| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2006, Intel Corporation. |
| * |
| * Copyright (C) 2006-2008 Intel Corporation |
| * Author: Ashok Raj <ashok.raj@intel.com> |
| * Author: Shaohua Li <shaohua.li@intel.com> |
| * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| * |
| * This file implements early detection/parsing of Remapping Devices |
| * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI |
| * tables. |
| * |
| * These routines are used by both DMA-remapping and Interrupt-remapping |
| */ |
| |
| #define pr_fmt(fmt) "DMAR: " fmt |
| |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/iova.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/timer.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/tboot.h> |
| #include <linux/dmi.h> |
| #include <linux/slab.h> |
| #include <linux/iommu.h> |
| #include <linux/numa.h> |
| #include <linux/limits.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/iommu_table.h> |
| |
| #include "../irq_remapping.h" |
| |
| typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); |
| struct dmar_res_callback { |
| dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; |
| void *arg[ACPI_DMAR_TYPE_RESERVED]; |
| bool ignore_unhandled; |
| bool print_entry; |
| }; |
| |
| /* |
| * Assumptions: |
| * 1) The hotplug framework guarentees that DMAR unit will be hot-added |
| * before IO devices managed by that unit. |
| * 2) The hotplug framework guarantees that DMAR unit will be hot-removed |
| * after IO devices managed by that unit. |
| * 3) Hotplug events are rare. |
| * |
| * Locking rules for DMA and interrupt remapping related global data structures: |
| * 1) Use dmar_global_lock in process context |
| * 2) Use RCU in interrupt context |
| */ |
| DECLARE_RWSEM(dmar_global_lock); |
| LIST_HEAD(dmar_drhd_units); |
| |
| struct acpi_table_header * __initdata dmar_tbl; |
| static int dmar_dev_scope_status = 1; |
| static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; |
| |
| static int alloc_iommu(struct dmar_drhd_unit *drhd); |
| static void free_iommu(struct intel_iommu *iommu); |
| |
| extern const struct iommu_ops intel_iommu_ops; |
| |
| static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) |
| { |
| /* |
| * add INCLUDE_ALL at the tail, so scan the list will find it at |
| * the very end. |
| */ |
| if (drhd->include_all) |
| list_add_tail_rcu(&drhd->list, &dmar_drhd_units); |
| else |
| list_add_rcu(&drhd->list, &dmar_drhd_units); |
| } |
| |
| void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) |
| { |
| struct acpi_dmar_device_scope *scope; |
| |
| *cnt = 0; |
| while (start < end) { |
| scope = start; |
| if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || |
| scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || |
| scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| (*cnt)++; |
| else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && |
| scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { |
| pr_warn("Unsupported device scope\n"); |
| } |
| start += scope->length; |
| } |
| if (*cnt == 0) |
| return NULL; |
| |
| return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); |
| } |
| |
| void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) |
| { |
| int i; |
| struct device *tmp_dev; |
| |
| if (*devices && *cnt) { |
| for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) |
| put_device(tmp_dev); |
| kfree(*devices); |
| } |
| |
| *devices = NULL; |
| *cnt = 0; |
| } |
| |
| /* Optimize out kzalloc()/kfree() for normal cases */ |
| static char dmar_pci_notify_info_buf[64]; |
| |
| static struct dmar_pci_notify_info * |
| dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) |
| { |
| int level = 0; |
| size_t size; |
| struct pci_dev *tmp; |
| struct dmar_pci_notify_info *info; |
| |
| BUG_ON(dev->is_virtfn); |
| |
| /* |
| * Ignore devices that have a domain number higher than what can |
| * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 |
| */ |
| if (pci_domain_nr(dev->bus) > U16_MAX) |
| return NULL; |
| |
| /* Only generate path[] for device addition event */ |
| if (event == BUS_NOTIFY_ADD_DEVICE) |
| for (tmp = dev; tmp; tmp = tmp->bus->self) |
| level++; |
| |
| size = struct_size(info, path, level); |
| if (size <= sizeof(dmar_pci_notify_info_buf)) { |
| info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; |
| } else { |
| info = kzalloc(size, GFP_KERNEL); |
| if (!info) { |
| pr_warn("Out of memory when allocating notify_info " |
| "for %s.\n", pci_name(dev)); |
| if (dmar_dev_scope_status == 0) |
| dmar_dev_scope_status = -ENOMEM; |
| return NULL; |
| } |
| } |
| |
| info->event = event; |
| info->dev = dev; |
| info->seg = pci_domain_nr(dev->bus); |
| info->level = level; |
| if (event == BUS_NOTIFY_ADD_DEVICE) { |
| for (tmp = dev; tmp; tmp = tmp->bus->self) { |
| level--; |
| info->path[level].bus = tmp->bus->number; |
| info->path[level].device = PCI_SLOT(tmp->devfn); |
| info->path[level].function = PCI_FUNC(tmp->devfn); |
| if (pci_is_root_bus(tmp->bus)) |
| info->bus = tmp->bus->number; |
| } |
| } |
| |
| return info; |
| } |
| |
| static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) |
| { |
| if ((void *)info != dmar_pci_notify_info_buf) |
| kfree(info); |
| } |
| |
| static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, |
| struct acpi_dmar_pci_path *path, int count) |
| { |
| int i; |
| |
| if (info->bus != bus) |
| goto fallback; |
| if (info->level != count) |
| goto fallback; |
| |
| for (i = 0; i < count; i++) { |
| if (path[i].device != info->path[i].device || |
| path[i].function != info->path[i].function) |
| goto fallback; |
| } |
| |
| return true; |
| |
| fallback: |
| |
| if (count != 1) |
| return false; |
| |
| i = info->level - 1; |
| if (bus == info->path[i].bus && |
| path[0].device == info->path[i].device && |
| path[0].function == info->path[i].function) { |
| pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", |
| bus, path[0].device, path[0].function); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ |
| int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, |
| void *start, void*end, u16 segment, |
| struct dmar_dev_scope *devices, |
| int devices_cnt) |
| { |
| int i, level; |
| struct device *tmp, *dev = &info->dev->dev; |
| struct acpi_dmar_device_scope *scope; |
| struct acpi_dmar_pci_path *path; |
| |
| if (segment != info->seg) |
| return 0; |
| |
| for (; start < end; start += scope->length) { |
| scope = start; |
| if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && |
| scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| continue; |
| |
| path = (struct acpi_dmar_pci_path *)(scope + 1); |
| level = (scope->length - sizeof(*scope)) / sizeof(*path); |
| if (!dmar_match_pci_path(info, scope->bus, path, level)) |
| continue; |
| |
| /* |
| * We expect devices with endpoint scope to have normal PCI |
| * headers, and devices with bridge scope to have bridge PCI |
| * headers. However PCI NTB devices may be listed in the |
| * DMAR table with bridge scope, even though they have a |
| * normal PCI header. NTB devices are identified by class |
| * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch |
| * for this special case. |
| */ |
| if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && |
| info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || |
| (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && |
| (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && |
| info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { |
| pr_warn("Device scope type does not match for %s\n", |
| pci_name(info->dev)); |
| return -EINVAL; |
| } |
| |
| for_each_dev_scope(devices, devices_cnt, i, tmp) |
| if (tmp == NULL) { |
| devices[i].bus = info->dev->bus->number; |
| devices[i].devfn = info->dev->devfn; |
| rcu_assign_pointer(devices[i].dev, |
| get_device(dev)); |
| return 1; |
| } |
| BUG_ON(i >= devices_cnt); |
| } |
| |
| return 0; |
| } |
| |
