| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * AMD Encrypted Register State Support |
| * |
| * Author: Joerg Roedel <jroedel@suse.de> |
| */ |
| |
| /* |
| * misc.h needs to be first because it knows how to include the other kernel |
| * headers in the pre-decompression code in a way that does not break |
| * compilation. |
| */ |
| #include "misc.h" |
| |
| #include <asm/pgtable_types.h> |
| #include <asm/sev.h> |
| #include <asm/trapnr.h> |
| #include <asm/trap_pf.h> |
| #include <asm/msr-index.h> |
| #include <asm/fpu/xcr.h> |
| #include <asm/ptrace.h> |
| #include <asm/svm.h> |
| #include <asm/cpuid.h> |
| |
| #include "error.h" |
| #include "../msr.h" |
| |
| static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE); |
| struct ghcb *boot_ghcb; |
| |
| /* |
| * Copy a version of this function here - insn-eval.c can't be used in |
| * pre-decompression code. |
| */ |
| static bool insn_has_rep_prefix(struct insn *insn) |
| { |
| insn_byte_t p; |
| int i; |
| |
| insn_get_prefixes(insn); |
| |
| for_each_insn_prefix(insn, i, p) { |
| if (p == 0xf2 || p == 0xf3) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and |
| * doesn't use segments. |
| */ |
| static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx) |
| { |
| return 0UL; |
| } |
| |
| static inline u64 sev_es_rd_ghcb_msr(void) |
| { |
| struct msr m; |
| |
| boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m); |
| |
| return m.q; |
| } |
| |
| static inline void sev_es_wr_ghcb_msr(u64 val) |
| { |
| struct msr m; |
| |
| m.q = val; |
| boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m); |
| } |
| |
| static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt) |
| { |
| char buffer[MAX_INSN_SIZE]; |
| int ret; |
| |
| memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE); |
| |
| ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64); |
| if (ret < 0) |
| return ES_DECODE_FAILED; |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_write_mem(struct es_em_ctxt *ctxt, |
| void *dst, char *buf, size_t size) |
| { |
| memcpy(dst, buf, size); |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_read_mem(struct es_em_ctxt *ctxt, |
| void *src, char *buf, size_t size) |
| { |
| memcpy(buf, src, size); |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size) |
| { |
| return ES_OK; |
| } |
| |
| static bool fault_in_kernel_space(unsigned long address) |
| { |
| return false; |
| } |
| |
| #undef __init |
| #define __init |
| |
| #define __BOOT_COMPRESSED |
| |
| /* Basic instruction decoding support needed */ |
| #include "../../lib/inat.c" |
| #include "../../lib/insn.c" |
| |
| /* Include code for early handlers */ |
| #include "../../kernel/sev-shared.c" |
| |
| bool sev_snp_enabled(void) |
| { |
| return sev_status & MSR_AMD64_SEV_SNP_ENABLED; |
| } |
| |
| static void __page_state_change(unsigned long paddr, enum psc_op op) |
| { |
| u64 val; |
| |
| if (!sev_snp_enabled()) |
| return; |
| |
| /* |
| * If private -> shared then invalidate the page before requesting the |
| * state change in the RMP table. |
| */ |
| if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE); |
| |
| /* Issue VMGEXIT to change the page state in RMP table. */ |
| sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op)); |
| VMGEXIT(); |
| |
| /* Read the response of the VMGEXIT. */ |
| val = sev_es_rd_ghcb_msr(); |
| if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); |
| |
| /* |
| * Now that page state is changed in the RMP table, validate it so that it is |
| * consistent with the RMP entry. |
| */ |
| if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE); |
| } |
| |
| void snp_set_page_private(unsigned long paddr) |
| { |
| __page_state_change(paddr, SNP_PAGE_STATE_PRIVATE); |
| } |
| |
| void snp_set_page_shared(unsigned long paddr) |
| { |
| __page_state_change(paddr, SNP_PAGE_STATE_SHARED); |
| } |
| |
| static bool early_setup_ghcb(void) |
| { |
| if (set_page_decrypted((unsigned long)&boot_ghcb_page)) |
| return false; |
| |
| /* Page is now mapped decrypted, clear it */ |
| memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page)); |
| |
| boot_ghcb = &boot_ghcb_page; |
| |
| /* Initialize lookup tables for the instruction decoder */ |
