| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * inet fragments management |
| * |
| * Authors: Pavel Emelyanov <xemul@openvz.org> |
| * Started as consolidation of ipv4/ip_fragment.c, |
| * ipv6/reassembly. and ipv6 nf conntrack reassembly |
| */ |
| |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/module.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/random.h> |
| #include <linux/skbuff.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/slab.h> |
| #include <linux/rhashtable.h> |
| |
| #include <net/sock.h> |
| #include <net/inet_frag.h> |
| #include <net/inet_ecn.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| |
| /* Use skb->cb to track consecutive/adjacent fragments coming at |
| * the end of the queue. Nodes in the rb-tree queue will |
| * contain "runs" of one or more adjacent fragments. |
| * |
| * Invariants: |
| * - next_frag is NULL at the tail of a "run"; |
| * - the head of a "run" has the sum of all fragment lengths in frag_run_len. |
| */ |
| struct ipfrag_skb_cb { |
| union { |
| struct inet_skb_parm h4; |
| struct inet6_skb_parm h6; |
| }; |
| struct sk_buff *next_frag; |
| int frag_run_len; |
| }; |
| |
| #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) |
| |
| static void fragcb_clear(struct sk_buff *skb) |
| { |
| RB_CLEAR_NODE(&skb->rbnode); |
| FRAG_CB(skb)->next_frag = NULL; |
| FRAG_CB(skb)->frag_run_len = skb->len; |
| } |
| |
| /* Append skb to the last "run". */ |
| static void fragrun_append_to_last(struct inet_frag_queue *q, |
| struct sk_buff *skb) |
| { |
| fragcb_clear(skb); |
| |
| FRAG_CB(q->last_run_head)->frag_run_len += skb->len; |
| FRAG_CB(q->fragments_tail)->next_frag = skb; |
| q->fragments_tail = skb; |
| } |
| |
| /* Create a new "run" with the skb. */ |
| static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) |
| { |
| BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); |
| fragcb_clear(skb); |
| |
| if (q->last_run_head) |
| rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, |
| &q->last_run_head->rbnode.rb_right); |
| else |
| rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); |
| rb_insert_color(&skb->rbnode, &q->rb_fragments); |
| |
| q->fragments_tail = skb; |
| q->last_run_head = skb; |
| } |
| |
| /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements |
| * Value : 0xff if frame should be dropped. |
| * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field |
| */ |
| const u8 ip_frag_ecn_table[16] = { |
| /* at least one fragment had CE, and others ECT_0 or ECT_1 */ |
| [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, |
| [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
| [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
| |
| /* invalid combinations : drop frame */ |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
| }; |
| EXPORT_SYMBOL(ip_frag_ecn_table); |
| |
| int inet_frags_init(struct inet_frags *f) |
| { |
| f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, |
| NULL); |
| if (!f->frags_cachep) |
| return -ENOMEM; |
| |
| refcount_set(&f->refcnt, 1); |
| init_completion(&f->completion); |
| return 0; |
| } |
| EXPORT_SYMBOL(inet_frags_init); |
| |
| void inet_frags_fini(struct inet_frags *f) |
| { |
| if (refcount_dec_and_test(&f->refcnt)) |
| complete(&f->completion); |
| |
| wait_for_completion(&f->completion); |
| |