| int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, |
| struct dmar_dev_scope *devices, int count) |
| { |
| int index; |
| struct device *tmp; |
| |
| if (info->seg != segment) |
| return 0; |
| |
| for_each_active_dev_scope(devices, count, index, tmp) |
| if (tmp == &info->dev->dev) { |
| RCU_INIT_POINTER(devices[index].dev, NULL); |
| synchronize_rcu(); |
| put_device(tmp); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) |
| { |
| int ret = 0; |
| struct dmar_drhd_unit *dmaru; |
| struct acpi_dmar_hardware_unit *drhd; |
| |
| for_each_drhd_unit(dmaru) { |
| if (dmaru->include_all) |
| continue; |
| |
| drhd = container_of(dmaru->hdr, |
| struct acpi_dmar_hardware_unit, header); |
| ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), |
| ((void *)drhd) + drhd->header.length, |
| dmaru->segment, |
| dmaru->devices, dmaru->devices_cnt); |
| if (ret) |
| break; |
| } |
| if (ret >= 0) |
| ret = dmar_iommu_notify_scope_dev(info); |
| if (ret < 0 && dmar_dev_scope_status == 0) |
| dmar_dev_scope_status = ret; |
| |
| if (ret >= 0) |
| intel_irq_remap_add_device(info); |
| |
| return ret; |
| } |
| |
| static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) |
| { |
| struct dmar_drhd_unit *dmaru; |
| |
| for_each_drhd_unit(dmaru) |
| if (dmar_remove_dev_scope(info, dmaru->segment, |
| dmaru->devices, dmaru->devices_cnt)) |
| break; |
| dmar_iommu_notify_scope_dev(info); |
| } |
| |
| static inline void vf_inherit_msi_domain(struct pci_dev *pdev) |
| { |
| struct pci_dev *physfn = pci_physfn(pdev); |
| |
| dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); |
| } |
| |
| static int dmar_pci_bus_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct pci_dev *pdev = to_pci_dev(data); |
| struct dmar_pci_notify_info *info; |
| |
| /* Only care about add/remove events for physical functions. |
| * For VFs we actually do the lookup based on the corresponding |
| * PF in device_to_iommu() anyway. */ |
| if (pdev->is_virtfn) { |
| /* |
| * Ensure that the VF device inherits the irq domain of the |
| * PF device. Ideally the device would inherit the domain |
| * from the bus, but DMAR can have multiple units per bus |
| * which makes this impossible. The VF 'bus' could inherit |
| * from the PF device, but that's yet another x86'sism to |
| * inflict on everybody else. |
| */ |
| if (action == BUS_NOTIFY_ADD_DEVICE) |
| vf_inherit_msi_domain(pdev); |
| return NOTIFY_DONE; |
| } |
| |
| if (action != BUS_NOTIFY_ADD_DEVICE && |
| action != BUS_NOTIFY_REMOVED_DEVICE) |
| return NOTIFY_DONE; |
| |
| info = dmar_alloc_pci_notify_info(pdev, action); |
| if (!info) |
| return NOTIFY_DONE; |
| |
| down_write(&dmar_global_lock); |
| if (action == BUS_NOTIFY_ADD_DEVICE) |
| dmar_pci_bus_add_dev(info); |
| else if (action == BUS_NOTIFY_REMOVED_DEVICE) |
| dmar_pci_bus_del_dev(info); |
| up_write(&dmar_global_lock); |
| |
| dmar_free_pci_notify_info(info); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block dmar_pci_bus_nb = { |
| .notifier_call = dmar_pci_bus_notifier, |
| .priority = INT_MIN, |
| }; |
| |
| static struct dmar_drhd_unit * |
| dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) |
| { |
| struct dmar_drhd_unit *dmaru; |
| |
| list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, |
| dmar_rcu_check()) |
| if (dmaru->segment == drhd->segment && |
| dmaru->reg_base_addr == drhd->address) |
| return dmaru; |
| |
| return NULL; |
| } |
| |
| /* |
| * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition |
| * structure which uniquely represent one DMA remapping hardware unit |
| * present in the platform |
| */ |
| static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) |
| { |
| struct acpi_dmar_hardware_unit *drhd; |
| struct dmar_drhd_unit *dmaru; |
| int ret; |
| |
| drhd = (struct acpi_dmar_hardware_unit *)header; |
| dmaru = dmar_find_dmaru(drhd); |
| if (dmaru) |
| goto out; |
| |
| dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); |
| if (!dmaru) |
| return -ENOMEM; |
| |
| /* |
| * If header is allocated from slab by ACPI _DSM method, we need to |
| * copy the content because the memory buffer will be freed on return. |
| */ |
| dmaru->hdr = (void *)(dmaru + 1); |
| memcpy(dmaru->hdr, header, header->length); |
| dmaru->reg_base_addr = drhd->address; |
| dmaru->segment = drhd->segment; |
| dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ |
| dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), |
| ((void *)drhd) + drhd->header.length, |
| &dmaru->devices_cnt); |
| if (dmaru->devices_cnt && dmaru->devices == NULL) { |
| kfree(dmaru); |
| return -ENOMEM; |
| } |
| |
| ret = alloc_iommu(dmaru); |
| if (ret) { |
| dmar_free_dev_scope(&dmaru->devices, |
| &dmaru->devices_cnt); |
| kfree(dmaru); |
| return ret; |
| } |
| dmar_register_drhd_unit(dmaru); |
| |
| out: |
| if (arg) |
| (*(int *)arg)++; |
| |
| return 0; |
| } |
| |
| static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) |
| { |
| if (dmaru->devices && dmaru->devices_cnt) |
| dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); |
| if (dmaru->iommu) |
| free_iommu(dmaru->iommu); |
| kfree(dmaru); |
| } |
| |
| static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, |
| void *arg) |
| { |
| struct acpi_dmar_andd *andd = (void *)header; |
| |
| /* Check for NUL termination within the designated length */ |
| if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { |
| pr_warn(FW_BUG |
| "Your BIOS is broken; ANDD object name is not NUL-terminated\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| return -EINVAL; |
| } |
| pr_info("ANDD device: %x name: %s\n", andd->device_number, |
| andd->device_name); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_ACPI_NUMA |
| static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) |
| { |
| struct acpi_dmar_rhsa *rhsa; |
| struct dmar_drhd_unit *drhd; |
| |
| rhsa = (struct acpi_dmar_rhsa *)header; |
| for_each_drhd_unit(drhd) { |
| if (drhd->reg_base_addr == rhsa->base_address) { |
| int node = pxm_to_node(rhsa->proximity_domain); |
| |
| if (!node_online(node)) |
| node = NUMA_NO_NODE; |
| drhd->iommu->node = node; |
| return 0; |
| } |
| } |
| pr_warn(FW_BUG |
| "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| rhsa->base_address, |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| |
| return 0; |
| } |
| #else |
| #define dmar_parse_one_rhsa dmar_res_noop |
| #endif |
| |
| static void |
| dmar_table_print_dmar_entry(struct acpi_dmar_header *header) |
| { |
| struct acpi_dmar_hardware_unit *drhd; |
| struct acpi_dmar_reserved_memory *rmrr; |
| struct acpi_dmar_atsr *atsr; |
| struct acpi_dmar_rhsa *rhsa; |
| |
| switch (header->type) { |
| case ACPI_DMAR_TYPE_HARDWARE_UNIT: |
| drhd = container_of(header, struct acpi_dmar_hardware_unit, |
| header); |
| pr_info("DRHD base: %#016Lx flags: %#x\n", |
| (unsigned long long)drhd->address, drhd->flags); |
| break; |
| case ACPI_DMAR_TYPE_RESERVED_MEMORY: |
| rmrr = container_of(header, struct acpi_dmar_reserved_memory, |
| header); |
| pr_info("RMRR base: %#016Lx end: %#016Lx\n", |
| (unsigned long long)rmrr->base_address, |
| (unsigned long long)rmrr->end_address); |
| break; |
| case ACPI_DMAR_TYPE_ROOT_ATS: |
| atsr = container_of(header, struct acpi_dmar_atsr, header); |
| pr_info("ATSR flags: %#x\n", atsr->flags); |
| break; |
| case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: |
| rhsa = container_of(header, struct acpi_dmar_rhsa, header); |
| pr_info("RHSA base: %#016Lx proximity domain: %#x\n", |
| (unsigned long long)rhsa->base_address, |
| rhsa->proximity_domain); |
| break; |
| case ACPI_DMAR_TYPE_NAMESPACE: |
| /* We don't print this here because we need to sanity-check |
| it first. So print it in dmar_parse_one_andd() instead. */ |
| break; |
| } |
| } |
| |
| /** |
| * dmar_table_detect - checks to see if the platform supports DMAR devices |
| */ |
| static int __init dmar_table_detect(void) |
| { |
| acpi_status status = AE_OK; |
| |
