blob: 287a60381eae6e39c68d49a65530ea5bdc8a6675 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2020, Red Hat, Inc.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/inet.h>
#include <linux/kernel.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <net/netns/generic.h>
#include <net/mptcp.h>
#include <net/genetlink.h>
#include <uapi/linux/mptcp.h>
#include "protocol.h"
#include "mib.h"
/* forward declaration */
static struct genl_family mptcp_genl_family;
static int pm_nl_pernet_id;
struct mptcp_pm_add_entry {
struct list_head list;
struct mptcp_addr_info addr;
u8 retrans_times;
struct timer_list add_timer;
struct mptcp_sock *sock;
};
struct pm_nl_pernet {
/* protects pernet updates */
spinlock_t lock;
struct list_head local_addr_list;
unsigned int addrs;
unsigned int stale_loss_cnt;
unsigned int add_addr_signal_max;
unsigned int add_addr_accept_max;
unsigned int local_addr_max;
unsigned int subflows_max;
unsigned int next_id;
DECLARE_BITMAP(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
};
#define MPTCP_PM_ADDR_MAX 8
#define ADD_ADDR_RETRANS_MAX 3
static struct pm_nl_pernet *pm_nl_get_pernet(const struct net *net)
{
return net_generic(net, pm_nl_pernet_id);
}
static struct pm_nl_pernet *
pm_nl_get_pernet_from_msk(const struct mptcp_sock *msk)
{
return pm_nl_get_pernet(sock_net((struct sock *)msk));
}
bool mptcp_addresses_equal(const struct mptcp_addr_info *a,
const struct mptcp_addr_info *b, bool use_port)
{
bool addr_equals = false;
if (a->family == b->family) {
if (a->family == AF_INET)
addr_equals = a->addr.s_addr == b->addr.s_addr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else
addr_equals = !ipv6_addr_cmp(&a->addr6, &b->addr6);
} else if (a->family == AF_INET) {
if (ipv6_addr_v4mapped(&b->addr6))
addr_equals = a->addr.s_addr == b->addr6.s6_addr32[3];
} else if (b->family == AF_INET) {
if (ipv6_addr_v4mapped(&a->addr6))
addr_equals = a->addr6.s6_addr32[3] == b->addr.s_addr;
#endif
}
if (!addr_equals)
return false;
if (!use_port)
return true;
return a->port == b->port;
}
void mptcp_local_address(const struct sock_common *skc, struct mptcp_addr_info *addr)
{
addr->family = skc->skc_family;
addr->port = htons(skc->skc_num);
if (addr->family == AF_INET)
addr->addr.s_addr = skc->skc_rcv_saddr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6)
addr->addr6 = skc->skc_v6_rcv_saddr;
#endif
}
static void remote_address(const struct sock_common *skc,
struct mptcp_addr_info *addr)
{
addr->family = skc->skc_family;
addr->port = skc->skc_dport;
if (addr->family == AF_INET)
addr->addr.s_addr = skc->skc_daddr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6)
addr->addr6 = skc->skc_v6_daddr;
#endif
}
static bool lookup_subflow_by_saddr(const struct list_head *list,
const struct mptcp_addr_info *saddr)
{
struct mptcp_subflow_context *subflow;
struct mptcp_addr_info cur;
struct sock_common *skc;
list_for_each_entry(subflow, list, node) {
skc = (struct sock_common *)mptcp_subflow_tcp_sock(subflow);
mptcp_local_address(skc, &cur);
if (mptcp_addresses_equal(&cur, saddr, saddr->port))
return true;
}
return false;
}
static bool lookup_subflow_by_daddr(const struct list_head *list,
const struct mptcp_addr_info *daddr)
{
struct mptcp_subflow_context *subflow;
struct mptcp_addr_info cur;
struct sock_common *skc;
list_for_each_entry(subflow, list, node) {
skc = (struct sock_common *)mptcp_subflow_tcp_sock(subflow);
remote_address(skc, &cur);
if (mptcp_addresses_equal(&cur, daddr, daddr->port))
return true;
}
return false;
}
static struct mptcp_pm_addr_entry *
select_local_address(const struct pm_nl_pernet *pernet,
const struct mptcp_sock *msk)
{
struct mptcp_pm_addr_entry *entry, *ret = NULL;
msk_owned_by_me(msk);
rcu_read_lock();
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (!(entry->flags & MPTCP_PM_ADDR_FLAG_SUBFLOW))
continue;
if (!test_bit(entry->addr.id, msk->pm.id_avail_bitmap))
continue;
ret = entry;
break;
}
rcu_read_unlock();
return ret;
}
static struct mptcp_pm_addr_entry *
select_signal_address(struct pm_nl_pernet *pernet, const struct mptcp_sock *msk)
{
struct mptcp_pm_addr_entry *entry, *ret = NULL;
rcu_read_lock();
/* do not keep any additional per socket state, just signal
* the address list in order.
* Note: removal from the local address list during the msk life-cycle
* can lead to additional addresses not being announced.
*/
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (!test_bit(entry->addr.id, msk->pm.id_avail_bitmap))
continue;
if (!(entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL))
continue;
ret = entry;
break;
}
rcu_read_unlock();
return ret;
}
unsigned int mptcp_pm_get_add_addr_signal_max(const struct mptcp_sock *msk)
{
const struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->add_addr_signal_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_add_addr_signal_max);
unsigned int mptcp_pm_get_add_addr_accept_max(const struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->add_addr_accept_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_add_addr_accept_max);
unsigned int mptcp_pm_get_subflows_max(const struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->subflows_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_subflows_max);
unsigned int mptcp_pm_get_local_addr_max(const struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->local_addr_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_local_addr_max);
bool mptcp_pm_nl_check_work_pending(struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
if (msk->pm.subflows == mptcp_pm_get_subflows_max(msk) ||
(find_next_and_bit(pernet->id_bitmap, msk->pm.id_avail_bitmap,
MPTCP_PM_MAX_ADDR_ID + 1, 0) == MPTCP_PM_MAX_ADDR_ID + 1)) {
WRITE_ONCE(msk->pm.work_pending, false);
return false;
}
return true;
}
struct mptcp_pm_add_entry *
mptcp_lookup_anno_list_by_saddr(const struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_add_entry *entry;
lockdep_assert_held(&msk->pm.lock);
list_for_each_entry(entry, &msk->pm.anno_list, list) {
if (mptcp_addresses_equal(&entry->addr, addr, true))
return entry;
}
return NULL;
}
bool mptcp_pm_sport_in_anno_list(struct mptcp_sock *msk, const struct sock *sk)
{
struct mptcp_pm_add_entry *entry;
struct mptcp_addr_info saddr;
bool ret = false;
mptcp_local_address((struct sock_common *)sk, &saddr);
spin_lock_bh(&msk->pm.lock);
list_for_each_entry(entry, &msk->pm.anno_list, list) {
if (mptcp_addresses_equal(&entry->addr, &saddr, true)) {
ret = true;
goto out;
}
}
out:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
static void mptcp_pm_add_timer(struct timer_list *timer)
{
struct mptcp_pm_add_entry *entry = from_timer(entry, timer, add_timer);
struct mptcp_sock *msk = entry->sock;
struct sock *sk = (struct sock *)msk;
pr_debug("msk=%p", msk);
if (!msk)
return;
if (inet_sk_state_load(sk) == TCP_CLOSE)
return;
if (!entry->addr.id)
return;