| kmem_cache_destroy(f->frags_cachep); |
| f->frags_cachep = NULL; |
| } |
| EXPORT_SYMBOL(inet_frags_fini); |
| |
| /* called from rhashtable_free_and_destroy() at netns_frags dismantle */ |
| static void inet_frags_free_cb(void *ptr, void *arg) |
| { |
| struct inet_frag_queue *fq = ptr; |
| int count; |
| |
| count = del_timer_sync(&fq->timer) ? 1 : 0; |
| |
| spin_lock_bh(&fq->lock); |
| fq->flags |= INET_FRAG_DROP; |
| if (!(fq->flags & INET_FRAG_COMPLETE)) { |
| fq->flags |= INET_FRAG_COMPLETE; |
| count++; |
| } else if (fq->flags & INET_FRAG_HASH_DEAD) { |
| count++; |
| } |
| spin_unlock_bh(&fq->lock); |
| |
| if (refcount_sub_and_test(count, &fq->refcnt)) |
| inet_frag_destroy(fq); |
| } |
| |
| static LLIST_HEAD(fqdir_free_list); |
| |
| static void fqdir_free_fn(struct work_struct *work) |
| { |
| struct llist_node *kill_list; |
| struct fqdir *fqdir, *tmp; |
| struct inet_frags *f; |
| |
| /* Atomically snapshot the list of fqdirs to free */ |
| kill_list = llist_del_all(&fqdir_free_list); |
| |
| /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu) |
| * have completed, since they need to dereference fqdir. |
| * Would it not be nice to have kfree_rcu_barrier() ? :) |
| */ |
| rcu_barrier(); |
| |
| llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) { |
| f = fqdir->f; |
| if (refcount_dec_and_test(&f->refcnt)) |
| complete(&f->completion); |
| |
| kfree(fqdir); |
| } |
| } |
| |
| static DECLARE_WORK(fqdir_free_work, fqdir_free_fn); |
| |
| static void fqdir_work_fn(struct work_struct *work) |
| { |
| struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work); |
| |
| rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL); |
| |
| if (llist_add(&fqdir->free_list, &fqdir_free_list)) |
| queue_work(system_wq, &fqdir_free_work); |
| } |
| |
| int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net) |
| { |
| struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL); |
| int res; |
| |
| if (!fqdir) |
| return -ENOMEM; |
| fqdir->f = f; |
| fqdir->net = net; |
| res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params); |
| if (res < 0) { |
| kfree(fqdir); |
| return res; |
| } |
| refcount_inc(&f->refcnt); |
| *fqdirp = fqdir; |
| return 0; |
| } |
| EXPORT_SYMBOL(fqdir_init); |
| |
| static struct workqueue_struct *inet_frag_wq; |
| |
| static int __init inet_frag_wq_init(void) |
| { |
| inet_frag_wq = create_workqueue("inet_frag_wq"); |
| if (!inet_frag_wq) |
| panic("Could not create inet frag workq"); |
| return 0; |
| } |
| |
| pure_initcall(inet_frag_wq_init); |
| |
| void fqdir_exit(struct fqdir *fqdir) |
| { |
| INIT_WORK(&fqdir->destroy_work, fqdir_work_fn); |
| queue_work(inet_frag_wq, &fqdir->destroy_work); |
| } |
| EXPORT_SYMBOL(fqdir_exit); |
| |
| void inet_frag_kill(struct inet_frag_queue *fq) |
| { |
| if (del_timer(&fq->timer)) |
| refcount_dec(&fq->refcnt); |
| |
| if (!(fq->flags & INET_FRAG_COMPLETE)) { |
| struct fqdir *fqdir = fq->fqdir; |
| |
| fq->flags |= INET_FRAG_COMPLETE; |
| rcu_read_lock(); |
| /* The RCU read lock provides a memory barrier |
| * guaranteeing that if fqdir->dead is false then |
| * the hash table destruction will not start until |
| * after we unlock. Paired with fqdir_pre_exit(). |
| */ |
| if (!READ_ONCE(fqdir->dead)) { |
| rhashtable_remove_fast(&fqdir->rhashtable, &fq->node, |