| /* if we could find DMAR table, then there are DMAR devices */ |
| status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); |
| |
| if (ACPI_SUCCESS(status) && !dmar_tbl) { |
| pr_warn("Unable to map DMAR\n"); |
| status = AE_NOT_FOUND; |
| } |
| |
| return ACPI_SUCCESS(status) ? 0 : -ENOENT; |
| } |
| |
| static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, |
| size_t len, struct dmar_res_callback *cb) |
| { |
| struct acpi_dmar_header *iter, *next; |
| struct acpi_dmar_header *end = ((void *)start) + len; |
| |
| for (iter = start; iter < end; iter = next) { |
| next = (void *)iter + iter->length; |
| if (iter->length == 0) { |
| /* Avoid looping forever on bad ACPI tables */ |
| pr_debug(FW_BUG "Invalid 0-length structure\n"); |
| break; |
| } else if (next > end) { |
| /* Avoid passing table end */ |
| pr_warn(FW_BUG "Record passes table end\n"); |
| return -EINVAL; |
| } |
| |
| if (cb->print_entry) |
| dmar_table_print_dmar_entry(iter); |
| |
| if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { |
| /* continue for forward compatibility */ |
| pr_debug("Unknown DMAR structure type %d\n", |
| iter->type); |
| } else if (cb->cb[iter->type]) { |
| int ret; |
| |
| ret = cb->cb[iter->type](iter, cb->arg[iter->type]); |
| if (ret) |
| return ret; |
| } else if (!cb->ignore_unhandled) { |
| pr_warn("No handler for DMAR structure type %d\n", |
| iter->type); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, |
| struct dmar_res_callback *cb) |
| { |
| return dmar_walk_remapping_entries((void *)(dmar + 1), |
| dmar->header.length - sizeof(*dmar), cb); |
| } |
| |
| /** |
| * parse_dmar_table - parses the DMA reporting table |
| */ |
| static int __init |
| parse_dmar_table(void) |
| { |
| struct acpi_table_dmar *dmar; |
| int drhd_count = 0; |
| int ret; |
| struct dmar_res_callback cb = { |
| .print_entry = true, |
| .ignore_unhandled = true, |
| .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, |
| .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, |
| .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, |
| .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, |
| .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, |
| .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, |
| }; |
| |
| /* |
| * Do it again, earlier dmar_tbl mapping could be mapped with |
| * fixed map. |
| */ |
| dmar_table_detect(); |
| |
| /* |
| * ACPI tables may not be DMA protected by tboot, so use DMAR copy |
| * SINIT saved in SinitMleData in TXT heap (which is DMA protected) |
| */ |
| dmar_tbl = tboot_get_dmar_table(dmar_tbl); |
| |
| dmar = (struct acpi_table_dmar *)dmar_tbl; |
| if (!dmar) |
| return -ENODEV; |
| |
| if (dmar->width < PAGE_SHIFT - 1) { |
| pr_warn("Invalid DMAR haw\n"); |
| return -EINVAL; |
| } |
| |
| pr_info("Host address width %d\n", dmar->width + 1); |
| ret = dmar_walk_dmar_table(dmar, &cb); |
| if (ret == 0 && drhd_count == 0) |
| pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); |
| |
| return ret; |
| } |
| |
| static int dmar_pci_device_match(struct dmar_dev_scope devices[], |
| int cnt, struct pci_dev *dev) |
| { |
| int index; |
| struct device *tmp; |
| |
| while (dev) { |
| for_each_active_dev_scope(devices, cnt, index, tmp) |
| if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) |
| return 1; |
| |
| /* Check our parent */ |
| dev = dev->bus->self; |
| } |
| |
| return 0; |
| } |
| |
| struct dmar_drhd_unit * |
| dmar_find_matched_drhd_unit(struct pci_dev *dev) |
| { |
| struct dmar_drhd_unit *dmaru; |
| struct acpi_dmar_hardware_unit *drhd; |
| |
| dev = pci_physfn(dev); |
| |
| rcu_read_lock(); |
| for_each_drhd_unit(dmaru) { |
| drhd = container_of(dmaru->hdr, |
| struct acpi_dmar_hardware_unit, |
| header); |
| |
| if (dmaru->include_all && |
| drhd->segment == pci_domain_nr(dev->bus)) |
| goto out; |
| |
| if (dmar_pci_device_match(dmaru->devices, |
| dmaru->devices_cnt, dev)) |
| goto out; |
| } |
| dmaru = NULL; |
| out: |
| rcu_read_unlock(); |
| |
| return dmaru; |
| } |
| |
| static void __init dmar_acpi_insert_dev_scope(u8 device_number, |
| struct acpi_device *adev) |
| { |
| struct dmar_drhd_unit *dmaru; |
| struct acpi_dmar_hardware_unit *drhd; |
| struct acpi_dmar_device_scope *scope; |
| struct device *tmp; |
| int i; |
| struct acpi_dmar_pci_path *path; |
| |
| for_each_drhd_unit(dmaru) { |
| drhd = container_of(dmaru->hdr, |
| struct acpi_dmar_hardware_unit, |
| header); |
| |
| for (scope = (void *)(drhd + 1); |
| (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; |
| scope = ((void *)scope) + scope->length) { |
| if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) |
| continue; |
| if (scope->enumeration_id != device_number) |
| continue; |
| |
| path = (void *)(scope + 1); |
| pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", |
| dev_name(&adev->dev), dmaru->reg_base_addr, |
| scope->bus, path->device, path->function); |
| for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) |
| if (tmp == NULL) { |
| dmaru->devices[i].bus = scope->bus; |
| dmaru->devices[i].devfn = PCI_DEVFN(path->device, |
| path->function); |
| rcu_assign_pointer(dmaru->devices[i].dev, |
| get_device(&adev->dev)); |
| return; |
| } |
| BUG_ON(i >= dmaru->devices_cnt); |
| } |
| } |
| pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", |
| device_number, dev_name(&adev->dev)); |
| } |
| |
| static int __init dmar_acpi_dev_scope_init(void) |
| { |
| struct acpi_dmar_andd *andd; |
| |
| if (dmar_tbl == NULL) |
| return -ENODEV; |
| |
| for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); |
| ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; |
| andd = ((void *)andd) + andd->header.length) { |
| if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { |
| acpi_handle h; |
| struct acpi_device *adev; |
| |
| if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, |
| andd->device_name, |
| &h))) { |
| pr_err("Failed to find handle for ACPI object %s\n", |
| andd->device_name); |
| continue; |
| } |
| if (acpi_bus_get_device(h, &adev)) { |
| pr_err("Failed to get device for ACPI object %s\n", |
| andd->device_name); |
| continue; |
| } |
| dmar_acpi_insert_dev_scope(andd->device_number, adev); |
| } |
| } |
| return 0; |
| } |
| |
| int __init dmar_dev_scope_init(void) |
| { |
| struct pci_dev *dev = NULL; |
| struct dmar_pci_notify_info *info; |
| |
| if (dmar_dev_scope_status != 1) |
| return dmar_dev_scope_status; |
| |
| if (list_empty(&dmar_drhd_units)) { |
| dmar_dev_scope_status = -ENODEV; |
| } else { |
| dmar_dev_scope_status = 0; |
| |
| dmar_acpi_dev_scope_init(); |
| |
| for_each_pci_dev(dev) { |
| if (dev->is_virtfn) |
| continue; |
| |
| info = dmar_alloc_pci_notify_info(dev, |
| BUS_NOTIFY_ADD_DEVICE); |
| if (!info) { |
| return dmar_dev_scope_status; |
| } else { |
| dmar_pci_bus_add_dev(info); |
| dmar_free_pci_notify_info(info); |
| } |
| } |
| } |
| |
| return dmar_dev_scope_status; |
| } |
| |
| void __init dmar_register_bus_notifier(void) |
| { |
| bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); |
| } |
| |
| |
| int __init dmar_table_init(void) |
| { |
| static int dmar_table_initialized; |
| int ret; |
| |
| if (dmar_table_initialized == 0) { |
| ret = parse_dmar_table(); |
| if (ret < 0) { |
| if (ret != -ENODEV) |
| pr_info("Parse DMAR table failure.\n"); |
| } else if (list_empty(&dmar_drhd_units)) { |
| pr_info("No DMAR devices found\n"); |
| ret = -ENODEV; |
| } |
| |
| if (ret < 0) |
| dmar_table_initialized = ret; |
| else |
| dmar_table_initialized = 1; |
| } |
| |
| return dmar_table_initialized < 0 ? dmar_table_initialized : 0; |
| } |
| |
| static void warn_invalid_dmar(u64 addr, const char *message) |
| { |
| pr_warn_once(FW_BUG |
| "Your BIOS is broken; DMAR reported at address %llx%s!\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| addr, message, |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| } |
| |
| static int __ref |
| dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) |
| { |
