);
if (IS_ERR(fwif))
return PTR_ERR(fwif);
gr->func = fwif->func;
ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
"fecs", 0x409000, &gr->fecs.falcon);
if (ret)
return ret;
mutex_init(&gr->fecs.mutex);
ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
"gpccs", 0x41a000, &gr->gpccs.falcon);
if (ret)
return ret;
return 0;
}
void
gf100_gr_init_num_tpc_per_gpc(struct gf100_gr *gr, bool pd, bool ds)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
int gpc, i, j;
u32 data;
for (gpc = 0, i = 0; i < 4; i++) {
for (data = 0, j = 0; j < 8 && gpc < gr->gpc_nr; j++, gpc++)
data |= gr->tpc_nr[gpc] << (j * 4);
if (pd)
nvkm_wr32(device, 0x406028 + (i * 4), data);
if (ds)
nvkm_wr32(device, 0x405870 + (i * 4), data);
}
}
void
gf100_gr_init_400054(struct gf100_gr *gr)
{
nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
}
void
gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
}
void
gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
}
void
gf100_gr_init_419eb4(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
}
void
gf100_gr_init_419cc0(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
int gpc, tpc;
nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
}
}
void
gf100_gr_init_40601c(struct gf100_gr *gr)
{
nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
}
void
gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
{
const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
}
void
gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
struct nvkm_fb *fb = device->fb;
nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
nvkm_wr32(device, 0x4188a4, 0x03000000);
nvkm_wr32(device, 0x418888, 0x00000000);
nvkm_wr32(device, 0x41888c, 0x00000000);
nvkm_wr32(device, 0x418890, 0x00000000);
nvkm_wr32(device, 0x418894, 0x00000000);
nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
}
void
gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
}
void
gf100_gr_init_zcull(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
const u8 tile_nr = ALIGN(gr->tpc_total, 32);
u8 bank[GPC_MAX] = {}, gpc, i, j;
u32 data;
for (i = 0; i < tile_nr; i += 8) {
for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
data |= bank[gr->tile[i + j]] << (j * 4);
bank[gr->tile[i + j]]++;
}
nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
}
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
gr->tpc_total);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
}
nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
}
void
gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
}
int
gf100_gr_init(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
int gpc, tpc, rop;
if (gr->func->init_419bd8)
gr->func->init_419bd8(gr);
gr->func->init_gpc_mmu(gr);
if (gr->sw_nonctx)
gf100_gr_mmio(gr, gr->sw_nonctx);
else
gf100_gr_mmio(gr, gr->func->mmio);
gf100_gr_wait_idle(gr);
if (gr->func->init_r405a14)
gr->func->init_r405a14(gr);
if (gr->func->clkgate_pack)
nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
if (gr->func->init_bios)
gr->func->init_bios(gr);
gr->func->init_vsc_stream_master(gr);
gr->func->init_zcull(gr);
gr->func->init_num_active_ltcs(gr);
if (gr->func->init_rop_active_fbps)
gr->func->init_rop_active_fbps(gr);
if (gr->func->init_bios_2)
gr->func->init_bios_2(gr);
if (gr->func->init_swdx_pes_mask)
gr->func->init_swdx_pes_mask(gr);
if (gr->func->init_fs)
gr->func->init_fs(gr);
nvkm_wr32(device, 0x400500, 0x00010001);
nvkm_wr32(device, 0x400100, 0xffffffff);
nvkm_wr32(device, 0x40013c, 0xffffffff);
nvkm_wr32(device, 0x400124, 0x00000002);
gr->func->init_fecs_exceptions(gr);
if (gr->func->init_ds_hww_esr_2)
gr->func->init_ds_hww_esr_2(gr);
nvkm_wr32(device, 0x404000, 0xc0000000);
nvkm_wr32(device, 0x404600, 0xc0000000);
nvkm_wr32(device, 0x408030, 0xc0000000);
if (gr->func->init_40601c)
gr->func->init_40601c(gr);
nvkm_wr32(device, 0x406018, 0xc0000000);
nvkm_wr32(device, 0x404490, 0xc0000000);
if (gr->func->init_sked_hww_esr)
gr->func->init_sked_hww_esr(gr);
nvkm_wr32(device, 0x405840, 0xc0000000);