| inat_init_tables(); |
| |
| /* SNP guest requires the GHCB GPA must be registered */ |
| if (sev_snp_enabled()) |
| snp_register_ghcb_early(__pa(&boot_ghcb_page)); |
| |
| return true; |
| } |
| |
| static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc, |
| phys_addr_t pa, phys_addr_t pa_end) |
| { |
| struct psc_hdr *hdr; |
| struct psc_entry *e; |
| unsigned int i; |
| |
| hdr = &desc->hdr; |
| memset(hdr, 0, sizeof(*hdr)); |
| |
| e = desc->entries; |
| |
| i = 0; |
| while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) { |
| hdr->end_entry = i; |
| |
| e->gfn = pa >> PAGE_SHIFT; |
| e->operation = SNP_PAGE_STATE_PRIVATE; |
| if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) { |
| e->pagesize = RMP_PG_SIZE_2M; |
| pa += PMD_SIZE; |
| } else { |
| e->pagesize = RMP_PG_SIZE_4K; |
| pa += PAGE_SIZE; |
| } |
| |
| e++; |
| i++; |
| } |
| |
| if (vmgexit_psc(boot_ghcb, desc)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); |
| |
| pvalidate_pages(desc); |
| |
| return pa; |
| } |
| |
| void snp_accept_memory(phys_addr_t start, phys_addr_t end) |
| { |
| struct snp_psc_desc desc = {}; |
| unsigned int i; |
| phys_addr_t pa; |
| |
| if (!boot_ghcb && !early_setup_ghcb()) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); |
| |
| pa = start; |
| while (pa < end) |
| pa = __snp_accept_memory(&desc, pa, end); |
| } |
| |
| void sev_es_shutdown_ghcb(void) |
| { |
| if (!boot_ghcb) |
| return; |
| |
| if (!sev_es_check_cpu_features()) |
| error("SEV-ES CPU Features missing."); |
| |
| /* |
| * GHCB Page must be flushed from the cache and mapped encrypted again. |
| * Otherwise the running kernel will see strange cache effects when |
| * trying to use that page. |
| */ |
| if (set_page_encrypted((unsigned long)&boot_ghcb_page)) |
| error("Can't map GHCB page encrypted"); |
| |
| /* |
| * GHCB page is mapped encrypted again and flushed from the cache. |
| * Mark it non-present now to catch bugs when #VC exceptions trigger |
| * after this point. |
| */ |
| if (set_page_non_present((unsigned long)&boot_ghcb_page)) |
| error("Can't unmap GHCB page"); |
| } |
| |
| static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set, |
| unsigned int reason, u64 exit_info_2) |
| { |
| u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason); |
| |
| vc_ghcb_invalidate(ghcb); |
| ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST); |
| ghcb_set_sw_exit_info_1(ghcb, exit_info_1); |
| ghcb_set_sw_exit_info_2(ghcb, exit_info_2); |
| |
| sev_es_wr_ghcb_msr(__pa(ghcb)); |
| VMGEXIT(); |
| |
| while (true) |
| asm volatile("hlt\n" : : : "memory"); |
| } |
| |
| bool sev_es_check_ghcb_fault(unsigned long address) |
| { |
| /* Check whether the fault was on the GHCB page */ |
| return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page); |
| } |
| |
| void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code) |
| { |
| struct es_em_ctxt ctxt; |
| enum es_result result; |
| |
| if (!boot_ghcb && !early_setup_ghcb()) |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); |
| |
| vc_ghcb_invalidate(boot_ghcb); |
| result = vc_init_em_ctxt(&ctxt, regs, exit_code); |
| if (result != ES_OK) |
| goto finish; |
| |
| switch (exit_code) { |
| case SVM_EXIT_RDTSC: |
| case SVM_EXIT_RDTSCP: |
| result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code); |
| break; |
| case SVM_EXIT_IOIO: |
| result = vc_handle_ioio(boot_ghcb, &ctxt); |
| break; |
| case SVM_EXIT_CPUID: |
| result = vc_handle_cpuid(boot_ghcb, &ctxt); |
| break; |
| default: |
| result = ES_UNSUPPORTED; |
| break; |
| } |
| |
| finish: |
| if (result == ES_OK) |
| vc_finish_insn(&ctxt); |
| else if (result != ES_RETRY) |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); |
| } |
| |
| static void enforce_vmpl0(void) |
| { |
| u64 attrs; |
| int err; |
| |
| /* |
| * RMPADJUST modifies RMP permissions of a lesser-privileged (numerically |
| * higher) privilege level. Here, clear the VMPL1 permission mask of the |
| * GHCB page. If the guest is not running at VMPL0, this will fail. |
| * |
| * If the guest is running at VMPL0, it will succeed. Even if that operation |
| * modifies permission bits, it is still ok to do so currently because Linux |
| * SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks |
| * changing is a don't-care. |
| */ |
| attrs = 1; |
| if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0); |
| } |
| |
| /* |
| * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need |
| * guest side implementation for proper functioning of the guest. If any |
| * of these features are enabled in the hypervisor but are lacking guest |
| * side implementation, the behavior of the guest will be undefined. The |
| * guest could fail in non-obvious way making it difficult to debug. |
| * |
| * As the behavior of reserved feature bits is unknown to be on the |
| * safe side add them to the required features mask. |
| */ |
| #define SNP_FEATURES_IMPL_REQ (MSR_AMD64_SNP_VTOM | \ |
| MSR_AMD64_SNP_REFLECT_VC | \ |
| MSR_AMD64_SNP_RESTRICTED_INJ | \ |
| MSR_AMD64_SNP_ALT_INJ | \ |
| MSR_AMD64_SNP_DEBUG_SWAP | \ |
| MSR_AMD64_SNP_VMPL_SSS | \ |
| MSR_AMD64_SNP_SECURE_TSC | \ |
| MSR_AMD64_SNP_VMGEXIT_PARAM | \ |
| MSR_AMD64_SNP_VMSA_REG_PROTECTION | \ |
| MSR_AMD64_SNP_RESERVED_BIT13 | \ |
| MSR_AMD64_SNP_RESERVED_BIT15 | \ |
| MSR_AMD64_SNP_RESERVED_MASK) |
| |
| /* |
| * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented |
| * by the guest kernel. As and when a new feature is implemented in the |
| * guest kernel, a corresponding bit should be added to the mask. |
| */ |
| #define SNP_FEATURES_PRESENT MSR_AMD64_SNP_DEBUG_SWAP |
| |
| u64 snp_get_unsupported_features(u64 status) |
| { |
| if (!(status & MSR_AMD64_SEV_SNP_ENABLED)) |
| return 0; |
| |
| return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT; |
| } |
| |
| void snp_check_features(void) |
| { |
| u64 unsupported; |
| |
| /* |
| * Terminate the boot if hypervisor has enabled any feature lacking |
| * guest side implementation. Pass on the unsupported features mask through |
| * EXIT_INFO_2 of the GHCB protocol so that those features can be reported |
| * as part of the guest boot failure. |
| */ |
| unsupported = snp_get_unsupported_features(sev_status); |
| if (unsupported) { |
| if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb())) |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); |
| |
| sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN, |
| GHCB_SNP_UNSUPPORTED, unsupported); |
| } |
| } |
| |
| /* |
| * sev_check_cpu_support - Check for SEV support in the CPU capabilities |
| * |
| * Returns < 0 if SEV is not supported, otherwise the position of the |
| * encryption bit in the page table descriptors. |
| */ |
| static int sev_check_cpu_support(void) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| |
| /* Check for the SME/SEV support leaf */ |
| eax = 0x80000000; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| if (eax < 0x8000001f) |
| return -ENODEV; |
| |
| /* |
| * Check for the SME/SEV feature: |
| * CPUID Fn8000_001F[EAX] |
| * - Bit 0 - Secure Memory Encryption support |
| * - Bit 1 - Secure Encrypted Virtualization support |
| * CPUID Fn8000_001F[EBX] |
| * - Bits 5:0 - Pagetable bit position used to indicate encryption |
| */ |
| eax = 0x8000001f; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| /* Check whether SEV is supported */ |
| if (!(eax & BIT(1))) |
| return -ENODEV; |
| |
| return ebx & 0x3f; |
| } |
| |
| void sev_enable(struct boot_params *bp) |
| { |
| struct msr m; |
| int bitpos; |
| bool snp; |
| |
| /* |
| * bp->cc_blob_address should only be set by boot/compressed kernel. |
| * Initialize it to 0 to ensure that uninitialized values from |
| * buggy bootloaders aren't propagated. |
| */ |
| if (bp) |
| bp->cc_blob_address = 0; |
| |
| /* |
| * Do an initial SEV capability check before snp_init() which |
| * loads the CPUID page and the same checks afterwards are done |
| * without the hypervisor and are trustworthy. |
| * |
| * If the HV fakes SEV support, the guest will crash'n'burn |
| * which is good enough. |
| */ |
| |
| if (sev_check_cpu_support() < 0) |
| return; |
| |
| /* |
| * Setup/preliminary detection of SNP. This will be sanity-checked |
| * against CPUID/MSR values later. |
| */ |
| snp = snp_init(bp); |
| |
| /* Now repeat the checks with the SNP CPUID table. */ |
| |
| bitpos = sev_check_cpu_support(); |