| struct acpi_dmar_hardware_unit *drhd; |
| void __iomem *addr; |
| u64 cap, ecap; |
| |
| drhd = (void *)entry; |
| if (!drhd->address) { |
| warn_invalid_dmar(0, ""); |
| return -EINVAL; |
| } |
| |
| if (arg) |
| addr = ioremap(drhd->address, VTD_PAGE_SIZE); |
| else |
| addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); |
| if (!addr) { |
| pr_warn("Can't validate DRHD address: %llx\n", drhd->address); |
| return -EINVAL; |
| } |
| |
| cap = dmar_readq(addr + DMAR_CAP_REG); |
| ecap = dmar_readq(addr + DMAR_ECAP_REG); |
| |
| if (arg) |
| iounmap(addr); |
| else |
| early_iounmap(addr, VTD_PAGE_SIZE); |
| |
| if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { |
| warn_invalid_dmar(drhd->address, " returns all ones"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int __init detect_intel_iommu(void) |
| { |
| int ret; |
| struct dmar_res_callback validate_drhd_cb = { |
| .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, |
| .ignore_unhandled = true, |
| }; |
| |
| down_write(&dmar_global_lock); |
| ret = dmar_table_detect(); |
| if (!ret) |
| ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, |
| &validate_drhd_cb); |
| if (!ret && !no_iommu && !iommu_detected && |
| (!dmar_disabled || dmar_platform_optin())) { |
| iommu_detected = 1; |
| /* Make sure ACS will be enabled */ |
| pci_request_acs(); |
| } |
| |
| #ifdef CONFIG_X86 |
| if (!ret) { |
| x86_init.iommu.iommu_init = intel_iommu_init; |
| x86_platform.iommu_shutdown = intel_iommu_shutdown; |
| } |
| |
| #endif |
| |
| if (dmar_tbl) { |
| acpi_put_table(dmar_tbl); |
| dmar_tbl = NULL; |
| } |
| up_write(&dmar_global_lock); |
| |
| return ret ? ret : 1; |
| } |
| |
| static void unmap_iommu(struct intel_iommu *iommu) |
| { |
| iounmap(iommu->reg); |
| release_mem_region(iommu->reg_phys, iommu->reg_size); |
| } |
| |
| /** |
| * map_iommu: map the iommu's registers |
| * @iommu: the iommu to map |
| * @phys_addr: the physical address of the base resgister |
| * |
| * Memory map the iommu's registers. Start w/ a single page, and |
| * possibly expand if that turns out to be insufficent. |
| */ |
| static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) |
| { |
| int map_size, err=0; |
| |
| iommu->reg_phys = phys_addr; |
| iommu->reg_size = VTD_PAGE_SIZE; |
| |
| if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { |
| pr_err("Can't reserve memory\n"); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); |
| if (!iommu->reg) { |
| pr_err("Can't map the region\n"); |
| err = -ENOMEM; |
| goto release; |
| } |
| |
| iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); |
| iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); |
| |
| if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { |
| err = -EINVAL; |
| warn_invalid_dmar(phys_addr, " returns all ones"); |
| goto unmap; |
| } |
| if (ecap_vcs(iommu->ecap)) |
| iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); |
| |
| /* the registers might be more than one page */ |
| map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), |
| cap_max_fault_reg_offset(iommu->cap)); |
| map_size = VTD_PAGE_ALIGN(map_size); |
| if (map_size > iommu->reg_size) { |
| iounmap(iommu->reg); |
| release_mem_region(iommu->reg_phys, iommu->reg_size); |
| iommu->reg_size = map_size; |
| if (!request_mem_region(iommu->reg_phys, iommu->reg_size, |
| iommu->name)) { |
| pr_err("Can't reserve memory\n"); |
| err = -EBUSY; |
| goto out; |
| } |
| iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); |
| if (!iommu->reg) { |
| pr_err("Can't map the region\n"); |
| err = -ENOMEM; |
| goto release; |
| } |
| } |
| err = 0; |
| goto out; |
| |
| unmap: |
| iounmap(iommu->reg); |
| release: |
| release_mem_region(iommu->reg_phys, iommu->reg_size); |
| out: |
| return err; |
| } |
| |
| static int dmar_alloc_seq_id(struct intel_iommu *iommu) |
| { |
| iommu->seq_id = find_first_zero_bit(dmar_seq_ids, |
| DMAR_UNITS_SUPPORTED); |
| if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { |
| iommu->seq_id = -1; |
| } else { |
| set_bit(iommu->seq_id, dmar_seq_ids); |
| sprintf(iommu->name, "dmar%d", iommu->seq_id); |
| } |
| |
| return iommu->seq_id; |
| } |
| |
| static void dmar_free_seq_id(struct intel_iommu *iommu) |
| { |
| if (iommu->seq_id >= 0) { |
| clear_bit(iommu->seq_id, dmar_seq_ids); |
| iommu->seq_id = -1; |
| } |
| } |
| |
| static int alloc_iommu(struct dmar_drhd_unit *drhd) |
| { |
| struct intel_iommu *iommu; |
| u32 ver, sts; |
| int agaw = -1; |
| int msagaw = -1; |
| int err; |
| |
| if (!drhd->reg_base_addr) { |
| warn_invalid_dmar(0, ""); |
| return -EINVAL; |
| } |
| |
| iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); |
| if (!iommu) |
| return -ENOMEM; |
| |
| if (dmar_alloc_seq_id(iommu) < 0) { |
| pr_err("Failed to allocate seq_id\n"); |
| err = -ENOSPC; |
| goto error; |
| } |
| |
| err = map_iommu(iommu, drhd->reg_base_addr); |
| if (err) { |
| pr_err("Failed to map %s\n", iommu->name); |
| goto error_free_seq_id; |
| } |
| |
| err = -EINVAL; |
| if (cap_sagaw(iommu->cap) == 0) { |
| pr_info("%s: No supported address widths. Not attempting DMA translation.\n", |
| iommu->name); |
| drhd->ignored = 1; |
| } |
| |
| if (!drhd->ignored) { |
| agaw = iommu_calculate_agaw(iommu); |
| if (agaw < 0) { |
| pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", |
| iommu->seq_id); |
| drhd->ignored = 1; |
| } |
| } |
| if (!drhd->ignored) { |
| msagaw = iommu_calculate_max_sagaw(iommu); |
| if (msagaw < 0) { |
| pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", |
| iommu->seq_id); |
| drhd->ignored = 1; |
| agaw = -1; |
| } |
| } |
| iommu->agaw = agaw; |
| iommu->msagaw = msagaw; |
| iommu->segment = drhd->segment; |
| |
| iommu->node = NUMA_NO_NODE; |
| |
| ver = readl(iommu->reg + DMAR_VER_REG); |
| pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", |
| iommu->name, |
| (unsigned long long)drhd->reg_base_addr, |
| DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), |
| (unsigned long long)iommu->cap, |
| (unsigned long long)iommu->ecap); |
| |
| /* Reflect status in gcmd */ |
| sts = readl(iommu->reg + DMAR_GSTS_REG); |
| if (sts & DMA_GSTS_IRES) |
| iommu->gcmd |= DMA_GCMD_IRE; |
| if (sts & DMA_GSTS_TES) |
| iommu->gcmd |= DMA_GCMD_TE; |
| if (sts & DMA_GSTS_QIES) |
| iommu->gcmd |= DMA_GCMD_QIE; |
| |
| raw_spin_lock_init(&iommu->register_lock); |
| |
| /* |
| * This is only for hotplug; at boot time intel_iommu_enabled won't |
| * be set yet. When intel_iommu_init() runs, it registers the units |
| * present at boot time, then sets intel_iommu_enabled. |
| */ |
| if (intel_iommu_enabled && !drhd->ignored) { |
| err = iommu_device_sysfs_add(&iommu->iommu, NULL, |
| intel_iommu_groups, |
| "%s", iommu->name); |
| if (err) |
| goto err_unmap; |
| |
| iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); |
| |
| err = iommu_device_register(&iommu->iommu); |
| if (err) |
| goto err_unmap; |
| } |
| |
| drhd->iommu = iommu; |
| iommu->drhd = drhd; |
| |
| return 0; |
| |
| err_unmap: |
| unmap_iommu(iommu); |
| error_free_seq_id: |
| dmar_free_seq_id(iommu); |
| error: |
| kfree(iommu); |
| return err; |
| } |
| |
| static void free_iommu(struct intel_iommu *iommu) |
| { |
| if (intel_iommu_enabled && !iommu->drhd->ignored) { |
| iommu_device_unregister(&iommu->iommu); |
| iommu_device_sysfs_remove(&iommu->iommu); |
| } |
| |
| if (iommu->irq) { |
| if (iommu->pr_irq) { |
| free_irq(iommu->pr_irq, iommu); |
| dmar_free_hwirq(iommu->pr_irq); |
| iommu->pr_irq = 0; |
| } |
| free_irq(iommu->irq, iommu); |
| dmar_free_hwirq(iommu->irq); |
| iommu->irq = 0; |
| } |
| |
| if (iommu->qi) { |
| free_page((unsigned long)iommu->qi->desc); |
| kfree(iommu->qi->desc_status); |
| kfree(iommu->qi); |
| } |
| |
| if (iommu->reg) |
| unmap_iommu(iommu); |
| |
| dmar_free_seq_id(iommu); |
| kfree(iommu); |
| } |
| |
| /* |
| * Reclaim all the submitted descriptors which have completed its work. |
| */ |
| static inline void reclaim_free_desc(struct q_inval *qi) |
