| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2019 Intel Corporation |
| */ |
| |
| #include <drm/i915_drm.h> |
| |
| #include "i915_drv.h" |
| #include "intel_breadcrumbs.h" |
| #include "intel_gt.h" |
| #include "intel_gt_clock_utils.h" |
| #include "intel_gt_irq.h" |
| #include "intel_gt_pm_irq.h" |
| #include "intel_rps.h" |
| #include "intel_sideband.h" |
| #include "../../../platform/x86/intel_ips.h" |
| |
| #define BUSY_MAX_EI 20u /* ms */ |
| |
| /* |
| * Lock protecting IPS related data structures |
| */ |
| static DEFINE_SPINLOCK(mchdev_lock); |
| |
| static struct intel_gt *rps_to_gt(struct intel_rps *rps) |
| { |
| return container_of(rps, struct intel_gt, rps); |
| } |
| |
| static struct drm_i915_private *rps_to_i915(struct intel_rps *rps) |
| { |
| return rps_to_gt(rps)->i915; |
| } |
| |
| static struct intel_uncore *rps_to_uncore(struct intel_rps *rps) |
| { |
| return rps_to_gt(rps)->uncore; |
| } |
| |
| static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask) |
| { |
| return mask & ~rps->pm_intrmsk_mbz; |
| } |
| |
| static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) |
| { |
| intel_uncore_write_fw(uncore, reg, val); |
| } |
| |
| static void rps_timer(struct timer_list *t) |
| { |
| struct intel_rps *rps = from_timer(rps, t, timer); |
| struct intel_engine_cs *engine; |
| ktime_t dt, last, timestamp; |
| enum intel_engine_id id; |
| s64 max_busy[3] = {}; |
| |
| timestamp = 0; |
| for_each_engine(engine, rps_to_gt(rps), id) { |
| s64 busy; |
| int i; |
| |
| dt = intel_engine_get_busy_time(engine, ×tamp); |
| last = engine->stats.rps; |
| engine->stats.rps = dt; |
| |
| busy = ktime_to_ns(ktime_sub(dt, last)); |
| for (i = 0; i < ARRAY_SIZE(max_busy); i++) { |
| if (busy > max_busy[i]) |
| swap(busy, max_busy[i]); |
| } |
| } |
| last = rps->pm_timestamp; |
| rps->pm_timestamp = timestamp; |
| |
| if (intel_rps_is_active(rps)) { |
| s64 busy; |
| int i; |
| |
| dt = ktime_sub(timestamp, last); |
| |
| /* |
| * Our goal is to evaluate each engine independently, so we run |
| * at the lowest clocks required to sustain the heaviest |
| * workload. However, a task may be split into sequential |
| * dependent operations across a set of engines, such that |
| * the independent contributions do not account for high load, |
| * but overall the task is GPU bound. For example, consider |
| * video decode on vcs followed by colour post-processing |
| * on vecs, followed by general post-processing on rcs. |
| * Since multi-engines being active does imply a single |
| * continuous workload across all engines, we hedge our |
| * bets by only contributing a factor of the distributed |
| * load into our busyness calculation. |
| */ |
| busy = max_busy[0]; |
| for (i = 1; i < ARRAY_SIZE(max_busy); i++) { |
| if (!max_busy[i]) |
| break; |
| |
| busy += div_u64(max_busy[i], 1 << i); |
| } |
| GT_TRACE(rps_to_gt(rps), |
| "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n", |
| busy, (int)div64_u64(100 * busy, dt), |
| max_busy[0], max_busy[1], max_busy[2], |
| rps->pm_interval); |
| |
| if (100 * busy > rps->power.up_threshold * dt && |
| rps->cur_freq < rps->max_freq_softlimit) { |
| rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD; |
| rps->pm_interval = 1; |
| schedule_work(&rps->work); |
| } else if (100 * busy < rps->power.down_threshold * dt && |
| rps->cur_freq > rps->min_freq_softlimit) { |
| rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD; |
| rps->pm_interval = 1; |
| schedule_work(&rps->work); |
| } else { |
| rps->last_adj = 0; |
| } |
| |
| mod_timer(&rps->timer, |
| jiffies + msecs_to_jiffies(rps->pm_interval)); |
| rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI); |
| } |
| } |
| |
| static void rps_start_timer(struct intel_rps *rps) |
| { |
| rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp); |
| rps->pm_interval = 1; |
| mod_timer(&rps->timer, jiffies + 1); |
| } |
| |
| static void rps_stop_timer(struct intel_rps *rps) |
| { |
| del_timer_sync(&rps->timer); |
| rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp); |
| cancel_work_sync(&rps->work); |
| } |
| |
| static u32 rps_pm_mask(struct intel_rps *rps, u8 val) |
| { |
| u32 mask = 0; |
| |
| /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */ |
| if (val > rps->min_freq_softlimit) |
| mask |= (GEN6_PM_RP_UP_EI_EXPIRED | |
| GEN6_PM_RP_DOWN_THRESHOLD | |
| GEN6_PM_RP_DOWN_TIMEOUT); |
| |
| if (val < rps->max_freq_softlimit) |
| mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; |
| |
| mask &= rps->pm_events; |
| |
| return rps_pm_sanitize_mask(rps, ~mask); |
| } |
| |
| static void rps_reset_ei(struct intel_rps *rps) |
| { |
| memset(&rps->ei, 0, sizeof(rps->ei)); |
| } |
| |
| static void rps_enable_interrupts(struct intel_rps *rps) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| |
| GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n", |
| rps->pm_events, rps_pm_mask(rps, rps->last_freq)); |
| |
| rps_reset_ei(rps); |
| |
| spin_lock_irq(>->irq_lock); |
| gen6_gt_pm_enable_irq(gt, rps->pm_events); |
| spin_unlock_irq(>->irq_lock); |
| |
| intel_uncore_write(gt->uncore, |
| GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq)); |
| } |
| |
| static void gen6_rps_reset_interrupts(struct intel_rps *rps) |
| { |
| gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS); |
| } |
| |
| static void gen11_rps_reset_interrupts(struct intel_rps *rps) |
| { |
| while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM)) |
| ; |
| } |
| |
| static void rps_reset_interrupts(struct intel_rps *rps) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| |
| spin_lock_irq(>->irq_lock); |
| if (INTEL_GEN(gt->i915) >= 11) |
| gen11_rps_reset_interrupts(rps); |
| else |
| gen6_rps_reset_interrupts(rps); |
| |
| rps->pm_iir = 0; |
| spin_unlock_irq(>->irq_lock); |
| } |
| |
| static void rps_disable_interrupts(struct intel_rps *rps) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| |
| intel_uncore_write(gt->uncore, |
| GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u)); |
| |
| spin_lock_irq(>->irq_lock); |
| gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS); |
| spin_unlock_irq(>->irq_lock); |
| |
| intel_synchronize_irq(gt->i915); |
| |
| /* |
| * Now that we will not be generating any more work, flush any |
| * outstanding tasks. As we are called on the RPS idle path, |
| * we will reset the GPU to minimum frequencies, so the current |
| * state of the worker can be discarded. |
| */ |
| cancel_work_sync(&rps->work); |
| |
| rps_reset_interrupts(rps); |
| GT_TRACE(gt, "interrupts:off\n"); |
| } |
| |
| static const struct cparams { |
| u16 i; |
| u16 t; |
| u16 m; |
| u16 c; |
| } cparams[] = { |
| { 1, 1333, 301, 28664 }, |
| { 1, 1066, 294, 24460 }, |
| { 1, 800, 294, 25192 }, |
| { 0, 1333, 276, 27605 }, |
| { 0, 1066, 276, 27605 }, |
| { 0, 800, 231, 23784 }, |
| }; |
| |
| static void gen5_rps_init(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| u8 fmax, fmin, fstart; |
| u32 rgvmodectl; |
| int c_m, i; |
| |
| if (i915->fsb_freq <= 3200) |
| c_m = 0; |
| else if (i915->fsb_freq <= 4800) |