nvkm_wr32(device, 0x405844, 0x00ffffff);
if (gr->func->init_419cc0)
gr->func->init_419cc0(gr);
if (gr->func->init_419eb4)
gr->func->init_419eb4(gr);
if (gr->func->init_419c9c)
gr->func->init_419c9c(gr);
if (gr->func->init_ppc_exceptions)
gr->func->init_ppc_exceptions(gr);
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
if (gr->func->init_tex_hww_esr)
gr->func->init_tex_hww_esr(gr, gpc, tpc);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
if (gr->func->init_504430)
gr->func->init_504430(gr, gpc, tpc);
gr->func->init_shader_exceptions(gr, gpc, tpc);
}
nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
}
for (rop = 0; rop < gr->rop_nr; rop++) {
nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
}
nvkm_wr32(device, 0x400108, 0xffffffff);
nvkm_wr32(device, 0x400138, 0xffffffff);
nvkm_wr32(device, 0x400118, 0xffffffff);
nvkm_wr32(device, 0x400130, 0xffffffff);
nvkm_wr32(device, 0x40011c, 0xffffffff);
nvkm_wr32(device, 0x400134, 0xffffffff);
if (gr->func->init_400054)
gr->func->init_400054(gr);
gf100_gr_zbc_init(gr);
if (gr->func->init_4188a4)
gr->func->init_4188a4(gr);
return gf100_gr_init_ctxctl(gr);
}
#include "fuc/hubgf100.fuc3.h"
struct gf100_gr_ucode
gf100_gr_fecs_ucode = {
.code.data = gf100_grhub_code,
.code.size = sizeof(gf100_grhub_code),
.data.data = gf100_grhub_data,
.data.size = sizeof(gf100_grhub_data),
};
#include "fuc/gpcgf100.fuc3.h"
struct gf100_gr_ucode
gf100_gr_gpccs_ucode = {
.code.data = gf100_grgpc_code,
.code.size = sizeof(gf100_grgpc_code),
.data.data = gf100_grgpc_data,
.data.size = sizeof(gf100_grgpc_data),
};
static const struct gf100_gr_func
gf100_gr = {
.oneinit_tiles = gf100_gr_oneinit_tiles,
.oneinit_sm_id = gf100_gr_oneinit_sm_id,
.init = gf100_gr_init,
.init_gpc_mmu = gf100_gr_init_gpc_mmu,
.init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
.init_zcull = gf100_gr_init_zcull,
.init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
.init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
.init_40601c = gf100_gr_init_40601c,
.init_419cc0 = gf100_gr_init_419cc0,
.init_419eb4 = gf100_gr_init_419eb4,
.init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
.init_shader_exceptions = gf100_gr_init_shader_exceptions,
.init_400054 = gf100_gr_init_400054,
.trap_mp = gf100_gr_trap_mp,
.mmio = gf100_gr_pack_mmio,
.fecs.ucode = &gf100_gr_fecs_ucode,
.gpccs.ucode = &gf100_gr_gpccs_ucode,
.rops = gf100_gr_rops,
.grctx = &gf100_grctx,
.zbc = &gf100_gr_zbc,
.sclass = {
{ -1, -1, FERMI_TWOD_A },
{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
{ -1, -1, FERMI_A, &gf100_fermi },
{ -1, -1, FERMI_COMPUTE_A },
{}
}
};
int
gf100_gr_nofw(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
{
gr->firmware = false;
return 0;
}
static int
gf100_gr_load_fw(struct gf100_gr *gr, const char *name,
struct nvkm_blob *blob)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
const struct firmware *fw;
char f[32];
int ret;
snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, name);
ret = request_firmware(&fw, f, device->dev);
if (ret) {
snprintf(f, sizeof(f), "nouveau/%s", name);
ret = request_firmware(&fw, f, device->dev);
if (ret) {
nvkm_error(subdev, "failed to load %s\n", name);
return ret;
}
}
blob->size = fw->size;
blob->data = kmemdup(fw->data, blob->size, GFP_KERNEL);
release_firmware(fw);
return (blob->data != NULL) ? 0 : -ENOMEM;
}
int
gf100_gr_load(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
if (!nvkm_boolopt(device->cfgopt, "NvGrUseFW", false))
return -EINVAL;
if (gf100_gr_load_fw(gr, "fuc409c", &gr->fecs.inst) ||
gf100_gr_load_fw(gr, "fuc409d", &gr->fecs.data) ||
gf100_gr_load_fw(gr, "fuc41ac", &gr->gpccs.inst) ||
gf100_gr_load_fw(gr, "fuc41ad", &gr->gpccs.data))
return -ENOENT;
gr->firmware = true;
return 0;
}
static const struct gf100_gr_fwif
gf100_gr_fwif[] = {
{ -1, gf100_gr_load, &gf100_gr },
{ -1, gf100_gr_nofw, &gf100_gr },
{}
};
int
gf100_gr_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
{
return gf100_gr_new_(gf100_gr_fwif, device, type, inst, pgr);
}