| { |
| while (qi->desc_status[qi->free_tail] == QI_DONE || |
| qi->desc_status[qi->free_tail] == QI_ABORT) { |
| qi->desc_status[qi->free_tail] = QI_FREE; |
| qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; |
| qi->free_cnt++; |
| } |
| } |
| |
| static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) |
| { |
| u32 fault; |
| int head, tail; |
| struct q_inval *qi = iommu->qi; |
| int shift = qi_shift(iommu); |
| |
| if (qi->desc_status[wait_index] == QI_ABORT) |
| return -EAGAIN; |
| |
| fault = readl(iommu->reg + DMAR_FSTS_REG); |
| |
| /* |
| * If IQE happens, the head points to the descriptor associated |
| * with the error. No new descriptors are fetched until the IQE |
| * is cleared. |
| */ |
| if (fault & DMA_FSTS_IQE) { |
| head = readl(iommu->reg + DMAR_IQH_REG); |
| if ((head >> shift) == index) { |
| struct qi_desc *desc = qi->desc + head; |
| |
| /* |
| * desc->qw2 and desc->qw3 are either reserved or |
| * used by software as private data. We won't print |
| * out these two qw's for security consideration. |
| */ |
| pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", |
| (unsigned long long)desc->qw0, |
| (unsigned long long)desc->qw1); |
| memcpy(desc, qi->desc + (wait_index << shift), |
| 1 << shift); |
| writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * If ITE happens, all pending wait_desc commands are aborted. |
| * No new descriptors are fetched until the ITE is cleared. |
| */ |
| if (fault & DMA_FSTS_ITE) { |
| head = readl(iommu->reg + DMAR_IQH_REG); |
| head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; |
| head |= 1; |
| tail = readl(iommu->reg + DMAR_IQT_REG); |
| tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; |
| |
| writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); |
| |
| do { |
| if (qi->desc_status[head] == QI_IN_USE) |
| qi->desc_status[head] = QI_ABORT; |
| head = (head - 2 + QI_LENGTH) % QI_LENGTH; |
| } while (head != tail); |
| |
| if (qi->desc_status[wait_index] == QI_ABORT) |
| return -EAGAIN; |
| } |
| |
| if (fault & DMA_FSTS_ICE) |
| writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); |
| |
| return 0; |
| } |
| |
| /* |
| * Function to submit invalidation descriptors of all types to the queued |
| * invalidation interface(QI). Multiple descriptors can be submitted at a |
| * time, a wait descriptor will be appended to each submission to ensure |
| * hardware has completed the invalidation before return. Wait descriptors |
| * can be part of the submission but it will not be polled for completion. |
| */ |
| int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, |
| unsigned int count, unsigned long options) |
| { |
| struct q_inval *qi = iommu->qi; |
| struct qi_desc wait_desc; |
| int wait_index, index; |
| unsigned long flags; |
| int offset, shift; |
| int rc, i; |
| |
| if (!qi) |
| return 0; |
| |
| restart: |
| rc = 0; |
| |
| raw_spin_lock_irqsave(&qi->q_lock, flags); |
| /* |
| * Check if we have enough empty slots in the queue to submit, |
| * the calculation is based on: |
| * # of desc + 1 wait desc + 1 space between head and tail |
| */ |
| while (qi->free_cnt < count + 2) { |
| raw_spin_unlock_irqrestore(&qi->q_lock, flags); |
| cpu_relax(); |
| raw_spin_lock_irqsave(&qi->q_lock, flags); |
| } |
| |
| index = qi->free_head; |
| wait_index = (index + count) % QI_LENGTH; |
| shift = qi_shift(iommu); |
| |
| for (i = 0; i < count; i++) { |
| offset = ((index + i) % QI_LENGTH) << shift; |
| memcpy(qi->desc + offset, &desc[i], 1 << shift); |
| qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; |
| } |
| qi->desc_status[wait_index] = QI_IN_USE; |
| |
| wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | |
| QI_IWD_STATUS_WRITE | QI_IWD_TYPE; |
| if (options & QI_OPT_WAIT_DRAIN) |
| wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; |
| wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); |
| wait_desc.qw2 = 0; |
| wait_desc.qw3 = 0; |
| |
| offset = wait_index << shift; |
| memcpy(qi->desc + offset, &wait_desc, 1 << shift); |
| |
| qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; |
| qi->free_cnt -= count + 1; |
| |
| /* |
| * update the HW tail register indicating the presence of |
| * new descriptors. |
| */ |
| writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); |
| |
| while (qi->desc_status[wait_index] != QI_DONE) { |
| /* |
| * We will leave the interrupts disabled, to prevent interrupt |
| * context to queue another cmd while a cmd is already submitted |
| * and waiting for completion on this cpu. This is to avoid |
| * a deadlock where the interrupt context can wait indefinitely |
| * for free slots in the queue. |
| */ |
| rc = qi_check_fault(iommu, index, wait_index); |
| if (rc) |
| break; |
| |
| raw_spin_unlock(&qi->q_lock); |
| cpu_relax(); |
| raw_spin_lock(&qi->q_lock); |
| } |
| |
| for (i = 0; i < count; i++) |
| qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; |
| |
| reclaim_free_desc(qi); |
| raw_spin_unlock_irqrestore(&qi->q_lock, flags); |
| |
| if (rc == -EAGAIN) |
| goto restart; |
| |
| return rc; |
| } |
| |
| /* |
| * Flush the global interrupt entry cache. |
| */ |
| void qi_global_iec(struct intel_iommu *iommu) |
| { |
| struct qi_desc desc; |
| |
| desc.qw0 = QI_IEC_TYPE; |
| desc.qw1 = 0; |
| desc.qw2 = 0; |
| desc.qw3 = 0; |
| |
| /* should never fail */ |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, |
| u64 type) |
| { |
| struct qi_desc desc; |
| |
| desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) |
| | QI_CC_GRAN(type) | QI_CC_TYPE; |
| desc.qw1 = 0; |
| desc.qw2 = 0; |
| desc.qw3 = 0; |
| |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, |
| unsigned int size_order, u64 type) |
| { |
| u8 dw = 0, dr = 0; |
| |
| struct qi_desc desc; |
| int ih = 0; |
| |
| if (cap_write_drain(iommu->cap)) |
| dw = 1; |
| |
| if (cap_read_drain(iommu->cap)) |
| dr = 1; |
| |
| desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) |
| | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; |
| desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) |
| | QI_IOTLB_AM(size_order); |
| desc.qw2 = 0; |
| desc.qw3 = 0; |
| |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, |
| u16 qdep, u64 addr, unsigned mask) |
| { |
| struct qi_desc desc; |
| |
| if (mask) { |
| addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; |
| desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; |
| } else |
| desc.qw1 = QI_DEV_IOTLB_ADDR(addr); |
| |
| if (qdep >= QI_DEV_IOTLB_MAX_INVS) |
| qdep = 0; |
| |
| desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | |
| QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); |
| desc.qw2 = 0; |
| desc.qw3 = 0; |
| |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| /* PASID-based IOTLB invalidation */ |
| void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, |
| unsigned long npages, bool ih) |
| { |
| struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; |
| |
| /* |
| * npages == -1 means a PASID-selective invalidation, otherwise, |
| * a positive value for Page-selective-within-PASID invalidation. |
| * 0 is not a valid input. |
| */ |
| if (WARN_ON(!npages)) { |
| pr_err("Invalid input npages = %ld\n", npages); |
| return; |
| } |
| |
| if (npages == -1) { |
| desc.qw0 = QI_EIOTLB_PASID(pasid) | |
| QI_EIOTLB_DID(did) | |
| QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | |
| QI_EIOTLB_TYPE; |
| desc.qw1 = 0; |
| } else { |
| int mask = ilog2(__roundup_pow_of_two(npages)); |
| unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); |
| |
| if (WARN_ON_ONCE(!ALIGN(addr, align))) |
| addr &= ~(align - 1); |
| |
| desc.qw0 = QI_EIOTLB_PASID(pasid) | |
| QI_EIOTLB_DID(did) | |
| QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | |
| QI_EIOTLB_TYPE; |
| desc.qw1 = QI_EIOTLB_ADDR(addr) | |
| QI_EIOTLB_IH(ih) | |
| QI_EIOTLB_AM(mask); |
| } |
| |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| /* PASID-based device IOTLB Invalidate */ |