| c_m = 1; |
| else |
| c_m = 2; |
| |
| for (i = 0; i < ARRAY_SIZE(cparams); i++) { |
| if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) { |
| rps->ips.m = cparams[i].m; |
| rps->ips.c = cparams[i].c; |
| break; |
| } |
| } |
| |
| rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); |
| |
| /* Set up min, max, and cur for interrupt handling */ |
| fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; |
| fmin = (rgvmodectl & MEMMODE_FMIN_MASK); |
| fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> |
| MEMMODE_FSTART_SHIFT; |
| drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n", |
| fmax, fmin, fstart); |
| |
| rps->min_freq = fmax; |
| rps->efficient_freq = fstart; |
| rps->max_freq = fmin; |
| } |
| |
| static unsigned long |
| __ips_chipset_val(struct intel_ips *ips) |
| { |
| struct intel_uncore *uncore = |
| rps_to_uncore(container_of(ips, struct intel_rps, ips)); |
| unsigned long now = jiffies_to_msecs(jiffies), dt; |
| unsigned long result; |
| u64 total, delta; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| /* |
| * Prevent division-by-zero if we are asking too fast. |
| * Also, we don't get interesting results if we are polling |
| * faster than once in 10ms, so just return the saved value |
| * in such cases. |
| */ |
| dt = now - ips->last_time1; |
| if (dt <= 10) |
| return ips->chipset_power; |
| |
| /* FIXME: handle per-counter overflow */ |
| total = intel_uncore_read(uncore, DMIEC); |
| total += intel_uncore_read(uncore, DDREC); |
| total += intel_uncore_read(uncore, CSIEC); |
| |
| delta = total - ips->last_count1; |
| |
| result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10); |
| |
| ips->last_count1 = total; |
| ips->last_time1 = now; |
| |
| ips->chipset_power = result; |
| |
| return result; |
| } |
| |
| static unsigned long ips_mch_val(struct intel_uncore *uncore) |
| { |
| unsigned int m, x, b; |
| u32 tsfs; |
| |
| tsfs = intel_uncore_read(uncore, TSFS); |
| x = intel_uncore_read8(uncore, TR1); |
| |
| b = tsfs & TSFS_INTR_MASK; |
| m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT; |
| |
| return m * x / 127 - b; |
| } |
| |
| static int _pxvid_to_vd(u8 pxvid) |
| { |
| if (pxvid == 0) |
| return 0; |
| |
| if (pxvid >= 8 && pxvid < 31) |
| pxvid = 31; |
| |
| return (pxvid + 2) * 125; |
| } |
| |
| static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid) |
| { |
| const int vd = _pxvid_to_vd(pxvid); |
| |
| if (INTEL_INFO(i915)->is_mobile) |
| return max(vd - 1125, 0); |
| |
| return vd; |
| } |
| |
| static void __gen5_ips_update(struct intel_ips *ips) |
| { |
| struct intel_uncore *uncore = |
| rps_to_uncore(container_of(ips, struct intel_rps, ips)); |
| u64 now, delta, dt; |
| u32 count; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| now = ktime_get_raw_ns(); |
| dt = now - ips->last_time2; |
| do_div(dt, NSEC_PER_MSEC); |
| |
| /* Don't divide by 0 */ |
| if (dt <= 10) |
| return; |
| |
| count = intel_uncore_read(uncore, GFXEC); |
| delta = count - ips->last_count2; |
| |
| ips->last_count2 = count; |
| ips->last_time2 = now; |
| |
| /* More magic constants... */ |
| ips->gfx_power = div_u64(delta * 1181, dt * 10); |
| } |
| |
| static void gen5_rps_update(struct intel_rps *rps) |
| { |
| spin_lock_irq(&mchdev_lock); |
| __gen5_ips_update(&rps->ips); |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| static unsigned int gen5_invert_freq(struct intel_rps *rps, |
| unsigned int val) |
| { |
| /* Invert the frequency bin into an ips delay */ |
| val = rps->max_freq - val; |
| val = rps->min_freq + val; |
| |
| return val; |
| } |
| |
| static bool gen5_rps_set(struct intel_rps *rps, u8 val) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| u16 rgvswctl; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); |
| if (rgvswctl & MEMCTL_CMD_STS) { |
| DRM_DEBUG("gpu busy, RCS change rejected\n"); |
| return false; /* still busy with another command */ |
| } |
| |
| /* Invert the frequency bin into an ips delay */ |
| val = gen5_invert_freq(rps, val); |
| |
| rgvswctl = |
| (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | |
| (val << MEMCTL_FREQ_SHIFT) | |
| MEMCTL_SFCAVM; |
| intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); |
| intel_uncore_posting_read16(uncore, MEMSWCTL); |
| |
| rgvswctl |= MEMCTL_CMD_STS; |
| intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); |
| |
| return true; |
| } |
| |
| static unsigned long intel_pxfreq(u32 vidfreq) |
| { |
| int div = (vidfreq & 0x3f0000) >> 16; |
| int post = (vidfreq & 0x3000) >> 12; |
| int pre = (vidfreq & 0x7); |
| |
| if (!pre) |
| return 0; |
| |
| return div * 133333 / (pre << post); |
| } |
| |
| static unsigned int init_emon(struct intel_uncore *uncore) |
| { |
| u8 pxw[16]; |
| int i; |
| |
| /* Disable to program */ |
| intel_uncore_write(uncore, ECR, 0); |
| intel_uncore_posting_read(uncore, ECR); |
| |
| /* Program energy weights for various events */ |
| intel_uncore_write(uncore, SDEW, 0x15040d00); |
| intel_uncore_write(uncore, CSIEW0, 0x007f0000); |
| intel_uncore_write(uncore, CSIEW1, 0x1e220004); |
| intel_uncore_write(uncore, CSIEW2, 0x04000004); |
| |
| for (i = 0; i < 5; i++) |
| intel_uncore_write(uncore, PEW(i), 0); |
| for (i = 0; i < 3; i++) |
| intel_uncore_write(uncore, DEW(i), 0); |
| |
| /* Program P-state weights to account for frequency power adjustment */ |
| for (i = 0; i < 16; i++) { |
| u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i)); |
| unsigned int freq = intel_pxfreq(pxvidfreq); |
| unsigned int vid = |
| (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; |
| unsigned int val; |
| |
| val = vid * vid * freq / 1000 * 255; |
| val /= 127 * 127 * 900; |
| |
| pxw[i] = val; |
| } |
| /* Render standby states get 0 weight */ |
| pxw[14] = 0; |
| pxw[15] = 0; |
| |
| for (i = 0; i < 4; i++) { |
| intel_uncore_write(uncore, PXW(i), |
| pxw[i * 4 + 0] << 24 | |
| pxw[i * 4 + 1] << 16 | |
| pxw[i * 4 + 2] << 8 | |
| pxw[i * 4 + 3] << 0); |
| } |
| |
| /* Adjust magic regs to magic values (more experimental results) */ |
| intel_uncore_write(uncore, OGW0, 0); |
| intel_uncore_write(uncore, OGW1, 0); |
| intel_uncore_write(uncore, EG0, 0x00007f00); |
| intel_uncore_write(uncore, EG1, 0x0000000e); |
| intel_uncore_write(uncore, EG2, 0x000e0000); |
| intel_uncore_write(uncore, EG3, 0x68000300); |
| intel_uncore_write(uncore, EG4, 0x42000000); |
| intel_uncore_write(uncore, EG5, 0x00140031); |
| intel_uncore_write(uncore, EG6, 0); |
| intel_uncore_write(uncore, EG7, 0); |
| |
| for (i = 0; i < 8; i++) |
| intel_uncore_write(uncore, PXWL(i), 0); |
| |
| /* Enable PMON + select events */ |
| intel_uncore_write(uncore, ECR, 0x80000019); |
| |
| return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK; |
| } |
| |
| static bool gen5_rps_enable(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| u8 fstart, vstart; |
| u32 rgvmodectl; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); |
| |
| /* Enable temp reporting */ |
| intel_uncore_write16(uncore, PMMISC, |
| intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN); |