if (mptcp_pm_should_add_signal_addr(msk)) {
sk_reset_timer(sk, timer, jiffies + TCP_RTO_MAX / 8);
goto out;
}
spin_lock_bh(&msk->pm.lock);
if (!mptcp_pm_should_add_signal_addr(msk)) {
pr_debug("retransmit ADD_ADDR id=%d", entry->addr.id);
mptcp_pm_announce_addr(msk, &entry->addr, false);
mptcp_pm_add_addr_send_ack(msk);
entry->retrans_times++;
}
if (entry->retrans_times < ADD_ADDR_RETRANS_MAX)
sk_reset_timer(sk, timer,
jiffies + mptcp_get_add_addr_timeout(sock_net(sk)));
spin_unlock_bh(&msk->pm.lock);
if (entry->retrans_times == ADD_ADDR_RETRANS_MAX)
mptcp_pm_subflow_established(msk);
out:
__sock_put(sk);
}
struct mptcp_pm_add_entry *
mptcp_pm_del_add_timer(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr, bool check_id)
{
struct mptcp_pm_add_entry *entry;
struct sock *sk = (struct sock *)msk;
spin_lock_bh(&msk->pm.lock);
entry = mptcp_lookup_anno_list_by_saddr(msk, addr);
if (entry && (!check_id || entry->addr.id == addr->id))
entry->retrans_times = ADD_ADDR_RETRANS_MAX;
spin_unlock_bh(&msk->pm.lock);
if (entry && (!check_id || entry->addr.id == addr->id))
sk_stop_timer_sync(sk, &entry->add_timer);
return entry;
}
bool mptcp_pm_alloc_anno_list(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_add_entry *add_entry = NULL;
struct sock *sk = (struct sock *)msk;
struct net *net = sock_net(sk);
lockdep_assert_held(&msk->pm.lock);
add_entry = mptcp_lookup_anno_list_by_saddr(msk, addr);
if (add_entry) {
if (mptcp_pm_is_kernel(msk))
return false;
sk_reset_timer(sk, &add_entry->add_timer,
jiffies + mptcp_get_add_addr_timeout(net));
return true;
}
add_entry = kmalloc(sizeof(*add_entry), GFP_ATOMIC);
if (!add_entry)
return false;
list_add(&add_entry->list, &msk->pm.anno_list);
add_entry->addr = *addr;
add_entry->sock = msk;
add_entry->retrans_times = 0;
timer_setup(&add_entry->add_timer, mptcp_pm_add_timer, 0);
sk_reset_timer(sk, &add_entry->add_timer,
jiffies + mptcp_get_add_addr_timeout(net));
return true;
}
void mptcp_pm_free_anno_list(struct mptcp_sock *msk)
{
struct mptcp_pm_add_entry *entry, *tmp;
struct sock *sk = (struct sock *)msk;
LIST_HEAD(free_list);
pr_debug("msk=%p", msk);
spin_lock_bh(&msk->pm.lock);
list_splice_init(&msk->pm.anno_list, &free_list);
spin_unlock_bh(&msk->pm.lock);
list_for_each_entry_safe(entry, tmp, &free_list, list) {
sk_stop_timer_sync(sk, &entry->add_timer);
kfree(entry);
}
}
static bool lookup_address_in_vec(const struct mptcp_addr_info *addrs, unsigned int nr,
const struct mptcp_addr_info *addr)
{
int i;
for (i = 0; i < nr; i++) {
if (addrs[i].id == addr->id)
return true;
}
return false;
}
/* Fill all the remote addresses into the array addrs[],
* and return the array size.
*/
static unsigned int fill_remote_addresses_vec(struct mptcp_sock *msk,
struct mptcp_addr_info *local,
bool fullmesh,
struct mptcp_addr_info *addrs)
{
bool deny_id0 = READ_ONCE(msk->pm.remote_deny_join_id0);
struct sock *sk = (struct sock *)msk, *ssk;
struct mptcp_subflow_context *subflow;
struct mptcp_addr_info remote = { 0 };
unsigned int subflows_max;
int i = 0;
subflows_max = mptcp_pm_get_subflows_max(msk);
remote_address((struct sock_common *)sk, &remote);
/* Non-fullmesh endpoint, fill in the single entry
* corresponding to the primary MPC subflow remote address
*/
if (!fullmesh) {
if (deny_id0)
return 0;
if (!mptcp_pm_addr_families_match(sk, local, &remote))
return 0;
msk->pm.subflows++;
addrs[i++] = remote;
} else {
mptcp_for_each_subflow(msk, subflow) {
ssk = mptcp_subflow_tcp_sock(subflow);
remote_address((struct sock_common *)ssk, &addrs[i]);
addrs[i].id = subflow->remote_id;
if (deny_id0 && !addrs[i].id)
continue;
if (!mptcp_pm_addr_families_match(sk, local, &addrs[i]))
continue;
if (!lookup_address_in_vec(addrs, i, &addrs[i]) &&
msk->pm.subflows < subflows_max) {
msk->pm.subflows++;
i++;
}
}
}
return i;
}
static void __mptcp_pm_send_ack(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow,
bool prio, bool backup)
{
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow;
pr_debug("send ack for %s",
prio ? "mp_prio" : (mptcp_pm_should_add_signal(msk) ? "add_addr" : "rm_addr"));
slow = lock_sock_fast(ssk);
if (prio) {
subflow->send_mp_prio = 1;
subflow->backup = backup;
subflow->request_bkup = backup;
}
__mptcp_subflow_send_ack(ssk);
unlock_sock_fast(ssk, slow);
}
static void mptcp_pm_send_ack(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow,
bool prio, bool backup)
{
spin_unlock_bh(&msk->pm.lock);
__mptcp_pm_send_ack(msk, subflow, prio, backup);
spin_lock_bh(&msk->pm.lock);
}
static struct mptcp_pm_addr_entry *
__lookup_addr_by_id(struct pm_nl_pernet *pernet, unsigned int id)
{
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, &pernet->local_addr_list, list) {
if (entry->addr.id == id)
return entry;
}
return NULL;
}
static struct mptcp_pm_addr_entry *
__lookup_addr(struct pm_nl_pernet *pernet, const struct mptcp_addr_info *info,
bool lookup_by_id)
{
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, &pernet->local_addr_list, list) {
if ((!lookup_by_id &&
mptcp_addresses_equal(&entry->addr, info, entry->addr.port)) ||
(lookup_by_id && entry->addr.id == info->id))
return entry;
}
return NULL;
}
static void mptcp_pm_create_subflow_or_signal_addr(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
struct mptcp_pm_addr_entry *local;
unsigned int add_addr_signal_max;
unsigned int local_addr_max;
struct pm_nl_pernet *pernet;
unsigned int subflows_max;
pernet = pm_nl_get_pernet(sock_net(sk));
add_addr_signal_max = mptcp_pm_get_add_addr_signal_max(msk);
local_addr_max = mptcp_pm_get_local_addr_max(msk);
subflows_max = mptcp_pm_get_subflows_max(msk);
/* do lazy endpoint usage accounting for the MPC subflows */
if (unlikely(!(msk->pm.status & BIT(MPTCP_PM_MPC_ENDPOINT_ACCOUNTED))) && msk->first) {
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(msk->first);
struct mptcp_pm_addr_entry *entry;
struct mptcp_addr_info mpc_addr;
bool backup = false;
mptcp_local_address((struct sock_common *)msk->first, &mpc_addr);
rcu_read_lock();
entry = __lookup_addr(pernet, &mpc_addr, false);
if (entry) {
__clear_bit(entry->addr.id, msk->pm.id_avail_bitmap);
msk->mpc_endpoint_id = entry->addr.id;
backup = !!(entry->flags & MPTCP_PM_ADDR_FLAG_BACKUP);
}
rcu_read_unlock();
if (backup)
mptcp_pm_send_ack(msk, subflow, true, backup);
msk->pm.status |= BIT(MPTCP_PM_MPC_ENDPOINT_ACCOUNTED);
}
pr_debug("local %d:%d signal %d:%d subflows %d:%d\n",
msk->pm.local_addr_used, local_addr_max,
msk->pm.add_addr_signaled, add_addr_signal_max,
msk->pm.subflows, subflows_max);
/* check first for announce */
if (msk->pm.add_addr_signaled < add_addr_signal_max) {
local = select_signal_address(pernet, msk);
/* due to racing events on both ends we can reach here while
* previous add address is still running: if we invoke now
* mptcp_pm_announce_addr(), that will fail and the
* corresponding id will be marked as used.