| void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, |
| u32 pasid, u16 qdep, u64 addr, unsigned int size_order) |
| { |
| unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); |
| struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; |
| |
| desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | |
| QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | |
| QI_DEV_IOTLB_PFSID(pfsid); |
| |
| /* |
| * If S bit is 0, we only flush a single page. If S bit is set, |
| * The least significant zero bit indicates the invalidation address |
| * range. VT-d spec 6.5.2.6. |
| * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. |
| * size order = 0 is PAGE_SIZE 4KB |
| * Max Invs Pending (MIP) is set to 0 for now until we have DIT in |
| * ECAP. |
| */ |
| if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0)) |
| pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", |
| addr, size_order); |
| |
| /* Take page address */ |
| desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); |
| |
| if (size_order) { |
| /* |
| * Existing 0s in address below size_order may be the least |
| * significant bit, we must set them to 1s to avoid having |
| * smaller size than desired. |
| */ |
| desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, |
| VTD_PAGE_SHIFT); |
| /* Clear size_order bit to indicate size */ |
| desc.qw1 &= ~mask; |
| /* Set the S bit to indicate flushing more than 1 page */ |
| desc.qw1 |= QI_DEV_EIOTLB_SIZE; |
| } |
| |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, |
| u64 granu, u32 pasid) |
| { |
| struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; |
| |
| desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | |
| QI_PC_GRAN(granu) | QI_PC_TYPE; |
| qi_submit_sync(iommu, &desc, 1, 0); |
| } |
| |
| /* |
| * Disable Queued Invalidation interface. |
| */ |
| void dmar_disable_qi(struct intel_iommu *iommu) |
| { |
| unsigned long flags; |
| u32 sts; |
| cycles_t start_time = get_cycles(); |
| |
| if (!ecap_qis(iommu->ecap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| |
| sts = readl(iommu->reg + DMAR_GSTS_REG); |
| if (!(sts & DMA_GSTS_QIES)) |
| goto end; |
| |
| /* |
| * Give a chance to HW to complete the pending invalidation requests. |
| */ |
| while ((readl(iommu->reg + DMAR_IQT_REG) != |
| readl(iommu->reg + DMAR_IQH_REG)) && |
| (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) |
| cpu_relax(); |
| |
| iommu->gcmd &= ~DMA_GCMD_QIE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, |
| !(sts & DMA_GSTS_QIES), sts); |
| end: |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| /* |
| * Enable queued invalidation. |
| */ |
| static void __dmar_enable_qi(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flags; |
| struct q_inval *qi = iommu->qi; |
| u64 val = virt_to_phys(qi->desc); |
| |
| qi->free_head = qi->free_tail = 0; |
| qi->free_cnt = QI_LENGTH; |
| |
| /* |
| * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability |
| * is present. |
| */ |
| if (ecap_smts(iommu->ecap)) |
| val |= (1 << 11) | 1; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| |
| /* write zero to the tail reg */ |
| writel(0, iommu->reg + DMAR_IQT_REG); |
| |
| dmar_writeq(iommu->reg + DMAR_IQA_REG, val); |
| |
| iommu->gcmd |= DMA_GCMD_QIE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| /* |
| * Enable Queued Invalidation interface. This is a must to support |
| * interrupt-remapping. Also used by DMA-remapping, which replaces |
| * register based IOTLB invalidation. |
| */ |
| int dmar_enable_qi(struct intel_iommu *iommu) |
| { |
| struct q_inval *qi; |
| struct page *desc_page; |
| |
| if (!ecap_qis(iommu->ecap)) |
| return -ENOENT; |
| |
| /* |
| * queued invalidation is already setup and enabled. |
| */ |
| if (iommu->qi) |
| return 0; |
| |
| iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); |
| if (!iommu->qi) |
| return -ENOMEM; |
| |
| qi = iommu->qi; |
| |
| /* |
| * Need two pages to accommodate 256 descriptors of 256 bits each |
| * if the remapping hardware supports scalable mode translation. |
| */ |
| desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, |
| !!ecap_smts(iommu->ecap)); |
| if (!desc_page) { |
| kfree(qi); |
| iommu->qi = NULL; |
| return -ENOMEM; |
| } |
| |
| qi->desc = page_address(desc_page); |
| |
| qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); |
| if (!qi->desc_status) { |
| free_page((unsigned long) qi->desc); |
| kfree(qi); |
| iommu->qi = NULL; |
| return -ENOMEM; |
| } |
| |
| raw_spin_lock_init(&qi->q_lock); |
| |
| __dmar_enable_qi(iommu); |
| |
| return 0; |
| } |
| |
| /* iommu interrupt handling. Most stuff are MSI-like. */ |
| |
| enum faulttype { |
| DMA_REMAP, |
| INTR_REMAP, |
| UNKNOWN, |
| }; |
| |
| static const char *dma_remap_fault_reasons[] = |
| { |
| "Software", |
| "Present bit in root entry is clear", |
| "Present bit in context entry is clear", |
| "Invalid context entry", |
| "Access beyond MGAW", |
| "PTE Write access is not set", |
| "PTE Read access is not set", |
| "Next page table ptr is invalid", |
| "Root table address invalid", |
| "Context table ptr is invalid", |
| "non-zero reserved fields in RTP", |
| "non-zero reserved fields in CTP", |
| "non-zero reserved fields in PTE", |
| "PCE for translation request specifies blocking", |
| }; |
| |
| static const char * const dma_remap_sm_fault_reasons[] = { |
| "SM: Invalid Root Table Address", |
| "SM: TTM 0 for request with PASID", |
| "SM: TTM 0 for page group request", |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ |
| "SM: Error attempting to access Root Entry", |
| "SM: Present bit in Root Entry is clear", |
| "SM: Non-zero reserved field set in Root Entry", |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ |
| "SM: Error attempting to access Context Entry", |
| "SM: Present bit in Context Entry is clear", |
| "SM: Non-zero reserved field set in the Context Entry", |
| "SM: Invalid Context Entry", |
| "SM: DTE field in Context Entry is clear", |
| "SM: PASID Enable field in Context Entry is clear", |
| "SM: PASID is larger than the max in Context Entry", |
| "SM: PRE field in Context-Entry is clear", |
| "SM: RID_PASID field error in Context-Entry", |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ |
| "SM: Error attempting to access the PASID Directory Entry", |
| "SM: Present bit in Directory Entry is clear", |
| "SM: Non-zero reserved field set in PASID Directory Entry", |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ |
| "SM: Error attempting to access PASID Table Entry", |
| "SM: Present bit in PASID Table Entry is clear", |
| "SM: Non-zero reserved field set in PASID Table Entry", |
| "SM: Invalid Scalable-Mode PASID Table Entry", |
| "SM: ERE field is clear in PASID Table Entry", |
| "SM: SRE field is clear in PASID Table Entry", |
| "Unknown", "Unknown",/* 0x5E-0x5F */ |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ |
| "SM: Error attempting to access first-level paging entry", |
| "SM: Present bit in first-level paging entry is clear", |
| "SM: Non-zero reserved field set in first-level paging entry", |
| "SM: Error attempting to access FL-PML4 entry", |
| "SM: First-level entry address beyond MGAW in Nested translation", |
| "SM: Read permission error in FL-PML4 entry in Nested translation", |
| "SM: Read permission error in first-level paging entry in Nested translation", |
| "SM: Write permission error in first-level paging entry in Nested translation", |
| "SM: Error attempting to access second-level paging entry", |
| "SM: Read/Write permission error in second-level paging entry", |
| "SM: Non-zero reserved field set in second-level paging entry", |
| "SM: Invalid second-level page table pointer", |
| "SM: A/D bit update needed in second-level entry when set up in no snoop", |
| "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ |
| "SM: Address in first-level translation is not canonical", |