| intel_uncore_write16(uncore, TSC1, |
| intel_uncore_read16(uncore, TSC1) | TSE); |
| |
| /* 100ms RC evaluation intervals */ |
| intel_uncore_write(uncore, RCUPEI, 100000); |
| intel_uncore_write(uncore, RCDNEI, 100000); |
| |
| /* Set max/min thresholds to 90ms and 80ms respectively */ |
| intel_uncore_write(uncore, RCBMAXAVG, 90000); |
| intel_uncore_write(uncore, RCBMINAVG, 80000); |
| |
| intel_uncore_write(uncore, MEMIHYST, 1); |
| |
| /* Set up min, max, and cur for interrupt handling */ |
| fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> |
| MEMMODE_FSTART_SHIFT; |
| |
| vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) & |
| PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; |
| |
| intel_uncore_write(uncore, |
| MEMINTREN, |
| MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); |
| |
| intel_uncore_write(uncore, VIDSTART, vstart); |
| intel_uncore_posting_read(uncore, VIDSTART); |
| |
| rgvmodectl |= MEMMODE_SWMODE_EN; |
| intel_uncore_write(uncore, MEMMODECTL, rgvmodectl); |
| |
| if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) & |
| MEMCTL_CMD_STS) == 0, 10)) |
| drm_err(&uncore->i915->drm, |
| "stuck trying to change perf mode\n"); |
| mdelay(1); |
| |
| gen5_rps_set(rps, rps->cur_freq); |
| |
| rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC); |
| rps->ips.last_count1 += intel_uncore_read(uncore, DDREC); |
| rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC); |
| rps->ips.last_time1 = jiffies_to_msecs(jiffies); |
| |
| rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC); |
| rps->ips.last_time2 = ktime_get_raw_ns(); |
| |
| spin_lock(&i915->irq_lock); |
| ilk_enable_display_irq(i915, DE_PCU_EVENT); |
| spin_unlock(&i915->irq_lock); |
| |
| spin_unlock_irq(&mchdev_lock); |
| |
| rps->ips.corr = init_emon(uncore); |
| |
| return true; |
| } |
| |
| static void gen5_rps_disable(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| u16 rgvswctl; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| spin_lock(&i915->irq_lock); |
| ilk_disable_display_irq(i915, DE_PCU_EVENT); |
| spin_unlock(&i915->irq_lock); |
| |
| rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); |
| |
| /* Ack interrupts, disable EFC interrupt */ |
| intel_uncore_write(uncore, MEMINTREN, |
| intel_uncore_read(uncore, MEMINTREN) & |
| ~MEMINT_EVAL_CHG_EN); |
| intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); |
| |
| /* Go back to the starting frequency */ |
| gen5_rps_set(rps, rps->idle_freq); |
| mdelay(1); |
| rgvswctl |= MEMCTL_CMD_STS; |
| intel_uncore_write(uncore, MEMSWCTL, rgvswctl); |
| mdelay(1); |
| |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| static u32 rps_limits(struct intel_rps *rps, u8 val) |
| { |
| u32 limits; |
| |
| /* |
| * Only set the down limit when we've reached the lowest level to avoid |
| * getting more interrupts, otherwise leave this clear. This prevents a |
| * race in the hw when coming out of rc6: There's a tiny window where |
| * the hw runs at the minimal clock before selecting the desired |
| * frequency, if the down threshold expires in that window we will not |
| * receive a down interrupt. |
| */ |
| if (INTEL_GEN(rps_to_i915(rps)) >= 9) { |
| limits = rps->max_freq_softlimit << 23; |
| if (val <= rps->min_freq_softlimit) |
| limits |= rps->min_freq_softlimit << 14; |
| } else { |
| limits = rps->max_freq_softlimit << 24; |
| if (val <= rps->min_freq_softlimit) |
| limits |= rps->min_freq_softlimit << 16; |
| } |
| |
| return limits; |
| } |
| |
| static void rps_set_power(struct intel_rps *rps, int new_power) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| struct intel_uncore *uncore = gt->uncore; |
| u32 threshold_up = 0, threshold_down = 0; /* in % */ |
| u32 ei_up = 0, ei_down = 0; |
| |
| lockdep_assert_held(&rps->power.mutex); |
| |
| if (new_power == rps->power.mode) |
| return; |
| |
| threshold_up = 95; |
| threshold_down = 85; |
| |
| /* Note the units here are not exactly 1us, but 1280ns. */ |
| switch (new_power) { |
| case LOW_POWER: |
| ei_up = 16000; |
| ei_down = 32000; |
| break; |
| |
| case BETWEEN: |
| ei_up = 13000; |
| ei_down = 32000; |
| break; |
| |
| case HIGH_POWER: |
| ei_up = 10000; |
| ei_down = 32000; |
| break; |
| } |
| |
| /* When byt can survive without system hang with dynamic |
| * sw freq adjustments, this restriction can be lifted. |
| */ |
| if (IS_VALLEYVIEW(gt->i915)) |
| goto skip_hw_write; |
| |
| GT_TRACE(gt, |
| "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n", |
| new_power, threshold_up, ei_up, threshold_down, ei_down); |
| |
| set(uncore, GEN6_RP_UP_EI, |
| intel_gt_ns_to_pm_interval(gt, ei_up * 1000)); |
| set(uncore, GEN6_RP_UP_THRESHOLD, |
| intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10)); |
| |
| set(uncore, GEN6_RP_DOWN_EI, |
| intel_gt_ns_to_pm_interval(gt, ei_down * 1000)); |
| set(uncore, GEN6_RP_DOWN_THRESHOLD, |
| intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10)); |
| |
| set(uncore, GEN6_RP_CONTROL, |
| (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) | |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_AVG); |
| |
| skip_hw_write: |
| rps->power.mode = new_power; |
| rps->power.up_threshold = threshold_up; |
| rps->power.down_threshold = threshold_down; |
| } |
| |
| static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val) |
| { |
| int new_power; |
| |
| new_power = rps->power.mode; |
| switch (rps->power.mode) { |
| case LOW_POWER: |
| if (val > rps->efficient_freq + 1 && |
| val > rps->cur_freq) |
| new_power = BETWEEN; |
| break; |
| |
| case BETWEEN: |
| if (val <= rps->efficient_freq && |
| val < rps->cur_freq) |
| new_power = LOW_POWER; |
| else if (val >= rps->rp0_freq && |
| val > rps->cur_freq) |
| new_power = HIGH_POWER; |
| break; |
| |
| case HIGH_POWER: |
| if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 && |
| val < rps->cur_freq) |
| new_power = BETWEEN; |
| break; |
| } |
| /* Max/min bins are special */ |
| if (val <= rps->min_freq_softlimit) |
| new_power = LOW_POWER; |
| if (val >= rps->max_freq_softlimit) |
| new_power = HIGH_POWER; |
| |
| mutex_lock(&rps->power.mutex); |
| if (rps->power.interactive) |
| new_power = HIGH_POWER; |
| rps_set_power(rps, new_power); |
| mutex_unlock(&rps->power.mutex); |
| } |
| |
| void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive) |
| { |
| GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive)); |
| |
| mutex_lock(&rps->power.mutex); |
| if (interactive) { |
| if (!rps->power.interactive++ && intel_rps_is_active(rps)) |
| rps_set_power(rps, HIGH_POWER); |
| } else { |
| GEM_BUG_ON(!rps->power.interactive); |
| rps->power.interactive--; |
| } |
| mutex_unlock(&rps->power.mutex); |
| } |
| |
| static int gen6_rps_set(struct intel_rps *rps, u8 val) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 swreq; |
| |
| if (INTEL_GEN(i915) >= 9) |
| swreq = GEN9_FREQUENCY(val); |
| else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) |
| swreq = HSW_FREQUENCY(val); |
| else |
| swreq = (GEN6_FREQUENCY(val) | |
| GEN6_OFFSET(0) | |
| GEN6_AGGRESSIVE_TURBO); |