* Instead let the PM machinery reschedule us when the
* current address announce will be completed.
*/
if (msk->pm.addr_signal & BIT(MPTCP_ADD_ADDR_SIGNAL))
return;
if (local) {
if (mptcp_pm_alloc_anno_list(msk, &local->addr)) {
__clear_bit(local->addr.id, msk->pm.id_avail_bitmap);
msk->pm.add_addr_signaled++;
mptcp_pm_announce_addr(msk, &local->addr, false);
mptcp_pm_nl_addr_send_ack(msk);
}
}
}
/* check if should create a new subflow */
while (msk->pm.local_addr_used < local_addr_max &&
msk->pm.subflows < subflows_max) {
struct mptcp_addr_info addrs[MPTCP_PM_ADDR_MAX];
bool fullmesh;
int i, nr;
local = select_local_address(pernet, msk);
if (!local)
break;
fullmesh = !!(local->flags & MPTCP_PM_ADDR_FLAG_FULLMESH);
msk->pm.local_addr_used++;
__clear_bit(local->addr.id, msk->pm.id_avail_bitmap);
nr = fill_remote_addresses_vec(msk, &local->addr, fullmesh, addrs);
if (nr == 0)
continue;
spin_unlock_bh(&msk->pm.lock);
for (i = 0; i < nr; i++)
__mptcp_subflow_connect(sk, &local->addr, &addrs[i]);
spin_lock_bh(&msk->pm.lock);
}
mptcp_pm_nl_check_work_pending(msk);
}
static void mptcp_pm_nl_fully_established(struct mptcp_sock *msk)
{
mptcp_pm_create_subflow_or_signal_addr(msk);
}
static void mptcp_pm_nl_subflow_established(struct mptcp_sock *msk)
{
mptcp_pm_create_subflow_or_signal_addr(msk);
}
/* Fill all the local addresses into the array addrs[],
* and return the array size.
*/
static unsigned int fill_local_addresses_vec(struct mptcp_sock *msk,
struct mptcp_addr_info *remote,
struct mptcp_addr_info *addrs)
{
struct sock *sk = (struct sock *)msk;
struct mptcp_pm_addr_entry *entry;
struct pm_nl_pernet *pernet;
unsigned int subflows_max;
int i = 0;
pernet = pm_nl_get_pernet_from_msk(msk);
subflows_max = mptcp_pm_get_subflows_max(msk);
rcu_read_lock();
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (!(entry->flags & MPTCP_PM_ADDR_FLAG_FULLMESH))
continue;
if (!mptcp_pm_addr_families_match(sk, &entry->addr, remote))
continue;
if (msk->pm.subflows < subflows_max) {
msk->pm.subflows++;
addrs[i++] = entry->addr;
}
}
rcu_read_unlock();
/* If the array is empty, fill in the single
* 'IPADDRANY' local address
*/
if (!i) {
struct mptcp_addr_info local;
memset(&local, 0, sizeof(local));
local.family =
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
remote->family == AF_INET6 &&
ipv6_addr_v4mapped(&remote->addr6) ? AF_INET :
#endif
remote->family;
if (!mptcp_pm_addr_families_match(sk, &local, remote))
return 0;
msk->pm.subflows++;
addrs[i++] = local;
}
return i;
}
static void mptcp_pm_nl_add_addr_received(struct mptcp_sock *msk)
{
struct mptcp_addr_info addrs[MPTCP_PM_ADDR_MAX];
struct sock *sk = (struct sock *)msk;
unsigned int add_addr_accept_max;
struct mptcp_addr_info remote;
unsigned int subflows_max;
int i, nr;
add_addr_accept_max = mptcp_pm_get_add_addr_accept_max(msk);
subflows_max = mptcp_pm_get_subflows_max(msk);
pr_debug("accepted %d:%d remote family %d",
msk->pm.add_addr_accepted, add_addr_accept_max,
msk->pm.remote.family);
remote = msk->pm.remote;
mptcp_pm_announce_addr(msk, &remote, true);
mptcp_pm_nl_addr_send_ack(msk);
if (lookup_subflow_by_daddr(&msk->conn_list, &remote))
return;
/* pick id 0 port, if none is provided the remote address */
if (!remote.port)
remote.port = sk->sk_dport;
/* connect to the specified remote address, using whatever
* local address the routing configuration will pick.
