| /* Protective Load Balancing (PLB) |
| * |
| * PLB was designed to reduce link load imbalance across datacenter |
| * switches. PLB is a host-based optimization; it leverages congestion |
| * signals from the transport layer to randomly change the path of the |
| * connection experiencing sustained congestion. PLB prefers to repath |
| * after idle periods to minimize packet reordering. It repaths by |
| * changing the IPv6 Flow Label on the packets of a connection, which |
| * datacenter switches include as part of ECMP/WCMP hashing. |
| * |
| * PLB is described in detail in: |
| * |
| * Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, |
| * Gautam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, |
| * David Wetherall,Abdul Kabbani: |
| * "PLB: Congestion Signals are Simple and Effective for |
| * Network Load Balancing" |
| * In ACM SIGCOMM 2022, Amsterdam Netherlands. |
| * |
| */ |
| |
| #include <net/tcp.h> |
| |
| /* Called once per round-trip to update PLB state for a connection. */ |
| void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, |
| const int cong_ratio) |
| { |
| struct net *net = sock_net(sk); |
| |
| if (!READ_ONCE(net->ipv4.sysctl_tcp_plb_enabled)) |
| return; |
| |
| if (cong_ratio >= 0) { |
| if (cong_ratio < READ_ONCE(net->ipv4.sysctl_tcp_plb_cong_thresh)) |
| plb->consec_cong_rounds = 0; |
| else if (plb->consec_cong_rounds < |
| READ_ONCE(net->ipv4.sysctl_tcp_plb_rehash_rounds)) |
| plb->consec_cong_rounds++; |
| } |
| } |
| EXPORT_SYMBOL_GPL(tcp_plb_update_state); |
| |
| /* Check whether recent congestion has been persistent enough to warrant |
| * a load balancing decision that switches the connection to another path. |
| */ |
| void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb) |
| { |
| struct net *net = sock_net(sk); |
| u32 max_suspend; |
| bool forced_rehash = false, idle_rehash = false; |
| |
| if (!READ_ONCE(net->ipv4.sysctl_tcp_plb_enabled)) |
| return; |
| |
| forced_rehash = plb->consec_cong_rounds >= |
| READ_ONCE(net->ipv4.sysctl_tcp_plb_rehash_rounds); |
| /* If sender goes idle then we check whether to rehash. */ |
| idle_rehash = READ_ONCE(net->ipv4.sysctl_tcp_plb_idle_rehash_rounds) && |
| !tcp_sk(sk)->packets_out && |
| plb->consec_cong_rounds >= |
| READ_ONCE(net->ipv4.sysctl_tcp_plb_idle_rehash_rounds); |
| |
| if (!forced_rehash && !idle_rehash) |
| return; |
| |
| /* Note that tcp_jiffies32 can wrap; we detect wraps by checking for |
| * cases where the max suspension end is before the actual suspension |
| * end. We clear pause_until to 0 to indicate there is no recent |
| * RTO event that constrains PLB rehashing. |
| */ |
| max_suspend = 2 * READ_ONCE(net->ipv4.sysctl_tcp_plb_suspend_rto_sec) * HZ; |
| if (plb->pause_until && |
| (!before(tcp_jiffies32, plb->pause_until) || |
| before(tcp_jiffies32 + max_suspend, plb->pause_until))) |
| plb->pause_until = 0; |
| |
| if (plb->pause_until) |
| return; |
| |
| sk_rethink_txhash(sk); |
| plb->consec_cong_rounds = 0; |
| tcp_sk(sk)->plb_rehash++; |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPLBREHASH); |
| } |
| EXPORT_SYMBOL_GPL(tcp_plb_check_rehash); |
| |
| /* Upon RTO, disallow load balancing for a while, to avoid having load |
| * balancing decisions switch traffic to a black-holed path that was |
| * previously avoided with a sk_rethink_txhash() call at RTO time. |
| */ |
| void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb) |
| { |
| struct net *net = sock_net(sk); |
| u32 pause; |
| |
| if (!READ_ONCE(net->ipv4.sysctl_tcp_plb_enabled)) |
| return; |
| |
| pause = READ_ONCE(net->ipv4.sysctl_tcp_plb_suspend_rto_sec) * HZ; |
| pause += get_random_u32_below(pause); |
| plb->pause_until = tcp_jiffies32 + pause; |
| |
| /* Reset PLB state upon RTO, since an RTO causes a sk_rethink_txhash() call |
| * that may switch this connection to a path with completely different |
| * congestion characteristics. |
| */ |
| plb->consec_cong_rounds = 0; |
| } |
| EXPORT_SYMBOL_GPL(tcp_plb_update_state_upon_rto); |