| set(uncore, GEN6_RPNSWREQ, swreq); |
| |
| GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n", |
| val, intel_gpu_freq(rps, val), swreq); |
| |
| return 0; |
| } |
| |
| static int vlv_rps_set(struct intel_rps *rps, u8 val) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| int err; |
| |
| vlv_punit_get(i915); |
| err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val); |
| vlv_punit_put(i915); |
| |
| GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n", |
| val, intel_gpu_freq(rps, val)); |
| |
| return err; |
| } |
| |
| static int rps_set(struct intel_rps *rps, u8 val, bool update) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| int err; |
| |
| if (INTEL_GEN(i915) < 6) |
| return 0; |
| |
| if (val == rps->last_freq) |
| return 0; |
| |
| if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) |
| err = vlv_rps_set(rps, val); |
| else |
| err = gen6_rps_set(rps, val); |
| if (err) |
| return err; |
| |
| if (update) |
| gen6_rps_set_thresholds(rps, val); |
| rps->last_freq = val; |
| |
| return 0; |
| } |
| |
| void intel_rps_unpark(struct intel_rps *rps) |
| { |
| if (!intel_rps_is_enabled(rps)) |
| return; |
| |
| GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq); |
| |
| /* |
| * Use the user's desired frequency as a guide, but for better |
| * performance, jump directly to RPe as our starting frequency. |
| */ |
| mutex_lock(&rps->lock); |
| |
| intel_rps_set_active(rps); |
| intel_rps_set(rps, |
| clamp(rps->cur_freq, |
| rps->min_freq_softlimit, |
| rps->max_freq_softlimit)); |
| |
| mutex_unlock(&rps->lock); |
| |
| rps->pm_iir = 0; |
| if (intel_rps_has_interrupts(rps)) |
| rps_enable_interrupts(rps); |
| if (intel_rps_uses_timer(rps)) |
| rps_start_timer(rps); |
| |
| if (IS_GEN(rps_to_i915(rps), 5)) |
| gen5_rps_update(rps); |
| } |
| |
| void intel_rps_park(struct intel_rps *rps) |
| { |
| int adj; |
| |
| if (!intel_rps_clear_active(rps)) |
| return; |
| |
| if (intel_rps_uses_timer(rps)) |
| rps_stop_timer(rps); |
| if (intel_rps_has_interrupts(rps)) |
| rps_disable_interrupts(rps); |
| |
| if (rps->last_freq <= rps->idle_freq) |
| return; |
| |
| /* |
| * The punit delays the write of the frequency and voltage until it |
| * determines the GPU is awake. During normal usage we don't want to |
| * waste power changing the frequency if the GPU is sleeping (rc6). |
| * However, the GPU and driver is now idle and we do not want to delay |
| * switching to minimum voltage (reducing power whilst idle) as we do |
| * not expect to be woken in the near future and so must flush the |
| * change by waking the device. |
| * |
| * We choose to take the media powerwell (either would do to trick the |
| * punit into committing the voltage change) as that takes a lot less |
| * power than the render powerwell. |
| */ |
| intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA); |
| rps_set(rps, rps->idle_freq, false); |
| intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA); |
| |
| /* |
| * Since we will try and restart from the previously requested |
| * frequency on unparking, treat this idle point as a downclock |
| * interrupt and reduce the frequency for resume. If we park/unpark |
| * more frequently than the rps worker can run, we will not respond |
| * to any EI and never see a change in frequency. |
| * |
| * (Note we accommodate Cherryview's limitation of only using an |
| * even bin by applying it to all.) |
| */ |
| adj = rps->last_adj; |
| if (adj < 0) |
| adj *= 2; |
| else /* CHV needs even encode values */ |
| adj = -2; |
| rps->last_adj = adj; |
| rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq); |
| if (rps->cur_freq < rps->efficient_freq) { |
| rps->cur_freq = rps->efficient_freq; |
| rps->last_adj = 0; |
| } |
| |
| GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq); |
| } |
| |
| void intel_rps_boost(struct i915_request *rq) |
| { |
| struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps; |
| unsigned long flags; |
| |
| if (i915_request_signaled(rq) || !intel_rps_is_active(rps)) |
| return; |
| |
| /* Serializes with i915_request_retire() */ |
| spin_lock_irqsave(&rq->lock, flags); |
| if (!i915_request_has_waitboost(rq) && |
| !dma_fence_is_signaled_locked(&rq->fence)) { |
| set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); |
| |
| GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n", |
| rq->fence.context, rq->fence.seqno); |
| |
| if (!atomic_fetch_inc(&rps->num_waiters) && |
| READ_ONCE(rps->cur_freq) < rps->boost_freq) |
| schedule_work(&rps->work); |
| |
| atomic_inc(&rps->boosts); |
| } |
| spin_unlock_irqrestore(&rq->lock, flags); |
| } |
| |
| int intel_rps_set(struct intel_rps *rps, u8 val) |
| { |
| int err; |
| |
| lockdep_assert_held(&rps->lock); |
| GEM_BUG_ON(val > rps->max_freq); |
| GEM_BUG_ON(val < rps->min_freq); |
| |
| if (intel_rps_is_active(rps)) { |
| err = rps_set(rps, val, true); |
| if (err) |
| return err; |
| |
| /* |
| * Make sure we continue to get interrupts |
| * until we hit the minimum or maximum frequencies. |
| */ |
| if (intel_rps_has_interrupts(rps)) { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| |
| set(uncore, |
| GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val)); |
| |
| set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val)); |
| } |
| } |
| |
| rps->cur_freq = val; |
| return 0; |
| } |
| |
| static void gen6_rps_init(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| |
| /* All of these values are in units of 50MHz */ |
| |
| /* static values from HW: RP0 > RP1 > RPn (min_freq) */ |
| if (IS_GEN9_LP(i915)) { |
| u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP); |
| |
| rps->rp0_freq = (rp_state_cap >> 16) & 0xff; |
| rps->rp1_freq = (rp_state_cap >> 8) & 0xff; |
| rps->min_freq = (rp_state_cap >> 0) & 0xff; |
| } else { |
| u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP); |
| |
| rps->rp0_freq = (rp_state_cap >> 0) & 0xff; |
| rps->rp1_freq = (rp_state_cap >> 8) & 0xff; |
| rps->min_freq = (rp_state_cap >> 16) & 0xff; |
| } |
| |
| /* hw_max = RP0 until we check for overclocking */ |
| rps->max_freq = rps->rp0_freq; |
| |
| rps->efficient_freq = rps->rp1_freq; |
| if (IS_HASWELL(i915) || IS_BROADWELL(i915) || |
| IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) { |
| u32 ddcc_status = 0; |
| |
| if (sandybridge_pcode_read(i915, |
| HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, |
| &ddcc_status, NULL) == 0) |
| rps->efficient_freq = |
| clamp_t(u8, |
| (ddcc_status >> 8) & 0xff, |
| rps->min_freq, |
| rps->max_freq); |
| } |
| |
| if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) { |
| /* Store the frequency values in 16.66 MHZ units, which is |
| * the natural hardware unit for SKL |
| */ |
| rps->rp0_freq *= GEN9_FREQ_SCALER; |
| rps->rp1_freq *= GEN9_FREQ_SCALER; |
| rps->min_freq *= GEN9_FREQ_SCALER; |
| rps->max_freq *= GEN9_FREQ_SCALER; |
| rps->efficient_freq *= GEN9_FREQ_SCALER; |
| } |
| } |
| |
| static bool rps_reset(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| /* force a reset */ |
| rps->power.mode = -1; |
| rps->last_freq = -1; |