*/
nr = fill_local_addresses_vec(msk, &remote, addrs);
if (nr == 0)
return;
msk->pm.add_addr_accepted++;
if (msk->pm.add_addr_accepted >= add_addr_accept_max ||
msk->pm.subflows >= subflows_max)
WRITE_ONCE(msk->pm.accept_addr, false);
spin_unlock_bh(&msk->pm.lock);
for (i = 0; i < nr; i++)
__mptcp_subflow_connect(sk, &addrs[i], &remote);
spin_lock_bh(&msk->pm.lock);
}
void mptcp_pm_nl_addr_send_ack(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
msk_owned_by_me(msk);
lockdep_assert_held(&msk->pm.lock);
if (!mptcp_pm_should_add_signal(msk) &&
!mptcp_pm_should_rm_signal(msk))
return;
subflow = list_first_entry_or_null(&msk->conn_list, typeof(*subflow), node);
if (subflow)
mptcp_pm_send_ack(msk, subflow, false, false);
}
int mptcp_pm_nl_mp_prio_send_ack(struct mptcp_sock *msk,
struct mptcp_addr_info *addr,
struct mptcp_addr_info *rem,
u8 bkup)
{
struct mptcp_subflow_context *subflow;
pr_debug("bkup=%d", bkup);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
struct mptcp_addr_info local, remote;
mptcp_local_address((struct sock_common *)ssk, &local);
if (!mptcp_addresses_equal(&local, addr, addr->port))
continue;
if (rem && rem->family != AF_UNSPEC) {
remote_address((struct sock_common *)ssk, &remote);
if (!mptcp_addresses_equal(&remote, rem, rem->port))
continue;
}
__mptcp_pm_send_ack(msk, subflow, true, bkup);
return 0;
}
return -EINVAL;
}
static bool mptcp_local_id_match(const struct mptcp_sock *msk, u8 local_id, u8 id)
{
return local_id == id || (!local_id && msk->mpc_endpoint_id == id);
}
static void mptcp_pm_nl_rm_addr_or_subflow(struct mptcp_sock *msk,
const struct mptcp_rm_list *rm_list,
enum linux_mptcp_mib_field rm_type)
{
struct mptcp_subflow_context *subflow, *tmp;
struct sock *sk = (struct sock *)msk;
u8 i;
pr_debug("%s rm_list_nr %d",
rm_type == MPTCP_MIB_RMADDR ? "address" : "subflow", rm_list->nr);
msk_owned_by_me(msk);
if (sk->sk_state == TCP_LISTEN)
return;
if (!rm_list->nr)
return;
if (list_empty(&msk->conn_list))
return;
for (i = 0; i < rm_list->nr; i++) {
u8 rm_id = rm_list->ids[i];
bool removed = false;
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
int how = RCV_SHUTDOWN | SEND_SHUTDOWN;
u8 id = subflow->local_id;
if (rm_type == MPTCP_MIB_RMADDR && subflow->remote_id != rm_id)
continue;
if (rm_type == MPTCP_MIB_RMSUBFLOW && !mptcp_local_id_match(msk, id, rm_id))
continue;
pr_debug(" -> %s rm_list_ids[%d]=%u local_id=%u remote_id=%u mpc_id=%u",
rm_type == MPTCP_MIB_RMADDR ? "address" : "subflow",
i, rm_id, subflow->local_id, subflow->remote_id,
msk->mpc_endpoint_id);
spin_unlock_bh(&msk->pm.lock);
mptcp_subflow_shutdown(sk, ssk, how);
/* the following takes care of updating the subflows counter */
mptcp_close_ssk(sk, ssk, subflow);
spin_lock_bh(&msk->pm.lock);
removed = true;
__MPTCP_INC_STATS(sock_net(sk), rm_type);
}
if (rm_type == MPTCP_MIB_RMSUBFLOW)
__set_bit(rm_id ? rm_id : msk->mpc_endpoint_id, msk->pm.id_avail_bitmap);
if (!removed)
continue;
if (!mptcp_pm_is_kernel(msk))
continue;
if (rm_type == MPTCP_MIB_RMADDR) {
msk->pm.add_addr_accepted--;
WRITE_ONCE(msk->pm.accept_addr, true);
} else if (rm_type == MPTCP_MIB_RMSUBFLOW) {
msk->pm.local_addr_used--;
}
}
}
static void mptcp_pm_nl_rm_addr_received(struct mptcp_sock *msk)
{
mptcp_pm_nl_rm_addr_or_subflow(msk, &msk->pm.rm_list_rx, MPTCP_MIB_RMADDR);
}
void mptcp_pm_nl_rm_subflow_received(struct mptcp_sock *msk,
const struct mptcp_rm_list *rm_list)
{
mptcp_pm_nl_rm_addr_or_subflow(msk, rm_list, MPTCP_MIB_RMSUBFLOW);
}
void mptcp_pm_nl_work(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
msk_owned_by_me(msk);
if (!(pm->status & MPTCP_PM_WORK_MASK))
return;
spin_lock_bh(&msk->pm.lock);
pr_debug("msk=%p status=%x", msk, pm->status);
if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
mptcp_pm_nl_add_addr_received(msk);
}
if (pm->status & BIT(MPTCP_PM_ADD_ADDR_SEND_ACK)) {
pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_SEND_ACK);
mptcp_pm_nl_addr_send_ack(msk);
}
if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) {
pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED);
mptcp_pm_nl_rm_addr_received(msk);
}
if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
mptcp_pm_nl_fully_established(msk);
}
if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
mptcp_pm_nl_subflow_established(msk);
}
spin_unlock_bh(&msk->pm.lock);
}
static bool address_use_port(struct mptcp_pm_addr_entry *entry)
{
return (entry->flags &
(MPTCP_PM_ADDR_FLAG_SIGNAL | MPTCP_PM_ADDR_FLAG_SUBFLOW)) ==
MPTCP_PM_ADDR_FLAG_SIGNAL;
}
/* caller must ensure the RCU grace period is already elapsed */
static void __mptcp_pm_release_addr_entry(struct mptcp_pm_addr_entry *entry)
{
if (entry->lsk)
sock_release(entry->lsk);
kfree(entry);
}
static int mptcp_pm_nl_append_new_local_addr(struct pm_nl_pernet *pernet,
struct mptcp_pm_addr_entry *entry)
{
struct mptcp_pm_addr_entry *cur, *del_entry = NULL;
unsigned int addr_max;
int ret = -EINVAL;
spin_lock_bh(&pernet->lock);
/* to keep the code simple, don't do IDR-like allocation for address ID,
* just bail when we exceed limits
*/
if (pernet->next_id == MPTCP_PM_MAX_ADDR_ID)
pernet->next_id = 1;
if (pernet->addrs >= MPTCP_PM_ADDR_MAX) {
ret = -ERANGE;
goto out;
}
if (test_bit(entry->addr.id, pernet->id_bitmap)) {
ret = -EBUSY;
goto out;
}
/* do not insert duplicate address, differentiate on port only
* singled addresses
*/
if (!address_use_port(entry))
entry->addr.port = 0;
list_for_each_entry(cur, &pernet->local_addr_list, list) {
if (mptcp_addresses_equal(&cur->addr, &entry->addr,
cur->addr.port || entry->addr.port)) {
/* allow replacing the exiting endpoint only if such
* endpoint is an implicit one and the user-space
* did not provide an endpoint id
*/
if (!(cur->flags & MPTCP_PM_ADDR_FLAG_IMPLICIT)) {
ret = -EEXIST;
goto out;
}
if (entry->addr.id)
goto out;
pernet->addrs--;
entry->addr.id = cur->addr.id;
list_del_rcu(&cur->list);
del_entry = cur;
break;
}
}
if (!entry->addr.id) {
find_next:
entry->addr.id = find_next_zero_bit(pernet->id_bitmap,
MPTCP_PM_MAX_ADDR_ID + 1,
pernet->next_id);
if (!entry->addr.id && pernet->next_id != 1) {
pernet->next_id = 1;
goto find_next;
}
}
if (!entry->addr.id)
goto out;
__set_bit(entry->addr.id, pernet->id_bitmap);
if (entry->addr.id > pernet->next_id)
pernet->next_id = entry->addr.id;
if (entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL) {
addr_max = pernet->add_addr_signal_max;
WRITE_ONCE(pernet->add_addr_signal_max, addr_max + 1);
}
if (entry->flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) {
addr_max = pernet->local_addr_max;
WRITE_ONCE(pernet->local_addr_max, addr_max + 1);
}
pernet->addrs++;
if (!entry->addr.port)
list_add_tail_rcu(&entry->list, &pernet->local_addr_list);
else
list_add_rcu(&entry->list, &pernet->local_addr_list);
ret = entry->addr.id;
out:
spin_unlock_bh(&pernet->lock);
/* just replaced an existing entry, free it */
if (del_entry) {
synchronize_rcu();
__mptcp_pm_release_addr_entry(del_entry);
}
return ret;
}
static struct lock_class_key mptcp_slock_keys[2];
static struct lock_class_key mptcp_keys[2];
static int mptcp_pm_nl_create_listen_socket(struct sock *sk,
struct mptcp_pm_addr_entry *entry)
{
bool is_ipv6 = sk->sk_family == AF_INET6;
int addrlen = sizeof(struct sockaddr_in);
struct sockaddr_storage addr;
struct sock *newsk, *ssk;
int backlog = 1024;
int err;
err = sock_create_kern(sock_net(sk), entry->addr.family,
SOCK_STREAM, IPPROTO_MPTCP, &entry->lsk);
if (err)
return err;
newsk = entry->lsk->sk;
if (!newsk)
return -EINVAL;
/* The subflow socket lock is acquired in a nested to the msk one
* in several places, even by the TCP stack, and this msk is a kernel
* socket: lockdep complains. Instead of propagating the _nested
* modifiers in several places, re-init the lock class for the msk
* socket to an mptcp specific one.