| fqdir->f->rhash_params); |
| refcount_dec(&fq->refcnt); |
| } else { |
| fq->flags |= INET_FRAG_HASH_DEAD; |
| } |
| rcu_read_unlock(); |
| } |
| } |
| EXPORT_SYMBOL(inet_frag_kill); |
| |
| static void inet_frag_destroy_rcu(struct rcu_head *head) |
| { |
| struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, |
| rcu); |
| struct inet_frags *f = q->fqdir->f; |
| |
| if (f->destructor) |
| f->destructor(q); |
| kmem_cache_free(f->frags_cachep, q); |
| } |
| |
| unsigned int inet_frag_rbtree_purge(struct rb_root *root, |
| enum skb_drop_reason reason) |
| { |
| struct rb_node *p = rb_first(root); |
| unsigned int sum = 0; |
| |
| while (p) { |
| struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); |
| |
| p = rb_next(p); |
| rb_erase(&skb->rbnode, root); |
| while (skb) { |
| struct sk_buff *next = FRAG_CB(skb)->next_frag; |
| |
| sum += skb->truesize; |
| kfree_skb_reason(skb, reason); |
| skb = next; |
| } |
| } |
| return sum; |
| } |
| EXPORT_SYMBOL(inet_frag_rbtree_purge); |
| |
| void inet_frag_destroy(struct inet_frag_queue *q) |
| { |
| unsigned int sum, sum_truesize = 0; |
| enum skb_drop_reason reason; |
| struct inet_frags *f; |
| struct fqdir *fqdir; |
| |
| WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); |
| reason = (q->flags & INET_FRAG_DROP) ? |
| SKB_DROP_REASON_FRAG_REASM_TIMEOUT : |
| SKB_CONSUMED; |
| WARN_ON(del_timer(&q->timer) != 0); |
| |
| /* Release all fragment data. */ |
| fqdir = q->fqdir; |
| f = fqdir->f; |
| sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason); |
| sum = sum_truesize + f->qsize; |
| |
| call_rcu(&q->rcu, inet_frag_destroy_rcu); |
| |
| sub_frag_mem_limit(fqdir, sum); |
| } |
| EXPORT_SYMBOL(inet_frag_destroy); |
| |
| static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir, |
| struct inet_frags *f, |
| void *arg) |
| { |
| struct inet_frag_queue *q; |
| |
| q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); |
| if (!q) |
| return NULL; |
| |
| q->fqdir = fqdir; |
| f->constructor(q, arg); |
| add_frag_mem_limit(fqdir, f->qsize); |
| |
| timer_setup(&q->timer, f->frag_expire, 0); |
| spin_lock_init(&q->lock); |
| refcount_set(&q->refcnt, 3); |
| |
| return q; |
| } |
| |
| static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir, |
| void *arg, |
| struct inet_frag_queue **prev) |
| { |
| struct inet_frags *f = fqdir->f; |
| struct inet_frag_queue *q; |
| |
| q = inet_frag_alloc(fqdir, f, arg); |
| if (!q) { |
| *prev = ERR_PTR(-ENOMEM); |
| return NULL; |
| } |
| mod_timer(&q->timer, jiffies + fqdir->timeout); |
| |
| *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key, |
| &q->node, f->rhash_params); |
| if (*prev) { |
| q->flags |= INET_FRAG_COMPLETE; |
| inet_frag_kill(q); |
| inet_frag_destroy(q); |
| return NULL; |
| } |
| return q; |
| } |
| |
| /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ |
| struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key) |
| { |
| /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */ |
| long high_thresh = READ_ONCE(fqdir->high_thresh); |
| struct inet_frag_queue *fq = NULL, *prev; |
| |
| if (!high_thresh || frag_mem_limit(fqdir) > high_thresh) |
| return NULL; |
| |
| rcu_read_lock(); |
| |
| prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params); |
| if (!prev) |
| fq = inet_frag_create(fqdir, key, &prev); |