| |
| if (rps_set(rps, rps->min_freq, true)) { |
| drm_err(&i915->drm, "Failed to reset RPS to initial values\n"); |
| return false; |
| } |
| |
| rps->cur_freq = rps->min_freq; |
| return true; |
| } |
| |
| /* See the Gen9_GT_PM_Programming_Guide doc for the below */ |
| static bool gen9_rps_enable(struct intel_rps *rps) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| struct intel_uncore *uncore = gt->uncore; |
| |
| /* Program defaults and thresholds for RPS */ |
| if (IS_GEN(gt->i915, 9)) |
| intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, |
| GEN9_FREQUENCY(rps->rp1_freq)); |
| |
| intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa); |
| |
| rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD; |
| |
| return rps_reset(rps); |
| } |
| |
| static bool gen8_rps_enable(struct intel_rps *rps) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| |
| intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, |
| HSW_FREQUENCY(rps->rp1_freq)); |
| |
| intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD; |
| |
| return rps_reset(rps); |
| } |
| |
| static bool gen6_rps_enable(struct intel_rps *rps) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| |
| /* Power down if completely idle for over 50ms */ |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000); |
| intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | |
| GEN6_PM_RP_DOWN_THRESHOLD | |
| GEN6_PM_RP_DOWN_TIMEOUT); |
| |
| return rps_reset(rps); |
| } |
| |
| static int chv_rps_max_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_gt *gt = rps_to_gt(rps); |
| u32 val; |
| |
| val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); |
| |
| switch (gt->info.sseu.eu_total) { |
| case 8: |
| /* (2 * 4) config */ |
| val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT; |
| break; |
| case 12: |
| /* (2 * 6) config */ |
| val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT; |
| break; |
| case 16: |
| /* (2 * 8) config */ |
| default: |
| /* Setting (2 * 8) Min RP0 for any other combination */ |
| val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT; |
| break; |
| } |
| |
| return val & FB_GFX_FREQ_FUSE_MASK; |
| } |
| |
| static int chv_rps_rpe_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG); |
| val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT; |
| |
| return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; |
| } |
| |
| static int chv_rps_guar_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); |
| |
| return val & FB_GFX_FREQ_FUSE_MASK; |
| } |
| |
| static u32 chv_rps_min_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE); |
| val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT; |
| |
| return val & FB_GFX_FREQ_FUSE_MASK; |
| } |
| |
| static bool chv_rps_enable(struct intel_rps *rps) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| /* 1: Program defaults and thresholds for RPS*/ |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); |
| intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); |
| intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); |
| |
| intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| /* 2: Enable RPS */ |
| intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_AVG); |
| |
| rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | |
| GEN6_PM_RP_DOWN_THRESHOLD | |
| GEN6_PM_RP_DOWN_TIMEOUT); |
| |
| /* Setting Fixed Bias */ |
| vlv_punit_get(i915); |
| |
| val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50; |
| vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); |
| |
| val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); |
| |
| vlv_punit_put(i915); |
| |
| /* RPS code assumes GPLL is used */ |
| drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, |
| "GPLL not enabled\n"); |
| |
| drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE)); |
| drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val); |
| |
| return rps_reset(rps); |
| } |
| |
| static int vlv_rps_guar_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val, rp1; |
| |
| val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); |
| |
| rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK; |
| rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; |
| |
| return rp1; |
| } |
| |
| static int vlv_rps_max_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val, rp0; |
| |
| val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); |
| |
| rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; |
| /* Clamp to max */ |
| rp0 = min_t(u32, rp0, 0xea); |
| |
| return rp0; |
| } |
| |
| static int vlv_rps_rpe_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val, rpe; |
| |
| val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO); |
| rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; |
| val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI); |
| rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; |
| |
| return rpe; |
| } |
| |
| static int vlv_rps_min_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff; |
| /* |
| * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value |
| * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on |
| * a BYT-M B0 the above register contains 0xbf. Moreover when setting |
| * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 |
| * to make sure it matches what Punit accepts. |
| */ |
| return max_t(u32, val, 0xc0); |
| } |
| |
| static bool vlv_rps_enable(struct intel_rps *rps) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); |
| intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); |
| intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); |
| intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); |
| |
| intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, |
| GEN6_RP_MEDIA_TURBO | |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_CONT); |
| |
| /* WaGsvRC0ResidencyMethod:vlv */ |
| rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED; |
| |
| vlv_punit_get(i915); |
| |
| /* Setting Fixed Bias */ |
| val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875; |
| vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); |
| |
| val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); |
| |
| vlv_punit_put(i915); |
| |
| /* RPS code assumes GPLL is used */ |
| drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, |
| "GPLL not enabled\n"); |
| |
| drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE)); |
| drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val); |
| |
| return rps_reset(rps); |
| } |
| |
| static unsigned long __ips_gfx_val(struct intel_ips *ips) |
| { |
| struct intel_rps *rps = container_of(ips, typeof(*rps), ips); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| unsigned int t, state1, state2; |
| u32 pxvid, ext_v; |
| u64 corr, corr2; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq)); |
| pxvid = (pxvid >> 24) & 0x7f; |
| ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid); |
| |
| state1 = ext_v; |
| |
| /* Revel in the empirically derived constants */ |
| |
| /* Correction factor in 1/100000 units */ |