*/
sock_lock_init_class_and_name(newsk,
is_ipv6 ? "mlock-AF_INET6" : "mlock-AF_INET",
&mptcp_slock_keys[is_ipv6],
is_ipv6 ? "msk_lock-AF_INET6" : "msk_lock-AF_INET",
&mptcp_keys[is_ipv6]);
lock_sock(newsk);
ssk = __mptcp_nmpc_sk(mptcp_sk(newsk));
release_sock(newsk);
if (IS_ERR(ssk))
return PTR_ERR(ssk);
mptcp_info2sockaddr(&entry->addr, &addr, entry->addr.family);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (entry->addr.family == AF_INET6)
addrlen = sizeof(struct sockaddr_in6);
#endif
if (ssk->sk_family == AF_INET)
err = inet_bind_sk(ssk, (struct sockaddr *)&addr, addrlen);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (ssk->sk_family == AF_INET6)
err = inet6_bind_sk(ssk, (struct sockaddr *)&addr, addrlen);
#endif
if (err)
return err;
/* We don't use mptcp_set_state() here because it needs to be called
* under the msk socket lock. For the moment, that will not bring
* anything more than only calling inet_sk_state_store(), because the
* old status is known (TCP_CLOSE).
*/
inet_sk_state_store(newsk, TCP_LISTEN);
lock_sock(ssk);
err = __inet_listen_sk(ssk, backlog);
if (!err)
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
release_sock(ssk);
return err;
}
int mptcp_pm_nl_get_local_id(struct mptcp_sock *msk, struct mptcp_addr_info *skc)
{
struct mptcp_pm_addr_entry *entry;
struct pm_nl_pernet *pernet;
int ret = -1;
pernet = pm_nl_get_pernet_from_msk(msk);
rcu_read_lock();
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (mptcp_addresses_equal(&entry->addr, skc, entry->addr.port)) {
ret = entry->addr.id;
break;
}
}
rcu_read_unlock();
if (ret >= 0)
return ret;
/* address not found, add to local list */
entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry)
return -ENOMEM;
entry->addr = *skc;
entry->addr.id = 0;
entry->addr.port = 0;
entry->ifindex = 0;
entry->flags = MPTCP_PM_ADDR_FLAG_IMPLICIT;
entry->lsk = NULL;
ret = mptcp_pm_nl_append_new_local_addr(pernet, entry);
if (ret < 0)
kfree(entry);
return ret;
}
#define MPTCP_PM_CMD_GRP_OFFSET 0
#define MPTCP_PM_EV_GRP_OFFSET 1
static const struct genl_multicast_group mptcp_pm_mcgrps[] = {
[MPTCP_PM_CMD_GRP_OFFSET] = { .name = MPTCP_PM_CMD_GRP_NAME, },
[MPTCP_PM_EV_GRP_OFFSET] = { .name = MPTCP_PM_EV_GRP_NAME,
.flags = GENL_MCAST_CAP_NET_ADMIN,
},
};
void mptcp_pm_nl_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *iter, *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = (struct sock *)msk;
unsigned int active_max_loss_cnt;
struct net *net = sock_net(sk);
unsigned int stale_loss_cnt;
bool slow;
stale_loss_cnt = mptcp_stale_loss_cnt(net);
if (subflow->stale || !stale_loss_cnt || subflow->stale_count <= stale_loss_cnt)
return;
/* look for another available subflow not in loss state */
active_max_loss_cnt = max_t(int, stale_loss_cnt - 1, 1);
mptcp_for_each_subflow(msk, iter) {
if (iter != subflow && mptcp_subflow_active(iter) &&
iter->stale_count < active_max_loss_cnt) {
/* we have some alternatives, try to mark this subflow as idle ...*/
slow = lock_sock_fast(ssk);
if (!tcp_rtx_and_write_queues_empty(ssk)) {
subflow->stale = 1;
__mptcp_retransmit_pending_data(sk);
MPTCP_INC_STATS(net, MPTCP_MIB_SUBFLOWSTALE);
}
unlock_sock_fast(ssk, slow);
/* always try to push the pending data regardless of re-injections:
* we can possibly use backup subflows now, and subflow selection
* is cheap under the msk socket lock
*/
__mptcp_push_pending(sk, 0);
return;
}
}
}
static int mptcp_pm_family_to_addr(int family)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (family == AF_INET6)
return MPTCP_PM_ADDR_ATTR_ADDR6;
#endif
return MPTCP_PM_ADDR_ATTR_ADDR4;
}
static int mptcp_pm_parse_pm_addr_attr(struct nlattr *tb[],
const struct nlattr *attr,
struct genl_info *info,
struct mptcp_addr_info *addr,
bool require_family)
{
int err, addr_addr;
if (!attr) {
GENL_SET_ERR_MSG(info, "missing address info");
return -EINVAL;
}
/* no validation needed - was already done via nested policy */
err = nla_parse_nested_deprecated(tb, MPTCP_PM_ADDR_ATTR_MAX, attr,
mptcp_pm_address_nl_policy, info->extack);
if (err)
return err;
if (tb[MPTCP_PM_ADDR_ATTR_ID])
addr->id = nla_get_u8(tb[MPTCP_PM_ADDR_ATTR_ID]);
if (!tb[MPTCP_PM_ADDR_ATTR_FAMILY]) {
if (!require_family)
return 0;
NL_SET_ERR_MSG_ATTR(info->extack, attr,
"missing family");
return -EINVAL;
}
addr->family = nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_FAMILY]);
if (addr->family != AF_INET
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
&& addr->family != AF_INET6
#endif
) {
NL_SET_ERR_MSG_ATTR(info->extack, attr,
"unknown address family");
return -EINVAL;
}
addr_addr = mptcp_pm_family_to_addr(addr->family);
if (!tb[addr_addr]) {
NL_SET_ERR_MSG_ATTR(info->extack, attr,
"missing address data");
return -EINVAL;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (addr->family == AF_INET6)
addr->addr6 = nla_get_in6_addr(tb[addr_addr]);
else
#endif
addr->addr.s_addr = nla_get_in_addr(tb[addr_addr]);
if (tb[MPTCP_PM_ADDR_ATTR_PORT])
addr->port = htons(nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_PORT]));
return 0;
}
int mptcp_pm_parse_addr(struct nlattr *attr, struct genl_info *info,
struct mptcp_addr_info *addr)
{
struct nlattr *tb[MPTCP_PM_ADDR_ATTR_MAX + 1];
memset(addr, 0, sizeof(*addr));
return mptcp_pm_parse_pm_addr_attr(tb, attr, info, addr, true);
}
int mptcp_pm_parse_entry(struct nlattr *attr, struct genl_info *info,
bool require_family,
struct mptcp_pm_addr_entry *entry)
{
struct nlattr *tb[MPTCP_PM_ADDR_ATTR_MAX + 1];
int err;
memset(entry, 0, sizeof(*entry));
