blob: a33ed473cc8af87ca950a719d1b918c38c9ab0d0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2013 Solarflare Communications Inc.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/cpu_rmap.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "ef10_regs.h"
#include "io.h"
#include "workarounds.h"
#include "mcdi_pcol.h"
/**************************************************************************
*
* Generic buffer handling
* These buffers are used for interrupt status, MAC stats, etc.
*
**************************************************************************/
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
unsigned int len, gfp_t gfp_flags)
{
buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
&buffer->dma_addr, gfp_flags);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
return 0;
}
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
if (buffer->addr) {
dma_free_coherent(&efx->pci_dev->dev, buffer->len,
buffer->addr, buffer->dma_addr);
buffer->addr = NULL;
}
}
/* Check whether an event is present in the eventq at the current
* read pointer. Only useful for self-test.
*/
bool efx_nic_event_present(struct efx_channel *channel)
{
return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
}
void efx_nic_event_test_start(struct efx_channel *channel)
{
channel->event_test_cpu = -1;
smp_wmb();
channel->efx->type->ev_test_generate(channel);
}
int efx_nic_irq_test_start(struct efx_nic *efx)
{
efx->last_irq_cpu = -1;
smp_wmb();
return efx->type->irq_test_generate(efx);
}
/* Hook interrupt handler(s)
* Try MSI and then legacy interrupts.
*/
int efx_nic_init_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
unsigned int n_irqs;
int rc;
if (!EFX_INT_MODE_USE_MSI(efx)) {
rc = request_irq(efx->legacy_irq,
efx->type->irq_handle_legacy, IRQF_SHARED,
efx->name, efx);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to hook legacy IRQ %d\n",
efx->pci_dev->irq);
goto fail1;
}
efx->irqs_hooked = true;
return 0;
}
#ifdef CONFIG_RFS_ACCEL
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
efx->net_dev->rx_cpu_rmap =
alloc_irq_cpu_rmap(efx->n_rx_channels);
if (!efx->net_dev->rx_cpu_rmap) {
rc = -ENOMEM;
goto fail1;
}
}
#endif
/* Hook MSI or MSI-X interrupt */
n_irqs = 0;
efx_for_each_channel(channel, efx) {
rc = request_irq(channel->irq, efx->type->irq_handle_msi,
IRQF_PROBE_SHARED, /* Not shared */
efx->msi_context[channel->channel].name,
&efx->msi_context[channel->channel]);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to hook IRQ %d\n", channel->irq);
goto fail2;
}
++n_irqs;
#ifdef CONFIG_RFS_ACCEL
if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
channel->channel < efx->n_rx_channels) {
rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
channel->irq);
if (rc)
goto fail2;
}
#endif
}
efx->irqs_hooked = true;
return 0;
fail2:
#ifdef CONFIG_RFS_ACCEL
free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
efx->net_dev->rx_cpu_rmap = NULL;
#endif
efx_for_each_channel(channel, efx) {
if (n_irqs-- == 0)
break;
free_irq(channel->irq, &efx->msi_context[channel->channel]);
}
fail1:
return rc;
}
void efx_nic_fini_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
#ifdef CONFIG_RFS_ACCEL
free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
efx->net_dev->rx_cpu_rmap = NULL;
#endif
if (!efx->irqs_hooked)
return;
if (EFX_INT_MODE_USE_MSI(efx)) {
/* Disable MSI/MSI-X interrupts */
efx_for_each_channel(channel, efx)
free_irq(channel->irq,
&efx->msi_context[channel->channel]);
} else {
/* Disable legacy interrupt */
free_irq(efx->legacy_irq, efx);
}
efx->irqs_hooked = false;
}
/* Register dump */
#define REGISTER_REVISION_ED 4
#define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
struct efx_nic_reg {
u32 offset:24;
u32 min_revision:3, max_revision:3;
};
#define REGISTER(name, arch, min_rev, max_rev) { \
arch ## R_ ## min_rev ## max_rev ## _ ## name, \
REGISTER_REVISION_ ## arch ## min_rev, \
REGISTER_REVISION_ ## arch ## max_rev \
}
#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
static const struct efx_nic_reg efx_nic_regs[] = {
/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
/* XX_CORE_STAT is partly RC */
REGISTER_DZ(BIU_HW_REV_ID),
REGISTER_DZ(MC_DB_LWRD),
REGISTER_DZ(MC_DB_HWRD),
};
struct efx_nic_reg_table {
u32 offset:24;
u32 min_revision:3, max_revision:3;
u32 step:6, rows:21;
};
#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
offset, \
REGISTER_REVISION_ ## arch ## min_rev, \
REGISTER_REVISION_ ## arch ## max_rev, \
step, rows \
}
#define REGISTER_TABLE(name, arch, min_rev, max_rev) \
REGISTER_TABLE_DIMENSIONS( \
name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
arch, min_rev, max_rev, \
arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
};
size_t efx_nic_get_regs_len(struct efx_nic *efx)
{
const struct efx_nic_reg *reg;
const struct efx_nic_reg_table *table;
size_t len = 0;
for (reg = efx_nic_regs;
reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