| "SM: U/S set 0 for first-level translation with user privilege", |
| "SM: No execute permission for request with PASID and ER=1", |
| "SM: Address beyond the DMA hardware max", |
| "SM: Second-level entry address beyond the max", |
| "SM: No write permission for Write/AtomicOp request", |
| "SM: No read permission for Read/AtomicOp request", |
| "SM: Invalid address-interrupt address", |
| "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ |
| "SM: A/D bit update needed in first-level entry when set up in no snoop", |
| }; |
| |
| static const char *irq_remap_fault_reasons[] = |
| { |
| "Detected reserved fields in the decoded interrupt-remapped request", |
| "Interrupt index exceeded the interrupt-remapping table size", |
| "Present field in the IRTE entry is clear", |
| "Error accessing interrupt-remapping table pointed by IRTA_REG", |
| "Detected reserved fields in the IRTE entry", |
| "Blocked a compatibility format interrupt request", |
| "Blocked an interrupt request due to source-id verification failure", |
| }; |
| |
| static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) |
| { |
| if (fault_reason >= 0x20 && (fault_reason - 0x20 < |
| ARRAY_SIZE(irq_remap_fault_reasons))) { |
| *fault_type = INTR_REMAP; |
| return irq_remap_fault_reasons[fault_reason - 0x20]; |
| } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < |
| ARRAY_SIZE(dma_remap_sm_fault_reasons))) { |
| *fault_type = DMA_REMAP; |
| return dma_remap_sm_fault_reasons[fault_reason - 0x30]; |
| } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { |
| *fault_type = DMA_REMAP; |
| return dma_remap_fault_reasons[fault_reason]; |
| } else { |
| *fault_type = UNKNOWN; |
| return "Unknown"; |
| } |
| } |
| |
| |
| static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) |
| { |
| if (iommu->irq == irq) |
| return DMAR_FECTL_REG; |
| else if (iommu->pr_irq == irq) |
| return DMAR_PECTL_REG; |
| else |
| BUG(); |
| } |
| |
| void dmar_msi_unmask(struct irq_data *data) |
| { |
| struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); |
| int reg = dmar_msi_reg(iommu, data->irq); |
| unsigned long flag; |
| |
| /* unmask it */ |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(0, iommu->reg + reg); |
| /* Read a reg to force flush the post write */ |
| readl(iommu->reg + reg); |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_mask(struct irq_data *data) |
| { |
| struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); |
| int reg = dmar_msi_reg(iommu, data->irq); |
| unsigned long flag; |
| |
| /* mask it */ |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(DMA_FECTL_IM, iommu->reg + reg); |
| /* Read a reg to force flush the post write */ |
| readl(iommu->reg + reg); |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_write(int irq, struct msi_msg *msg) |
| { |
| struct intel_iommu *iommu = irq_get_handler_data(irq); |
| int reg = dmar_msi_reg(iommu, irq); |
| unsigned long flag; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(msg->data, iommu->reg + reg + 4); |
| writel(msg->address_lo, iommu->reg + reg + 8); |
| writel(msg->address_hi, iommu->reg + reg + 12); |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_read(int irq, struct msi_msg *msg) |
| { |
| struct intel_iommu *iommu = irq_get_handler_data(irq); |
| int reg = dmar_msi_reg(iommu, irq); |
| unsigned long flag; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| msg->data = readl(iommu->reg + reg + 4); |
| msg->address_lo = readl(iommu->reg + reg + 8); |
| msg->address_hi = readl(iommu->reg + reg + 12); |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static int dmar_fault_do_one(struct intel_iommu *iommu, int type, |
| u8 fault_reason, u32 pasid, u16 source_id, |
| unsigned long long addr) |
| { |
| const char *reason; |
| int fault_type; |
| |
| reason = dmar_get_fault_reason(fault_reason, &fault_type); |
| |
| if (fault_type == INTR_REMAP) |
| pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", |
| source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| PCI_FUNC(source_id & 0xFF), addr >> 48, |
| fault_reason, reason); |
| else |
| pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", |
| type ? "DMA Read" : "DMA Write", |
| source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| PCI_FUNC(source_id & 0xFF), pasid, addr, |
| fault_reason, reason); |
| return 0; |
| } |
| |
| #define PRIMARY_FAULT_REG_LEN (16) |
| irqreturn_t dmar_fault(int irq, void *dev_id) |
| { |
| struct intel_iommu *iommu = dev_id; |
| int reg, fault_index; |
| u32 fault_status; |
| unsigned long flag; |
| static DEFINE_RATELIMIT_STATE(rs, |
| DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| if (fault_status && __ratelimit(&rs)) |
| pr_err("DRHD: handling fault status reg %x\n", fault_status); |
| |
| /* TBD: ignore advanced fault log currently */ |
| if (!(fault_status & DMA_FSTS_PPF)) |
| goto unlock_exit; |
| |
| fault_index = dma_fsts_fault_record_index(fault_status); |
| reg = cap_fault_reg_offset(iommu->cap); |
| while (1) { |
| /* Disable printing, simply clear the fault when ratelimited */ |
| bool ratelimited = !__ratelimit(&rs); |
| u8 fault_reason; |
| u16 source_id; |
| u64 guest_addr; |
| u32 pasid; |
| int type; |
| u32 data; |
| bool pasid_present; |
| |
| /* highest 32 bits */ |
| data = readl(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| if (!(data & DMA_FRCD_F)) |
| break; |
| |
| if (!ratelimited) { |
| fault_reason = dma_frcd_fault_reason(data); |
| type = dma_frcd_type(data); |
| |
| pasid = dma_frcd_pasid_value(data); |
| data = readl(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 8); |
| source_id = dma_frcd_source_id(data); |
| |
| pasid_present = dma_frcd_pasid_present(data); |
| guest_addr = dmar_readq(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN); |
| guest_addr = dma_frcd_page_addr(guest_addr); |
| } |
| |
| /* clear the fault */ |
| writel(DMA_FRCD_F, iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| if (!ratelimited) |
| /* Using pasid -1 if pasid is not present */ |
| dmar_fault_do_one(iommu, type, fault_reason, |
| pasid_present ? pasid : -1, |
| source_id, guest_addr); |
| |
| fault_index++; |
| if (fault_index >= cap_num_fault_regs(iommu->cap)) |
| fault_index = 0; |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| } |
| |
| writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, |
| iommu->reg + DMAR_FSTS_REG); |
| |
| unlock_exit: |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| return IRQ_HANDLED; |
| } |
| |
| int dmar_set_interrupt(struct intel_iommu *iommu) |
| { |
| int irq, ret; |
| |
| /* |
| * Check if the fault interrupt is already initialized. |
| */ |
| if (iommu->irq) |
| return 0; |
| |
| irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); |
| if (irq > 0) { |
| iommu->irq = irq; |
| } else { |
| pr_err("No free IRQ vectors\n"); |
| return -EINVAL; |
| } |
| |
| ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); |
| if (ret) |
| pr_err("Can't request irq\n"); |
| return ret; |
| } |
| |
| int __init enable_drhd_fault_handling(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| /* |
| * Enable fault control interrupt. |
| */ |
| for_each_iommu(iommu, drhd) { |
| u32 fault_status; |
| int ret = dmar_set_interrupt(iommu); |
| |
| if (ret) { |
| pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", |
| (unsigned long long)drhd->reg_base_addr, ret); |
| return -1; |
| } |
| |
| /* |
| * Clear any previous faults. |
| */ |
| dmar_fault(iommu->irq, iommu); |
| fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| writel(fault_status, iommu->reg + DMAR_FSTS_REG); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Re-enable Queued Invalidation interface. |
| */ |
| int dmar_reenable_qi(struct intel_iommu *iommu) |
| { |
| if (!ecap_qis(iommu->ecap)) |
| return -ENOENT; |
| |
| if (!iommu->qi) |
| return -ENOENT; |
| |
| /* |
| * First disable queued invalidation. |
| */ |
| dmar_disable_qi(iommu); |
| /* |
| * Then enable queued invalidation again. Since there is no pending |