err = mptcp_pm_parse_pm_addr_attr(tb, attr, info, &entry->addr, require_family);
if (err)
return err;
if (tb[MPTCP_PM_ADDR_ATTR_IF_IDX]) {
u32 val = nla_get_s32(tb[MPTCP_PM_ADDR_ATTR_IF_IDX]);
entry->ifindex = val;
}
if (tb[MPTCP_PM_ADDR_ATTR_FLAGS])
entry->flags = nla_get_u32(tb[MPTCP_PM_ADDR_ATTR_FLAGS]);
if (tb[MPTCP_PM_ADDR_ATTR_PORT])
entry->addr.port = htons(nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_PORT]));
return 0;
}
static struct pm_nl_pernet *genl_info_pm_nl(struct genl_info *info)
{
return pm_nl_get_pernet(genl_info_net(info));
}
static int mptcp_nl_add_subflow_or_signal_addr(struct net *net)
{
struct mptcp_sock *msk;
long s_slot = 0, s_num = 0;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
if (!READ_ONCE(msk->fully_established) ||
mptcp_pm_is_userspace(msk))
goto next;
lock_sock(sk);
spin_lock_bh(&msk->pm.lock);
mptcp_pm_create_subflow_or_signal_addr(msk);
spin_unlock_bh(&msk->pm.lock);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return 0;
}
int mptcp_pm_nl_add_addr_doit(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attr = info->attrs[MPTCP_PM_ENDPOINT_ADDR];
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct mptcp_pm_addr_entry addr, *entry;
int ret;
ret = mptcp_pm_parse_entry(attr, info, true, &addr);
if (ret < 0)
return ret;
if (addr.addr.port && !(addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) {
GENL_SET_ERR_MSG(info, "flags must have signal when using port");
return -EINVAL;
}
if (addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL &&
addr.flags & MPTCP_PM_ADDR_FLAG_FULLMESH) {
GENL_SET_ERR_MSG(info, "flags mustn't have both signal and fullmesh");
return -EINVAL;
}
if (addr.flags & MPTCP_PM_ADDR_FLAG_IMPLICIT) {
GENL_SET_ERR_MSG(info, "can't create IMPLICIT endpoint");
return -EINVAL;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL_ACCOUNT);
if (!entry) {
GENL_SET_ERR_MSG(info, "can't allocate addr");
return -ENOMEM;
}
*entry = addr;
if (entry->addr.port) {
ret = mptcp_pm_nl_create_listen_socket(skb->sk, entry);
if (ret) {
GENL_SET_ERR_MSG_FMT(info, "create listen socket error: %d", ret);
goto out_free;
}
}
ret = mptcp_pm_nl_append_new_local_addr(pernet, entry);
if (ret < 0) {
GENL_SET_ERR_MSG_FMT(info, "too many addresses or duplicate one: %d", ret);
goto out_free;
}
mptcp_nl_add_subflow_or_signal_addr(sock_net(skb->sk));
return 0;
out_free:
__mptcp_pm_release_addr_entry(entry);
return ret;
}
int mptcp_pm_nl_get_flags_and_ifindex_by_id(struct mptcp_sock *msk, unsigned int id,
u8 *flags, int *ifindex)
{
struct mptcp_pm_addr_entry *entry;
struct sock *sk = (struct sock *)msk;
struct net *net = sock_net(sk);
rcu_read_lock();
entry = __lookup_addr_by_id(pm_nl_get_pernet(net), id);
if (entry) {
*flags = entry->flags;
*ifindex = entry->ifindex;
}
rcu_read_unlock();
return 0;
}
static bool remove_anno_list_by_saddr(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_add_entry *entry;
entry = mptcp_pm_del_add_timer(msk, addr, false);
if (entry) {
list_del(&entry->list);
kfree(entry);
return true;
}
return false;
}
static bool mptcp_pm_remove_anno_addr(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr,
bool force)
{
struct mptcp_rm_list list = { .nr = 0 };
bool ret;
list.ids[list.nr++] = addr->id;
ret = remove_anno_list_by_saddr(msk, addr);
if (ret || force) {
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &list);
spin_unlock_bh(&msk->pm.lock);
}
return ret;
}
static int mptcp_nl_remove_subflow_and_signal_addr(struct net *net,
const struct mptcp_pm_addr_entry *entry)
{
const struct mptcp_addr_info *addr = &entry->addr;
struct mptcp_rm_list list = { .nr = 0 };
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
pr_debug("remove_id=%d", addr->id);
list.ids[list.nr++] = addr->id;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
bool remove_subflow;
if (mptcp_pm_is_userspace(msk))
goto next;
if (list_empty(&msk->conn_list)) {
mptcp_pm_remove_anno_addr(msk, addr, false);
goto next;
}
lock_sock(sk);
remove_subflow = lookup_subflow_by_saddr(&msk->conn_list, addr);
mptcp_pm_remove_anno_addr(msk, addr, remove_subflow &&
!(entry->flags & MPTCP_PM_ADDR_FLAG_IMPLICIT));
if (remove_subflow)
mptcp_pm_remove_subflow(msk, &list);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return 0;
}
static int mptcp_nl_remove_id_zero_address(struct net *net,
struct mptcp_addr_info *addr)
{
struct mptcp_rm_list list = { .nr = 0 };
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
list.ids[list.nr++] = 0;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
struct mptcp_addr_info msk_local;
if (list_empty(&msk->conn_list) || mptcp_pm_is_userspace(msk))
goto next;
mptcp_local_address((struct sock_common *)msk, &msk_local);
if (!mptcp_addresses_equal(&msk_local, addr, addr->port))
goto next;
lock_sock(sk);
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &list);
mptcp_pm_nl_rm_subflow_received(msk, &list);
spin_unlock_bh(&msk->pm.lock);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return 0;
}
int mptcp_pm_nl_del_addr_doit(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attr = info->attrs[MPTCP_PM_ENDPOINT_ADDR];
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct mptcp_pm_addr_entry addr, *entry;
unsigned int addr_max;
int ret;
ret = mptcp_pm_parse_entry(attr, info, false, &addr);
if (ret < 0)
return ret;
/* the zero id address is special: the first address used by the msk
* always gets such an id, so different subflows can have different zero
* id addresses. Additionally zero id is not accounted for in id_bitmap.
* Let's use an 'mptcp_rm_list' instead of the common remove code.