| if (!IS_ERR_OR_NULL(prev)) { |
| fq = prev; |
| if (!refcount_inc_not_zero(&fq->refcnt)) |
| fq = NULL; |
| } |
| rcu_read_unlock(); |
| return fq; |
| } |
| EXPORT_SYMBOL(inet_frag_find); |
| |
| int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, |
| int offset, int end) |
| { |
| struct sk_buff *last = q->fragments_tail; |
| |
| /* RFC5722, Section 4, amended by Errata ID : 3089 |
| * When reassembling an IPv6 datagram, if |
| * one or more its constituent fragments is determined to be an |
| * overlapping fragment, the entire datagram (and any constituent |
| * fragments) MUST be silently discarded. |
| * |
| * Duplicates, however, should be ignored (i.e. skb dropped, but the |
| * queue/fragments kept for later reassembly). |
| */ |
| if (!last) |
| fragrun_create(q, skb); /* First fragment. */ |
| else if (last->ip_defrag_offset + last->len < end) { |
| /* This is the common case: skb goes to the end. */ |
| /* Detect and discard overlaps. */ |
| if (offset < last->ip_defrag_offset + last->len) |
| return IPFRAG_OVERLAP; |
| if (offset == last->ip_defrag_offset + last->len) |
| fragrun_append_to_last(q, skb); |
| else |
| fragrun_create(q, skb); |
| } else { |
| /* Binary search. Note that skb can become the first fragment, |
| * but not the last (covered above). |
| */ |
| struct rb_node **rbn, *parent; |
| |
| rbn = &q->rb_fragments.rb_node; |
| do { |
| struct sk_buff *curr; |
| int curr_run_end; |
| |
| parent = *rbn; |
| curr = rb_to_skb(parent); |
| curr_run_end = curr->ip_defrag_offset + |
| FRAG_CB(curr)->frag_run_len; |
| if (end <= curr->ip_defrag_offset) |
| rbn = &parent->rb_left; |
| else if (offset >= curr_run_end) |
| rbn = &parent->rb_right; |
| else if (offset >= curr->ip_defrag_offset && |
| end <= curr_run_end) |
| return IPFRAG_DUP; |
| else |
| return IPFRAG_OVERLAP; |
| } while (*rbn); |
| /* Here we have parent properly set, and rbn pointing to |
| * one of its NULL left/right children. Insert skb. |
| */ |
| fragcb_clear(skb); |
| rb_link_node(&skb->rbnode, parent, rbn); |
| rb_insert_color(&skb->rbnode, &q->rb_fragments); |
| } |
| |
| skb->ip_defrag_offset = offset; |
| |
| return IPFRAG_OK; |
| } |
| EXPORT_SYMBOL(inet_frag_queue_insert); |
| |
| void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, |
| struct sk_buff *parent) |
| { |
| struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); |
| struct sk_buff **nextp; |
| int delta; |
| |
| if (head != skb) { |
| fp = skb_clone(skb, GFP_ATOMIC); |
| if (!fp) |
| return NULL; |
| FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; |
| if (RB_EMPTY_NODE(&skb->rbnode)) |
| FRAG_CB(parent)->next_frag = fp; |
| else |
| rb_replace_node(&skb->rbnode, &fp->rbnode, |
| &q->rb_fragments); |
| if (q->fragments_tail == skb) |
| q->fragments_tail = fp; |
| skb_morph(skb, head); |
| FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; |
| rb_replace_node(&head->rbnode, &skb->rbnode, |
| &q->rb_fragments); |
| consume_skb(head); |
| head = skb; |
| } |
| WARN_ON(head->ip_defrag_offset != 0); |
| |
| delta = -head->truesize; |
| |
| /* Head of list must not be cloned. */ |
| if (skb_unclone(head, GFP_ATOMIC)) |
| return NULL; |
| |
| delta += head->truesize; |
| if (delta) |
| add_frag_mem_limit(q->fqdir, delta); |
| |
| /* If the first fragment is fragmented itself, we split |