| t = ips_mch_val(uncore); |
| if (t > 80) |
| corr = t * 2349 + 135940; |
| else if (t >= 50) |
| corr = t * 964 + 29317; |
| else /* < 50 */ |
| corr = t * 301 + 1004; |
| |
| corr = div_u64(corr * 150142 * state1, 10000) - 78642; |
| corr2 = div_u64(corr, 100000) * ips->corr; |
| |
| state2 = div_u64(corr2 * state1, 10000); |
| state2 /= 100; /* convert to mW */ |
| |
| __gen5_ips_update(ips); |
| |
| return ips->gfx_power + state2; |
| } |
| |
| static bool has_busy_stats(struct intel_rps *rps) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, rps_to_gt(rps), id) { |
| if (!intel_engine_supports_stats(engine)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void intel_rps_enable(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| bool enabled = false; |
| |
| if (!HAS_RPS(i915)) |
| return; |
| |
| intel_gt_check_clock_frequency(rps_to_gt(rps)); |
| |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); |
| if (rps->max_freq <= rps->min_freq) |
| /* leave disabled, no room for dynamic reclocking */; |
| else if (IS_CHERRYVIEW(i915)) |
| enabled = chv_rps_enable(rps); |
| else if (IS_VALLEYVIEW(i915)) |
| enabled = vlv_rps_enable(rps); |
| else if (INTEL_GEN(i915) >= 9) |
| enabled = gen9_rps_enable(rps); |
| else if (INTEL_GEN(i915) >= 8) |
| enabled = gen8_rps_enable(rps); |
| else if (INTEL_GEN(i915) >= 6) |
| enabled = gen6_rps_enable(rps); |
| else if (IS_IRONLAKE_M(i915)) |
| enabled = gen5_rps_enable(rps); |
| else |
| MISSING_CASE(INTEL_GEN(i915)); |
| intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); |
| if (!enabled) |
| return; |
| |
| GT_TRACE(rps_to_gt(rps), |
| "min:%x, max:%x, freq:[%d, %d]\n", |
| rps->min_freq, rps->max_freq, |
| intel_gpu_freq(rps, rps->min_freq), |
| intel_gpu_freq(rps, rps->max_freq)); |
| |
| GEM_BUG_ON(rps->max_freq < rps->min_freq); |
| GEM_BUG_ON(rps->idle_freq > rps->max_freq); |
| |
| GEM_BUG_ON(rps->efficient_freq < rps->min_freq); |
| GEM_BUG_ON(rps->efficient_freq > rps->max_freq); |
| |
| if (has_busy_stats(rps)) |
| intel_rps_set_timer(rps); |
| else if (INTEL_GEN(i915) >= 6) |
| intel_rps_set_interrupts(rps); |
| else |
| /* Ironlake currently uses intel_ips.ko */ {} |
| |
| intel_rps_set_enabled(rps); |
| } |
| |
| static void gen6_rps_disable(struct intel_rps *rps) |
| { |
| set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0); |
| } |
| |
| void intel_rps_disable(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| intel_rps_clear_enabled(rps); |
| intel_rps_clear_interrupts(rps); |
| intel_rps_clear_timer(rps); |
| |
| if (INTEL_GEN(i915) >= 6) |
| gen6_rps_disable(rps); |
| else if (IS_IRONLAKE_M(i915)) |
| gen5_rps_disable(rps); |
| } |
| |
| static int byt_gpu_freq(struct intel_rps *rps, int val) |
| { |
| /* |
| * N = val - 0xb7 |
| * Slow = Fast = GPLL ref * N |
| */ |
| return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000); |
| } |
| |
| static int byt_freq_opcode(struct intel_rps *rps, int val) |
| { |
| return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7; |
| } |
| |
| static int chv_gpu_freq(struct intel_rps *rps, int val) |
| { |
| /* |
| * N = val / 2 |
| * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 |
| */ |
| return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000); |
| } |
| |
| static int chv_freq_opcode(struct intel_rps *rps, int val) |
| { |
| /* CHV needs even values */ |
| return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2; |
| } |
| |
| int intel_gpu_freq(struct intel_rps *rps, int val) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| if (INTEL_GEN(i915) >= 9) |
| return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, |
| GEN9_FREQ_SCALER); |
| else if (IS_CHERRYVIEW(i915)) |
| return chv_gpu_freq(rps, val); |
| else if (IS_VALLEYVIEW(i915)) |
| return byt_gpu_freq(rps, val); |
| else if (INTEL_GEN(i915) >= 6) |
| return val * GT_FREQUENCY_MULTIPLIER; |
| else |
| return val; |
| } |
| |
| int intel_freq_opcode(struct intel_rps *rps, int val) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| if (INTEL_GEN(i915) >= 9) |
| return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, |
| GT_FREQUENCY_MULTIPLIER); |
| else if (IS_CHERRYVIEW(i915)) |
| return chv_freq_opcode(rps, val); |
| else if (IS_VALLEYVIEW(i915)) |
| return byt_freq_opcode(rps, val); |
| else if (INTEL_GEN(i915) >= 6) |
| return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); |
| else |
| return val; |
| } |
| |
| static void vlv_init_gpll_ref_freq(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| rps->gpll_ref_freq = |
| vlv_get_cck_clock(i915, "GPLL ref", |
| CCK_GPLL_CLOCK_CONTROL, |
| i915->czclk_freq); |
| |
| drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n", |
| rps->gpll_ref_freq); |
| } |
| |
| static void vlv_rps_init(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| vlv_iosf_sb_get(i915, |
| BIT(VLV_IOSF_SB_PUNIT) | |
| BIT(VLV_IOSF_SB_NC) | |
| BIT(VLV_IOSF_SB_CCK)); |
| |
| vlv_init_gpll_ref_freq(rps); |
| |
| val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); |
| switch ((val >> 6) & 3) { |
| case 0: |
| case 1: |
| i915->mem_freq = 800; |
| break; |
| case 2: |
| i915->mem_freq = 1066; |
| break; |
| case 3: |
| i915->mem_freq = 1333; |
| break; |
| } |
| drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq); |
| |
| rps->max_freq = vlv_rps_max_freq(rps); |
| rps->rp0_freq = rps->max_freq; |
| drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->max_freq), rps->max_freq); |
| |
| rps->efficient_freq = vlv_rps_rpe_freq(rps); |
| drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); |
| |
| rps->rp1_freq = vlv_rps_guar_freq(rps); |
| drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); |
| |
| rps->min_freq = vlv_rps_min_freq(rps); |
| drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->min_freq), rps->min_freq); |
| |
| vlv_iosf_sb_put(i915, |
| BIT(VLV_IOSF_SB_PUNIT) | |
| BIT(VLV_IOSF_SB_NC) | |
| BIT(VLV_IOSF_SB_CCK)); |
| } |
| |
| static void chv_rps_init(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 val; |
| |
| vlv_iosf_sb_get(i915, |
| BIT(VLV_IOSF_SB_PUNIT) | |
| BIT(VLV_IOSF_SB_NC) | |
| BIT(VLV_IOSF_SB_CCK)); |
| |
| vlv_init_gpll_ref_freq(rps); |
| |
| val = vlv_cck_read(i915, CCK_FUSE_REG); |
| |
| switch ((val >> 2) & 0x7) { |
| case 3: |
| i915->mem_freq = 2000; |
| break; |
| default: |
| i915->mem_freq = 1600; |
| break; |
| } |
| drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq); |
| |
| rps->max_freq = chv_rps_max_freq(rps); |
| rps->rp0_freq = rps->max_freq; |
| drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->max_freq), rps->max_freq); |
| |
| rps->efficient_freq = chv_rps_rpe_freq(rps); |
| drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); |
| |
| rps->rp1_freq = chv_rps_guar_freq(rps); |
| drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); |
| |
| rps->min_freq = chv_rps_min_freq(rps); |
| drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(rps, rps->min_freq), rps->min_freq); |
| |
| vlv_iosf_sb_put(i915, |
| BIT(VLV_IOSF_SB_PUNIT) | |
| BIT(VLV_IOSF_SB_NC) | |
| BIT(VLV_IOSF_SB_CCK)); |
| |
| drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq | |
| rps->rp1_freq | rps->min_freq) & 1, |
| "Odd GPU freq values\n"); |
| } |
| |
| static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei) |
| { |
| ei->ktime = ktime_get_raw(); |
| ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT); |
| ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT); |
| } |
| |
| static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| const struct intel_rps_ei *prev = &rps->ei; |
| struct intel_rps_ei now; |
| u32 events = 0; |
| |
| if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) |
| return 0; |
| |
| vlv_c0_read(uncore, &now); |
| |
| if (prev->ktime) { |
| u64 time, c0; |
| u32 render, media; |
| |
| time = ktime_us_delta(now.ktime, prev->ktime); |
| |
| time *= rps_to_i915(rps)->czclk_freq; |
| |
| /* Workload can be split between render + media, |
| * e.g. SwapBuffers being blitted in X after being rendered in |
| * mesa. To account for this we need to combine both engines |
| * into our activity counter. |
| */ |
| render = now.render_c0 - prev->render_c0; |
| media = now.media_c0 - prev->media_c0; |
| c0 = max(render, media); |
| c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ |
| |
| if (c0 > time * rps->power.up_threshold) |
| events = GEN6_PM_RP_UP_THRESHOLD; |
| else if (c0 < time * rps->power.down_threshold) |
| events = GEN6_PM_RP_DOWN_THRESHOLD; |
| } |
| |
| rps->ei = now; |
| return events; |
| } |
| |
| static void rps_work(struct work_struct *work) |
| { |
| struct intel_rps *rps = container_of(work, typeof(*rps), work); |
| struct intel_gt *gt = rps_to_gt(rps); |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| bool client_boost = false; |
| int new_freq, adj, min, max; |
| u32 pm_iir = 0; |
| |
| spin_lock_irq(>->irq_lock); |
| pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events; |
| client_boost = atomic_read(&rps->num_waiters); |
| spin_unlock_irq(>->irq_lock); |
| |
| /* Make sure we didn't queue anything we're not going to process. */ |
| if (!pm_iir && !client_boost) |
| goto out; |
| |
| mutex_lock(&rps->lock); |
| if (!intel_rps_is_active(rps)) { |
| mutex_unlock(&rps->lock); |
| return; |
| } |
| |
| pm_iir |= vlv_wa_c0_ei(rps, pm_iir); |
| |
| adj = rps->last_adj; |
| new_freq = rps->cur_freq; |
| min = rps->min_freq_softlimit; |
| max = rps->max_freq_softlimit; |
| if (client_boost) |
| max = rps->max_freq; |
| |
| GT_TRACE(gt, |
| "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n", |
| pm_iir, yesno(client_boost), |
| adj, new_freq, min, max); |
| |
| if (client_boost && new_freq < rps->boost_freq) { |
| new_freq = rps->boost_freq; |
| adj = 0; |
| } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { |
| if (adj > 0) |
| adj *= 2; |
| else /* CHV needs even encode values */ |
| adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1; |
| |
| if (new_freq >= rps->max_freq_softlimit) |
| adj = 0; |
| } else if (client_boost) { |
| adj = 0; |
| } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { |
| if (rps->cur_freq > rps->efficient_freq) |
| new_freq = rps->efficient_freq; |
| else if (rps->cur_freq > rps->min_freq_softlimit) |
| new_freq = rps->min_freq_softlimit; |
| adj = 0; |
| } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { |
| if (adj < 0) |
| adj *= 2; |
| else /* CHV needs even encode values */ |
| adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1; |
| |
| if (new_freq <= rps->min_freq_softlimit) |
| adj = 0; |
| } else { /* unknown event */ |
| adj = 0; |
| } |
| |
| /* |
| * sysfs frequency limits may have snuck in while |
| * servicing the interrupt |
| */ |
| new_freq += adj; |
| new_freq = clamp_t(int, new_freq, min, max); |
| |
| if (intel_rps_set(rps, new_freq)) { |
| drm_dbg(&i915->drm, "Failed to set new GPU frequency\n"); |
| adj = 0; |
| } |
| rps->last_adj = adj; |
| |
| mutex_unlock(&rps->lock); |
| |
| out: |
| spin_lock_irq(>->irq_lock); |
| gen6_gt_pm_unmask_irq(gt, rps->pm_events); |
| spin_unlock_irq(>->irq_lock); |
| } |
| |
| void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| const u32 events = rps->pm_events & pm_iir; |
| |
| lockdep_assert_held(>->irq_lock); |
| |
| if (unlikely(!events)) |
| return; |
| |
| GT_TRACE(gt, "irq events:%x\n", events); |
| |
| gen6_gt_pm_mask_irq(gt, events); |
| |
| rps->pm_iir |= events; |
| schedule_work(&rps->work); |
| } |
| |
| void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| u32 events; |
| |
| events = pm_iir & rps->pm_events; |
| if (events) { |
| spin_lock(>->irq_lock); |
| |
| GT_TRACE(gt, "irq events:%x\n", events); |
| |
| gen6_gt_pm_mask_irq(gt, events); |
| rps->pm_iir |= events; |
| |
| schedule_work(&rps->work); |
| spin_unlock(>->irq_lock); |
| } |
| |
| if (INTEL_GEN(gt->i915) >= 8) |
| return; |
| |
| if (pm_iir & PM_VEBOX_USER_INTERRUPT) |
| intel_engine_signal_breadcrumbs(gt->engine[VECS0]); |
| |
| if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) |
| DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); |
| } |
| |
| void gen5_rps_irq_handler(struct intel_rps *rps) |
| { |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| u32 busy_up, busy_down, max_avg, min_avg; |
| u8 new_freq; |
| |
| spin_lock(&mchdev_lock); |
| |
| intel_uncore_write16(uncore, |
| MEMINTRSTS, |
| intel_uncore_read(uncore, MEMINTRSTS)); |
| |
| intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); |
| busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); |
| busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); |
| max_avg = intel_uncore_read(uncore, RCBMAXAVG); |
| min_avg = intel_uncore_read(uncore, RCBMINAVG); |
| |
| /* Handle RCS change request from hw */ |
| new_freq = rps->cur_freq; |
| if (busy_up > max_avg) |
| new_freq++; |
| else if (busy_down < min_avg) |
| new_freq--; |
| new_freq = clamp(new_freq, |
| rps->min_freq_softlimit, |
| rps->max_freq_softlimit); |
| |
| if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq)) |
| rps->cur_freq = new_freq; |
| |
| spin_unlock(&mchdev_lock); |
| } |
| |
| void intel_rps_init_early(struct intel_rps *rps) |
| { |
| mutex_init(&rps->lock); |
| mutex_init(&rps->power.mutex); |
| |
| INIT_WORK(&rps->work, rps_work); |
| timer_setup(&rps->timer, rps_timer, 0); |
| |
| atomic_set(&rps->num_waiters, 0); |
| } |
| |
| void intel_rps_init(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| if (IS_CHERRYVIEW(i915)) |
| chv_rps_init(rps); |
| else if (IS_VALLEYVIEW(i915)) |
| vlv_rps_init(rps); |
| else if (INTEL_GEN(i915) >= 6) |
| gen6_rps_init(rps); |
| else if (IS_IRONLAKE_M(i915)) |
| gen5_rps_init(rps); |
| |
| /* Derive initial user preferences/limits from the hardware limits */ |
| rps->max_freq_softlimit = rps->max_freq; |
| rps->min_freq_softlimit = rps->min_freq; |
| |
| /* After setting max-softlimit, find the overclock max freq */ |
| if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) { |
| u32 params = 0; |
| |
| sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS, |
| ¶ms, NULL); |
| if (params & BIT(31)) { /* OC supported */ |
| drm_dbg(&i915->drm, |
| "Overclocking supported, max: %dMHz, overclock: %dMHz\n", |