| if (bitpos < 0) { |
| if (snp) |
| error("SEV-SNP support indicated by CC blob, but not CPUID."); |
| return; |
| } |
| |
| /* Set the SME mask if this is an SEV guest. */ |
| boot_rdmsr(MSR_AMD64_SEV, &m); |
| sev_status = m.q; |
| if (!(sev_status & MSR_AMD64_SEV_ENABLED)) |
| return; |
| |
| /* Negotiate the GHCB protocol version. */ |
| if (sev_status & MSR_AMD64_SEV_ES_ENABLED) { |
| if (!sev_es_negotiate_protocol()) |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED); |
| } |
| |
| /* |
| * SNP is supported in v2 of the GHCB spec which mandates support for HV |
| * features. |
| */ |
| if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) { |
| if (!(get_hv_features() & GHCB_HV_FT_SNP)) |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); |
| |
| enforce_vmpl0(); |
| } |
| |
| if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) |
| error("SEV-SNP supported indicated by CC blob, but not SEV status MSR."); |
| |
| sme_me_mask = BIT_ULL(bitpos); |
| } |
| |
| /* |
| * sev_get_status - Retrieve the SEV status mask |
| * |
| * Returns 0 if the CPU is not SEV capable, otherwise the value of the |
| * AMD64_SEV MSR. |
| */ |
| u64 sev_get_status(void) |
| { |
| struct msr m; |
| |
| if (sev_check_cpu_support() < 0) |
| return 0; |
| |
| boot_rdmsr(MSR_AMD64_SEV, &m); |
| return m.q; |
| } |
| |
| /* Search for Confidential Computing blob in the EFI config table. */ |
| static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp) |
| { |
| unsigned long cfg_table_pa; |
| unsigned int cfg_table_len; |
| int ret; |
| |
| ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len); |
| if (ret) |
| return NULL; |
| |
| return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa, |
| cfg_table_len, |
| EFI_CC_BLOB_GUID); |
| } |
| |
| /* |
| * Initial set up of SNP relies on information provided by the |
| * Confidential Computing blob, which can be passed to the boot kernel |
| * by firmware/bootloader in the following ways: |
| * |
| * - via an entry in the EFI config table |
| * - via a setup_data structure, as defined by the Linux Boot Protocol |
| * |
| * Scan for the blob in that order. |
| */ |
| static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp) |
| { |
| struct cc_blob_sev_info *cc_info; |
| |
| cc_info = find_cc_blob_efi(bp); |
| if (cc_info) |
| goto found_cc_info; |
| |
| cc_info = find_cc_blob_setup_data(bp); |
| if (!cc_info) |
| return NULL; |
| |
| found_cc_info: |
| if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC) |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); |
| |
| return cc_info; |
| } |
| |
| /* |
| * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks |
| * will verify the SNP CPUID/MSR bits. |
| */ |
| bool snp_init(struct boot_params *bp) |
| { |
| struct cc_blob_sev_info *cc_info; |
| |
| if (!bp) |
| return false; |
| |
| cc_info = find_cc_blob(bp); |
| if (!cc_info) |
| return false; |
| |
| /* |
| * If a SNP-specific Confidential Computing blob is present, then |
| * firmware/bootloader have indicated SNP support. Verifying this |
| * involves CPUID checks which will be more reliable if the SNP |
| * CPUID table is used. See comments over snp_setup_cpuid_table() for |
| * more details. |
| */ |
| setup_cpuid_table(cc_info); |
| |
| /* |
| * Pass run-time kernel a pointer to CC info via boot_params so EFI |
| * config table doesn't need to be searched again during early startup |
| * phase. |
| */ |
| bp->cc_blob_address = (u32)(unsigned long)cc_info; |
| |
| return true; |
| } |
| |
| void sev_prep_identity_maps(unsigned long top_level_pgt) |
| { |
| /* |
| * The Confidential Computing blob is used very early in uncompressed |
| * kernel to find the in-memory CPUID table to handle CPUID |
| * instructions. Make sure an identity-mapping exists so it can be |
| * accessed after switchover. |
| */ |
| if (sev_snp_enabled()) { |
| unsigned long cc_info_pa = boot_params_ptr->cc_blob_address; |
| struct cc_blob_sev_info *cc_info; |
| |
| kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info)); |
| |
| cc_info = (struct cc_blob_sev_info *)cc_info_pa; |
| kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len); |
| } |
| |
| sev_verify_cbit(top_level_pgt); |
| } |