| * it to two chunks: the first with data and paged part |
| * and the second, holding only fragments. |
| */ |
| if (skb_has_frag_list(head)) { |
| struct sk_buff *clone; |
| int i, plen = 0; |
| |
| clone = alloc_skb(0, GFP_ATOMIC); |
| if (!clone) |
| return NULL; |
| skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; |
| skb_frag_list_init(head); |
| for (i = 0; i < skb_shinfo(head)->nr_frags; i++) |
| plen += skb_frag_size(&skb_shinfo(head)->frags[i]); |
| clone->data_len = head->data_len - plen; |
| clone->len = clone->data_len; |
| head->truesize += clone->truesize; |
| clone->csum = 0; |
| clone->ip_summed = head->ip_summed; |
| add_frag_mem_limit(q->fqdir, clone->truesize); |
| skb_shinfo(head)->frag_list = clone; |
| nextp = &clone->next; |
| } else { |
| nextp = &skb_shinfo(head)->frag_list; |
| } |
| |
| return nextp; |
| } |
| EXPORT_SYMBOL(inet_frag_reasm_prepare); |
| |
| void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, |
| void *reasm_data, bool try_coalesce) |
| { |
| struct sk_buff **nextp = reasm_data; |
| struct rb_node *rbn; |
| struct sk_buff *fp; |
| int sum_truesize; |
| |
| skb_push(head, head->data - skb_network_header(head)); |
| |
| /* Traverse the tree in order, to build frag_list. */ |
| fp = FRAG_CB(head)->next_frag; |
| rbn = rb_next(&head->rbnode); |
| rb_erase(&head->rbnode, &q->rb_fragments); |
| |
| sum_truesize = head->truesize; |
| while (rbn || fp) { |
| /* fp points to the next sk_buff in the current run; |
| * rbn points to the next run. |
| */ |
| /* Go through the current run. */ |
| while (fp) { |
| struct sk_buff *next_frag = FRAG_CB(fp)->next_frag; |
| bool stolen; |
| int delta; |
| |
| sum_truesize += fp->truesize; |
| if (head->ip_summed != fp->ip_summed) |
| head->ip_summed = CHECKSUM_NONE; |
| else if (head->ip_summed == CHECKSUM_COMPLETE) |
| head->csum = csum_add(head->csum, fp->csum); |
| |
| if (try_coalesce && skb_try_coalesce(head, fp, &stolen, |
| &delta)) { |
| kfree_skb_partial(fp, stolen); |
| } else { |
| fp->prev = NULL; |
| memset(&fp->rbnode, 0, sizeof(fp->rbnode)); |
| fp->sk = NULL; |
| |
| head->data_len += fp->len; |
| head->len += fp->len; |
| head->truesize += fp->truesize; |
| |
| *nextp = fp; |
| nextp = &fp->next; |
| } |
| |
| fp = next_frag; |
| } |
| /* Move to the next run. */ |
| if (rbn) { |
| struct rb_node *rbnext = rb_next(rbn); |
| |
| fp = rb_to_skb(rbn); |
| rb_erase(rbn, &q->rb_fragments); |
| rbn = rbnext; |
| } |
| } |
| sub_frag_mem_limit(q->fqdir, sum_truesize); |
| |
| *nextp = NULL; |
| skb_mark_not_on_list(head); |
| head->prev = NULL; |
| head->tstamp = q->stamp; |
| head->mono_delivery_time = q->mono_delivery_time; |
| } |
| EXPORT_SYMBOL(inet_frag_reasm_finish); |
| |
| struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) |
| { |
| struct sk_buff *head, *skb; |
| |
| head = skb_rb_first(&q->rb_fragments); |
| if (!head) |
| return NULL; |
| skb = FRAG_CB(head)->next_frag; |
| if (skb) |
| rb_replace_node(&head->rbnode, &skb->rbnode, |
| &q->rb_fragments); |
| else |
| rb_erase(&head->rbnode, &q->rb_fragments); |
| memset(&head->rbnode, 0, sizeof(head->rbnode)); |
| barrier(); |
| |
| if (head == q->fragments_tail) |
| q->fragments_tail = NULL; |
| |
| sub_frag_mem_limit(q->fqdir, head->truesize); |
| |
| return head; |
| } |
| EXPORT_SYMBOL(inet_frag_pull_head); |