| (rps->max_freq & 0xff) * 50, |
| (params & 0xff) * 50); |
| rps->max_freq = params & 0xff; |
| } |
| } |
| |
| /* Finally allow us to boost to max by default */ |
| rps->boost_freq = rps->max_freq; |
| rps->idle_freq = rps->min_freq; |
| |
| /* Start in the middle, from here we will autotune based on workload */ |
| rps->cur_freq = rps->efficient_freq; |
| |
| rps->pm_intrmsk_mbz = 0; |
| |
| /* |
| * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer |
| * if GEN6_PM_UP_EI_EXPIRED is masked. |
| * |
| * TODO: verify if this can be reproduced on VLV,CHV. |
| */ |
| if (INTEL_GEN(i915) <= 7) |
| rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; |
| |
| if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11) |
| rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; |
| } |
| |
| void intel_rps_sanitize(struct intel_rps *rps) |
| { |
| if (INTEL_GEN(rps_to_i915(rps)) >= 6) |
| rps_disable_interrupts(rps); |
| } |
| |
| u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| u32 cagf; |
| |
| if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) |
| cagf = (rpstat >> 8) & 0xff; |
| else if (INTEL_GEN(i915) >= 9) |
| cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; |
| else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) |
| cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; |
| else if (INTEL_GEN(i915) >= 6) |
| cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; |
| else |
| cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >> |
| MEMSTAT_PSTATE_SHIFT); |
| |
| return cagf; |
| } |
| |
| static u32 read_cagf(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| struct intel_uncore *uncore = rps_to_uncore(rps); |
| u32 freq; |
| |
| if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { |
| vlv_punit_get(i915); |
| freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); |
| vlv_punit_put(i915); |
| } else if (INTEL_GEN(i915) >= 6) { |
| freq = intel_uncore_read(uncore, GEN6_RPSTAT1); |
| } else { |
| freq = intel_uncore_read(uncore, MEMSTAT_ILK); |
| } |
| |
| return intel_rps_get_cagf(rps, freq); |
| } |
| |
| u32 intel_rps_read_actual_frequency(struct intel_rps *rps) |
| { |
| struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm; |
| intel_wakeref_t wakeref; |
| u32 freq = 0; |
| |
| with_intel_runtime_pm_if_in_use(rpm, wakeref) |
| freq = intel_gpu_freq(rps, read_cagf(rps)); |
| |
| return freq; |
| } |
| |
| /* External interface for intel_ips.ko */ |
| |
| static struct drm_i915_private __rcu *ips_mchdev; |
| |
| /** |
| * Tells the intel_ips driver that the i915 driver is now loaded, if |
| * IPS got loaded first. |
| * |
| * This awkward dance is so that neither module has to depend on the |
| * other in order for IPS to do the appropriate communication of |
| * GPU turbo limits to i915. |
| */ |
| static void |
| ips_ping_for_i915_load(void) |
| { |
| void (*link)(void); |
| |
| link = symbol_get(ips_link_to_i915_driver); |
| if (link) { |
| link(); |
| symbol_put(ips_link_to_i915_driver); |
| } |
| } |
| |
| void intel_rps_driver_register(struct intel_rps *rps) |
| { |
| struct intel_gt *gt = rps_to_gt(rps); |
| |
| /* |
| * We only register the i915 ips part with intel-ips once everything is |
| * set up, to avoid intel-ips sneaking in and reading bogus values. |
| */ |
| if (IS_GEN(gt->i915, 5)) { |
| GEM_BUG_ON(ips_mchdev); |
| rcu_assign_pointer(ips_mchdev, gt->i915); |
| ips_ping_for_i915_load(); |
| } |
| } |
| |
| void intel_rps_driver_unregister(struct intel_rps *rps) |
| { |
| if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps)) |
| rcu_assign_pointer(ips_mchdev, NULL); |
| } |
| |
| static struct drm_i915_private *mchdev_get(void) |
| { |
| struct drm_i915_private *i915; |
| |
| rcu_read_lock(); |
| i915 = rcu_dereference(ips_mchdev); |
| if (i915 && !kref_get_unless_zero(&i915->drm.ref)) |
| i915 = NULL; |
| rcu_read_unlock(); |
| |
| return i915; |
| } |
| |
| /** |
| * i915_read_mch_val - return value for IPS use |
| * |
| * Calculate and return a value for the IPS driver to use when deciding whether |
| * we have thermal and power headroom to increase CPU or GPU power budget. |
| */ |
| unsigned long i915_read_mch_val(void) |
| { |
| struct drm_i915_private *i915; |
| unsigned long chipset_val = 0; |
| unsigned long graphics_val = 0; |
| intel_wakeref_t wakeref; |
| |
| i915 = mchdev_get(); |
| if (!i915) |
| return 0; |
| |
| with_intel_runtime_pm(&i915->runtime_pm, wakeref) { |
| struct intel_ips *ips = &i915->gt.rps.ips; |
| |
| spin_lock_irq(&mchdev_lock); |
| chipset_val = __ips_chipset_val(ips); |
| graphics_val = __ips_gfx_val(ips); |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| drm_dev_put(&i915->drm); |
| return chipset_val + graphics_val; |
| } |
| EXPORT_SYMBOL_GPL(i915_read_mch_val); |
| |
| /** |
| * i915_gpu_raise - raise GPU frequency limit |
| * |
| * Raise the limit; IPS indicates we have thermal headroom. |
| */ |
| bool i915_gpu_raise(void) |
| { |
| struct drm_i915_private *i915; |
| struct intel_rps *rps; |
| |
| i915 = mchdev_get(); |
| if (!i915) |
| return false; |
| |
| rps = &i915->gt.rps; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (rps->max_freq_softlimit < rps->max_freq) |
| rps->max_freq_softlimit++; |
| spin_unlock_irq(&mchdev_lock); |
| |
| drm_dev_put(&i915->drm); |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_raise); |
| |
| /** |
| * i915_gpu_lower - lower GPU frequency limit |
| * |
| * IPS indicates we're close to a thermal limit, so throttle back the GPU |
| * frequency maximum. |
| */ |
| bool i915_gpu_lower(void) |
| { |
| struct drm_i915_private *i915; |
| struct intel_rps *rps; |
| |
| i915 = mchdev_get(); |
| if (!i915) |
| return false; |
| |
| rps = &i915->gt.rps; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (rps->max_freq_softlimit > rps->min_freq) |
| rps->max_freq_softlimit--; |
| spin_unlock_irq(&mchdev_lock); |
| |
| drm_dev_put(&i915->drm); |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_lower); |
| |
| /** |
| * i915_gpu_busy - indicate GPU business to IPS |
| * |
| * Tell the IPS driver whether or not the GPU is busy. |
| */ |
| bool i915_gpu_busy(void) |
| { |
| struct drm_i915_private *i915; |
| bool ret; |
| |
| i915 = mchdev_get(); |
| if (!i915) |
| return false; |
| |
| ret = i915->gt.awake; |
| |
| drm_dev_put(&i915->drm); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_busy); |
| |
| /** |
| * i915_gpu_turbo_disable - disable graphics turbo |
| * |
| * Disable graphics turbo by resetting the max frequency and setting the |
| * current frequency to the default. |
| */ |
| bool i915_gpu_turbo_disable(void) |
| { |
| struct drm_i915_private *i915; |
| struct intel_rps *rps; |
| bool ret; |
| |
| i915 = mchdev_get(); |
| if (!i915) |
| return false; |
| |
| rps = &i915->gt.rps; |
| |
| spin_lock_irq(&mchdev_lock); |
| rps->max_freq_softlimit = rps->min_freq; |
| ret = gen5_rps_set(&i915->gt.rps, rps->min_freq); |
| spin_unlock_irq(&mchdev_lock); |
| |
| drm_dev_put(&i915->drm); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_rps.c" |
| #endif |