*/
if (addr.addr.id == 0)
return mptcp_nl_remove_id_zero_address(sock_net(skb->sk), &addr.addr);
spin_lock_bh(&pernet->lock);
entry = __lookup_addr_by_id(pernet, addr.addr.id);
if (!entry) {
GENL_SET_ERR_MSG(info, "address not found");
spin_unlock_bh(&pernet->lock);
return -EINVAL;
}
if (entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL) {
addr_max = pernet->add_addr_signal_max;
WRITE_ONCE(pernet->add_addr_signal_max, addr_max - 1);
}
if (entry->flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) {
addr_max = pernet->local_addr_max;
WRITE_ONCE(pernet->local_addr_max, addr_max - 1);
}
pernet->addrs--;
list_del_rcu(&entry->list);
__clear_bit(entry->addr.id, pernet->id_bitmap);
spin_unlock_bh(&pernet->lock);
mptcp_nl_remove_subflow_and_signal_addr(sock_net(skb->sk), entry);
synchronize_rcu();
__mptcp_pm_release_addr_entry(entry);
return ret;
}
void mptcp_pm_remove_addrs(struct mptcp_sock *msk, struct list_head *rm_list)
{
struct mptcp_rm_list alist = { .nr = 0 };
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, rm_list, list) {
if ((remove_anno_list_by_saddr(msk, &entry->addr) ||
lookup_subflow_by_saddr(&msk->conn_list, &entry->addr)) &&
alist.nr < MPTCP_RM_IDS_MAX)
alist.ids[alist.nr++] = entry->addr.id;
}
if (alist.nr) {
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &alist);
spin_unlock_bh(&msk->pm.lock);
}
}
void mptcp_pm_remove_addrs_and_subflows(struct mptcp_sock *msk,
struct list_head *rm_list)
{
struct mptcp_rm_list alist = { .nr = 0 }, slist = { .nr = 0 };
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, rm_list, list) {
if (lookup_subflow_by_saddr(&msk->conn_list, &entry->addr) &&
slist.nr < MPTCP_RM_IDS_MAX)
slist.ids[slist.nr++] = entry->addr.id;
if (remove_anno_list_by_saddr(msk, &entry->addr) &&
alist.nr < MPTCP_RM_IDS_MAX)
alist.ids[alist.nr++] = entry->addr.id;
}
if (alist.nr) {
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &alist);
spin_unlock_bh(&msk->pm.lock);
}
if (slist.nr)
mptcp_pm_remove_subflow(msk, &slist);
}
static void mptcp_nl_remove_addrs_list(struct net *net,
struct list_head *rm_list)
{
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
if (list_empty(rm_list))
return;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
if (!mptcp_pm_is_userspace(msk)) {
lock_sock(sk);
mptcp_pm_remove_addrs_and_subflows(msk, rm_list);
release_sock(sk);
}
sock_put(sk);
cond_resched();
}
}
/* caller must ensure the RCU grace period is already elapsed */
static void __flush_addrs(struct list_head *list)
{
while (!list_empty(list)) {
struct mptcp_pm_addr_entry *cur;
cur = list_entry(list->next,
struct mptcp_pm_addr_entry, list);
list_del_rcu(&cur->list);
__mptcp_pm_release_addr_entry(cur);
}
}
static void __reset_counters(struct pm_nl_pernet *pernet)
{
WRITE_ONCE(pernet->add_addr_signal_max, 0);
WRITE_ONCE(pernet->add_addr_accept_max, 0);
WRITE_ONCE(pernet->local_addr_max, 0);
pernet->addrs = 0;
}
int mptcp_pm_nl_flush_addrs_doit(struct sk_buff *skb, struct genl_info *info)
{
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
LIST_HEAD(free_list);
spin_lock_bh(&pernet->lock);
list_splice_init(&pernet->local_addr_list, &free_list);
__reset_counters(pernet);
pernet->next_id = 1;
bitmap_zero(pernet->id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
spin_unlock_bh(&pernet->lock);
mptcp_nl_remove_addrs_list(sock_net(skb->sk), &free_list);
synchronize_rcu();
__flush_addrs(&free_list);
return 0;
}
static int mptcp_nl_fill_addr(struct sk_buff *skb,
struct mptcp_pm_addr_entry *entry)
{
struct mptcp_addr_info *addr = &entry->addr;
struct nlattr *attr;
attr = nla_nest_start(skb, MPTCP_PM_ATTR_ADDR);
if (!attr)
return -EMSGSIZE;
if (nla_put_u16(skb, MPTCP_PM_ADDR_ATTR_FAMILY, addr->family))
goto nla_put_failure;
if (nla_put_u16(skb, MPTCP_PM_ADDR_ATTR_PORT, ntohs(addr->port)))
goto nla_put_failure;
if (nla_put_u8(skb, MPTCP_PM_ADDR_ATTR_ID, addr->id))
goto nla_put_failure;
if (nla_put_u32(skb, MPTCP_PM_ADDR_ATTR_FLAGS, entry->flags))
goto nla_put_failure;
if (entry->ifindex &&
nla_put_s32(skb, MPTCP_PM_ADDR_ATTR_IF_IDX, entry->ifindex))
goto nla_put_failure;
if (addr->family == AF_INET &&
nla_put_in_addr(skb, MPTCP_PM_ADDR_ATTR_ADDR4,
addr->addr.s_addr))
goto nla_put_failure;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6 &&
nla_put_in6_addr(skb, MPTCP_PM_ADDR_ATTR_ADDR6, &addr->addr6))
goto nla_put_failure;
#endif
nla_nest_end(skb, attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, attr);
return -EMSGSIZE;
}
int mptcp_pm_nl_get_addr_doit(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attr = info->attrs[MPTCP_PM_ENDPOINT_ADDR];
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct mptcp_pm_addr_entry addr, *entry;
struct sk_buff *msg;
void *reply;
int ret;
ret = mptcp_pm_parse_entry(attr, info, false, &addr);
if (ret < 0)
return ret;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
reply = genlmsg_put_reply(msg, info, &mptcp_genl_family, 0,
info->genlhdr->cmd);
if (!reply) {
GENL_SET_ERR_MSG(info, "not enough space in Netlink message");
ret = -EMSGSIZE;
goto fail;
}
spin_lock_bh(&pernet->lock);
entry = __lookup_addr_by_id(pernet, addr.addr.id);
if (!entry) {
GENL_SET_ERR_MSG(info, "address not found");
ret = -EINVAL;
goto unlock_fail;
}
ret = mptcp_nl_fill_addr(msg, entry);
if (ret)
goto unlock_fail;
genlmsg_end(msg, reply);
ret = genlmsg_reply(msg, info);
spin_unlock_bh(&pernet->lock);
return ret;
unlock_fail:
spin_unlock_bh(&pernet->lock);
fail:
nlmsg_free(msg);
return ret;
}
int mptcp_pm_nl_get_addr_dumpit(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct net *net = sock_net(msg->sk);
struct mptcp_pm_addr_entry *entry;
struct pm_nl_pernet *pernet;
int id = cb->args[0];
void *hdr;
int i;
pernet = pm_nl_get_pernet(net);
spin_lock_bh(&pernet->lock);
for (i = id; i < MPTCP_PM_MAX_ADDR_ID + 1; i++) {
if (test_bit(i, pernet->id_bitmap)) {
entry = __lookup_addr_by_id(pernet, i);
if (!entry)
break;
if (entry->addr.id <= id)
continue;
hdr = genlmsg_put(msg, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, &mptcp_genl_family,
NLM_F_MULTI, MPTCP_PM_CMD_GET_ADDR);
if (!hdr)
break;
if (mptcp_nl_fill_addr(msg, entry) < 0) {
genlmsg_cancel(msg, hdr);
break;
}
id = entry->addr.id;
genlmsg_end(msg, hdr);
}
}
spin_unlock_bh(&pernet->lock);
cb->args[0] = id;
return msg->len;
}