| * invalidation requests now, it's safe to re-enable queued |
| * invalidation. |
| */ |
| __dmar_enable_qi(iommu); |
| |
| return 0; |
| } |
| |
| /* |
| * Check interrupt remapping support in DMAR table description. |
| */ |
| int __init dmar_ir_support(void) |
| { |
| struct acpi_table_dmar *dmar; |
| dmar = (struct acpi_table_dmar *)dmar_tbl; |
| if (!dmar) |
| return 0; |
| return dmar->flags & 0x1; |
| } |
| |
| /* Check whether DMAR units are in use */ |
| static inline bool dmar_in_use(void) |
| { |
| return irq_remapping_enabled || intel_iommu_enabled; |
| } |
| |
| static int __init dmar_free_unused_resources(void) |
| { |
| struct dmar_drhd_unit *dmaru, *dmaru_n; |
| |
| if (dmar_in_use()) |
| return 0; |
| |
| if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) |
| bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); |
| |
| down_write(&dmar_global_lock); |
| list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { |
| list_del(&dmaru->list); |
| dmar_free_drhd(dmaru); |
| } |
| up_write(&dmar_global_lock); |
| |
| return 0; |
| } |
| |
| late_initcall(dmar_free_unused_resources); |
| IOMMU_INIT_POST(detect_intel_iommu); |
| |
| /* |
| * DMAR Hotplug Support |
| * For more details, please refer to Intel(R) Virtualization Technology |
| * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 |
| * "Remapping Hardware Unit Hot Plug". |
| */ |
| static guid_t dmar_hp_guid = |
| GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, |
| 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); |
| |
| /* |
| * Currently there's only one revision and BIOS will not check the revision id, |
| * so use 0 for safety. |
| */ |
| #define DMAR_DSM_REV_ID 0 |
| #define DMAR_DSM_FUNC_DRHD 1 |
| #define DMAR_DSM_FUNC_ATSR 2 |
| #define DMAR_DSM_FUNC_RHSA 3 |
| |
| static inline bool dmar_detect_dsm(acpi_handle handle, int func) |
| { |
| return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); |
| } |
| |
| static int dmar_walk_dsm_resource(acpi_handle handle, int func, |
| dmar_res_handler_t handler, void *arg) |
| { |
| int ret = -ENODEV; |
| union acpi_object *obj; |
| struct acpi_dmar_header *start; |
| struct dmar_res_callback callback; |
| static int res_type[] = { |
| [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, |
| [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, |
| [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, |
| }; |
| |
| if (!dmar_detect_dsm(handle, func)) |
| return 0; |
| |
| obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, |
| func, NULL, ACPI_TYPE_BUFFER); |
| if (!obj) |
| return -ENODEV; |
| |
| memset(&callback, 0, sizeof(callback)); |
| callback.cb[res_type[func]] = handler; |
| callback.arg[res_type[func]] = arg; |
| start = (struct acpi_dmar_header *)obj->buffer.pointer; |
| ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); |
| |
| ACPI_FREE(obj); |
| |
| return ret; |
| } |
| |
| static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) |
| { |
| int ret; |
| struct dmar_drhd_unit *dmaru; |
| |
| dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); |
| if (!dmaru) |
| return -ENODEV; |
| |
| ret = dmar_ir_hotplug(dmaru, true); |
| if (ret == 0) |
| ret = dmar_iommu_hotplug(dmaru, true); |
| |
| return ret; |
| } |
| |
| static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) |
| { |
| int i, ret; |
| struct device *dev; |
| struct dmar_drhd_unit *dmaru; |
| |
| dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); |
| if (!dmaru) |
| return 0; |
| |
| /* |
| * All PCI devices managed by this unit should have been destroyed. |
| */ |
| if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { |
| for_each_active_dev_scope(dmaru->devices, |
| dmaru->devices_cnt, i, dev) |
| return -EBUSY; |
| } |
| |
| ret = dmar_ir_hotplug(dmaru, false); |
| if (ret == 0) |
| ret = dmar_iommu_hotplug(dmaru, false); |
| |
| return ret; |
| } |
| |
| static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) |
| { |
| struct dmar_drhd_unit *dmaru; |
| |
| dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); |
| if (dmaru) { |
| list_del_rcu(&dmaru->list); |
| synchronize_rcu(); |
| dmar_free_drhd(dmaru); |
| } |
| |
| return 0; |
| } |
| |
| static int dmar_hotplug_insert(acpi_handle handle) |
| { |
| int ret; |
| int drhd_count = 0; |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_validate_one_drhd, (void *)1); |
| if (ret) |
| goto out; |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_parse_one_drhd, (void *)&drhd_count); |
| if (ret == 0 && drhd_count == 0) { |
| pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); |
| goto out; |
| } else if (ret) { |
| goto release_drhd; |
| } |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, |
| &dmar_parse_one_rhsa, NULL); |
| if (ret) |
| goto release_drhd; |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| &dmar_parse_one_atsr, NULL); |
| if (ret) |
| goto release_atsr; |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_hp_add_drhd, NULL); |
| if (!ret) |
| return 0; |
| |
| dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_hp_remove_drhd, NULL); |
| release_atsr: |
| dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| &dmar_release_one_atsr, NULL); |
| release_drhd: |
| dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_hp_release_drhd, NULL); |
| out: |
| return ret; |
| } |
| |
| static int dmar_hotplug_remove(acpi_handle handle) |
| { |
| int ret; |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| &dmar_check_one_atsr, NULL); |
| if (ret) |
| return ret; |
| |
| ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_hp_remove_drhd, NULL); |
| if (ret == 0) { |
| WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| &dmar_release_one_atsr, NULL)); |
| WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_hp_release_drhd, NULL)); |
| } else { |
| dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| &dmar_hp_add_drhd, NULL); |
| } |
| |
| return ret; |
| } |
| |
| static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, |
| void *context, void **retval) |
| { |
| acpi_handle *phdl = retval; |
| |
| if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { |
| *phdl = handle; |
| return AE_CTRL_TERMINATE; |
| } |
| |
| return AE_OK; |
| } |
| |
| static int dmar_device_hotplug(acpi_handle handle, bool insert) |
| { |
| int ret; |
| acpi_handle tmp = NULL; |
| acpi_status status; |
| |
| if (!dmar_in_use()) |
| return 0; |
| |
| if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { |
| tmp = handle; |
| } else { |
| status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, |
| ACPI_UINT32_MAX, |
| dmar_get_dsm_handle, |
| NULL, NULL, &tmp); |
| if (ACPI_FAILURE(status)) { |
| pr_warn("Failed to locate _DSM method.\n"); |
| return -ENXIO; |
| } |
| } |
| if (tmp == NULL) |
| return 0; |
| |
| down_write(&dmar_global_lock); |
| if (insert) |
| ret = dmar_hotplug_insert(tmp); |
| else |
| ret = dmar_hotplug_remove(tmp); |
| up_write(&dmar_global_lock); |
| |
| return ret; |
| } |
| |
| int dmar_device_add(acpi_handle handle) |
| { |
| return dmar_device_hotplug(handle, true); |
| } |
| |
| int dmar_device_remove(acpi_handle handle) |
| { |
| return dmar_device_hotplug(handle, false); |
| } |
| |
| /* |
| * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table |
| * |
| * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in |
| * the ACPI DMAR table. This means that the platform boot firmware has made |
| * sure no device can issue DMA outside of RMRR regions. |
| */ |
| bool dmar_platform_optin(void) |
| { |
| struct acpi_table_dmar *dmar; |
| acpi_status status; |
| bool ret; |
| |
| status = acpi_get_table(ACPI_SIG_DMAR, 0, |
| (struct acpi_table_header **)&dmar); |
| if (ACPI_FAILURE(status)) |
| return false; |
| |
| ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); |
| acpi_put_table((struct acpi_table_header *)dmar); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(dmar_platform_optin); |