reg++)
if (efx->type->revision >= reg->min_revision &&
efx->type->revision <= reg->max_revision)
len += sizeof(efx_oword_t);
for (table = efx_nic_reg_tables;
table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
table++)
if (efx->type->revision >= table->min_revision &&
efx->type->revision <= table->max_revision)
len += table->rows * min_t(size_t, table->step, 16);
return len;
}
void efx_nic_get_regs(struct efx_nic *efx, void *buf)
{
const struct efx_nic_reg *reg;
const struct efx_nic_reg_table *table;
for (reg = efx_nic_regs;
reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
reg++) {
if (efx->type->revision >= reg->min_revision &&
efx->type->revision <= reg->max_revision) {
efx_reado(efx, (efx_oword_t *)buf, reg->offset);
buf += sizeof(efx_oword_t);
}
}
for (table = efx_nic_reg_tables;
table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
table++) {
size_t size, i;
if (!(efx->type->revision >= table->min_revision &&
efx->type->revision <= table->max_revision))
continue;
size = min_t(size_t, table->step, 16);
for (i = 0; i < table->rows; i++) {
switch (table->step) {
case 4: /* 32-bit SRAM */
efx_readd(efx, buf, table->offset + 4 * i);
break;
case 16: /* 128-bit-readable register */
efx_reado_table(efx, buf, table->offset, i);
break;
case 32: /* 128-bit register, interleaved */
efx_reado_table(efx, buf, table->offset, 2 * i);
break;
default:
WARN_ON(1);
return;
}
buf += size;
}
}
}
/**
* efx_nic_describe_stats - Describe supported statistics for ethtool
* @desc: Array of &struct efx_hw_stat_desc describing the statistics
* @count: Length of the @desc array
* @mask: Bitmask of which elements of @desc are enabled
* @names: Buffer to copy names to, or %NULL. The names are copied
* starting at intervals of %ETH_GSTRING_LEN bytes.
*
* Returns the number of visible statistics, i.e. the number of set
* bits in the first @count bits of @mask for which a name is defined.
*/
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
const unsigned long *mask, u8 *names)
{
size_t visible = 0;
size_t index;
for_each_set_bit(index, mask, count) {
if (desc[index].name) {
if (names) {
strscpy(names, desc[index].name,
ETH_GSTRING_LEN);
names += ETH_GSTRING_LEN;
}
++visible;
}
}
return visible;
}
/**
* efx_nic_copy_stats - Copy stats from the DMA buffer in to an
* intermediate buffer. This is used to get a consistent
* set of stats while the DMA buffer can be written at any time
* by the NIC.
* @efx: The associated NIC.
* @dest: Destination buffer. Must be the same size as the DMA buffer.
*/
int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
{
__le64 *dma_stats = efx->stats_buffer.addr;
__le64 generation_start, generation_end;
int rc = 0, retry;
if (!dest)
return 0;
if (!dma_stats)
goto return_zeroes;
/* If we're unlucky enough to read statistics during the DMA, wait
* up to 10ms for it to finish (typically takes <500us)
*/
for (retry = 0; retry < 100; ++retry) {
generation_end = dma_stats[efx->num_mac_stats - 1];
if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
goto return_zeroes;
rmb();
memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end == generation_start)
return 0; /* return good data */
udelay(100);
}
rc = -EIO;
return_zeroes:
memset(dest, 0, efx->num_mac_stats * sizeof(u64));
return rc;
}
/**
* efx_nic_update_stats - Convert statistics DMA buffer to array of u64
* @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
* layout. DMA widths of 0, 16, 32 and 64 are supported; where
* the width is specified as 0 the corresponding element of
* @stats is not updated.
* @count: Length of the @desc array
* @mask: Bitmask of which elements of @desc are enabled
* @stats: Buffer to update with the converted statistics. The length
* of this array must be at least @count.
* @dma_buf: DMA buffer containing hardware statistics
* @accumulate: If set, the converted values will be added rather than
* directly stored to the corresponding elements of @stats
*/
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
const unsigned long *mask,
u64 *stats, const void *dma_buf, bool accumulate)
{
size_t index;
for_each_set_bit(index, mask, count) {
if (desc[index].dma_width) {
const void *addr = dma_buf + desc[index].offset;
u64 val;
switch (desc[index].dma_width) {
case 16:
val = le16_to_cpup((__le16 *)addr);
break;
case 32:
val = le32_to_cpup((__le32 *)addr);
break;
case 64:
val = le64_to_cpup((__le64 *)addr);
break;
default:
WARN_ON(1);
val = 0;
break;
}
if (accumulate)
stats[index] += val;
else
stats[index] = val;
}
}
}
void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
{
/* if down, or this is the first update after coming up */
if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
efx->rx_nodesc_drops_while_down +=
*rx_nodesc_drops - efx->rx_nodesc_drops_total;
efx->rx_nodesc_drops_total = *rx_nodesc_drops;
efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
}