static int parse_limit(struct genl_info *info, int id, unsigned int *limit)
{
struct nlattr *attr = info->attrs[id];
if (!attr)
return 0;
*limit = nla_get_u32(attr);
if (*limit > MPTCP_PM_ADDR_MAX) {
GENL_SET_ERR_MSG(info, "limit greater than maximum");
return -EINVAL;
}
return 0;
}
int mptcp_pm_nl_set_limits_doit(struct sk_buff *skb, struct genl_info *info)
{
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
unsigned int rcv_addrs, subflows;
int ret;
spin_lock_bh(&pernet->lock);
rcv_addrs = pernet->add_addr_accept_max;
ret = parse_limit(info, MPTCP_PM_ATTR_RCV_ADD_ADDRS, &rcv_addrs);
if (ret)
goto unlock;
subflows = pernet->subflows_max;
ret = parse_limit(info, MPTCP_PM_ATTR_SUBFLOWS, &subflows);
if (ret)
goto unlock;
WRITE_ONCE(pernet->add_addr_accept_max, rcv_addrs);
WRITE_ONCE(pernet->subflows_max, subflows);
unlock:
spin_unlock_bh(&pernet->lock);
return ret;
}
int mptcp_pm_nl_get_limits_doit(struct sk_buff *skb, struct genl_info *info)
{
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct sk_buff *msg;
void *reply;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
reply = genlmsg_put_reply(msg, info, &mptcp_genl_family, 0,
MPTCP_PM_CMD_GET_LIMITS);
if (!reply)
goto fail;
if (nla_put_u32(msg, MPTCP_PM_ATTR_RCV_ADD_ADDRS,
READ_ONCE(pernet->add_addr_accept_max)))
goto fail;
if (nla_put_u32(msg, MPTCP_PM_ATTR_SUBFLOWS,
READ_ONCE(pernet->subflows_max)))
goto fail;
genlmsg_end(msg, reply);
return genlmsg_reply(msg, info);
fail:
GENL_SET_ERR_MSG(info, "not enough space in Netlink message");
nlmsg_free(msg);
return -EMSGSIZE;
}
static void mptcp_pm_nl_fullmesh(struct mptcp_sock *msk,
struct mptcp_addr_info *addr)
{
struct mptcp_rm_list list = { .nr = 0 };
list.ids[list.nr++] = addr->id;
spin_lock_bh(&msk->pm.lock);
mptcp_pm_nl_rm_subflow_received(msk, &list);
mptcp_pm_create_subflow_or_signal_addr(msk);
spin_unlock_bh(&msk->pm.lock);
}
static int mptcp_nl_set_flags(struct net *net,
struct mptcp_addr_info *addr,
u8 bkup, u8 changed)
{
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
int ret = -EINVAL;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
if (list_empty(&msk->conn_list) || mptcp_pm_is_userspace(msk))
goto next;
lock_sock(sk);
if (changed & MPTCP_PM_ADDR_FLAG_BACKUP)
ret = mptcp_pm_nl_mp_prio_send_ack(msk, addr, NULL, bkup);
if (changed & MPTCP_PM_ADDR_FLAG_FULLMESH)
mptcp_pm_nl_fullmesh(msk, addr);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return ret;
}
int mptcp_pm_nl_set_flags(struct net *net, struct mptcp_pm_addr_entry *addr, u8 bkup)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet(net);
u8 changed, mask = MPTCP_PM_ADDR_FLAG_BACKUP |
MPTCP_PM_ADDR_FLAG_FULLMESH;
struct mptcp_pm_addr_entry *entry;
u8 lookup_by_id = 0;
if (addr->addr.family == AF_UNSPEC) {
lookup_by_id = 1;
if (!addr->addr.id)
return -EOPNOTSUPP;
}
spin_lock_bh(&pernet->lock);
entry = __lookup_addr(pernet, &addr->addr, lookup_by_id);
if (!entry) {
spin_unlock_bh(&pernet->lock);
return -EINVAL;
}
if ((addr->flags & MPTCP_PM_ADDR_FLAG_FULLMESH) &&
(entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) {
spin_unlock_bh(&pernet->lock);
return -EINVAL;
}
changed = (addr->flags ^ entry->flags) & mask;
entry->flags = (entry->flags & ~mask) | (addr->flags & mask);
*addr = *entry;
spin_unlock_bh(&pernet->lock);
mptcp_nl_set_flags(net, &addr->addr, bkup, changed);
return 0;
}
int mptcp_pm_nl_set_flags_doit(struct sk_buff *skb, struct genl_info *info)
{
struct mptcp_pm_addr_entry remote = { .addr = { .family = AF_UNSPEC }, };
struct mptcp_pm_addr_entry addr = { .addr = { .family = AF_UNSPEC }, };
struct nlattr *attr_rem = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE];
struct nlattr *token = info->attrs[MPTCP_PM_ATTR_TOKEN];
struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct net *net = sock_net(skb->sk);
u8 bkup = 0;
int ret;
ret = mptcp_pm_parse_entry(attr, info, false, &addr);
if (ret < 0)
return ret;
if (attr_rem) {
ret = mptcp_pm_parse_entry(attr_rem, info, false, &remote);
if (ret < 0)
return ret;
}
if (addr.flags & MPTCP_PM_ADDR_FLAG_BACKUP)
bkup = 1;
return mptcp_pm_set_flags(net, token, &addr, &remote, bkup);
}
static void mptcp_nl_mcast_send(struct net *net, struct sk_buff *nlskb, gfp_t gfp)
{
genlmsg_multicast_netns(&mptcp_genl_family, net,
nlskb, 0, MPTCP_PM_EV_GRP_OFFSET, gfp);
}
bool mptcp_userspace_pm_active(const struct mptcp_sock *msk)
{
return genl_has_listeners(&mptcp_genl_family,
sock_net((const struct sock *)msk),
MPTCP_PM_EV_GRP_OFFSET);
}
static int mptcp_event_add_subflow(struct sk_buff *skb, const struct sock *ssk)
{
const struct inet_sock *issk = inet_sk(ssk);
const struct mptcp_subflow_context *sf;
if (nla_put_u16(skb, MPTCP_ATTR_FAMILY, ssk->sk_family))
return -EMSGSIZE;
switch (ssk->sk_family) {
case AF_INET:
if (nla_put_in_addr(skb, MPTCP_ATTR_SADDR4, issk->inet_saddr))
return -EMSGSIZE;
if (nla_put_in_addr(skb, MPTCP_ATTR_DADDR4, issk->inet_daddr))
return -EMSGSIZE;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6: {
const struct ipv6_pinfo *np = inet6_sk(ssk);
if (nla_put_in6_addr(skb, MPTCP_ATTR_SADDR6, &np->saddr))
return -EMSGSIZE;
if (nla_put_in6_addr(skb, MPTCP_ATTR_DADDR6, &ssk->sk_v6_daddr))
return -EMSGSIZE;
break;
}
#endif
default:
WARN_ON_ONCE(1);
return -EMSGSIZE;
}
if (nla_put_be16(skb, MPTCP_ATTR_SPORT, issk->inet_sport))
return -EMSGSIZE;
if (nla_put_be16(skb, MPTCP_ATTR_DPORT, issk->inet_dport))
return -EMSGSIZE;
sf = mptcp_subflow_ctx(ssk);
if (WARN_ON_ONCE(!sf))
return -EINVAL;
if (nla_put_u8(skb, MPTCP_ATTR_LOC_ID, sf->local_id))
return -EMSGSIZE;
if (nla_put_u8(skb, MPTCP_ATTR_REM_ID, sf->remote_id))
return -EMSGSIZE;
return 0;
}
static int mptcp_event_put_token_and_ssk(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
const struct sock *sk = (const struct sock *)msk;
const struct mptcp_subflow_context *sf;
u8 sk_err;
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token))
return -EMSGSIZE;
if (mptcp_event_add_subflow(skb, ssk))
return -EMSGSIZE;
sf = mptcp_subflow_ctx(ssk);
if (WARN_ON_ONCE(!sf))
return -EINVAL;
if (nla_put_u8(skb, MPTCP_ATTR_BACKUP, sf->backup))
return -EMSGSIZE;
if (ssk->sk_bound_dev_if &&
nla_put_s32(skb, MPTCP_ATTR_IF_IDX, ssk->sk_bound_dev_if))
return -EMSGSIZE;
sk_err = READ_ONCE(ssk->sk_err);
if (sk_err && sk->sk_state == TCP_ESTABLISHED &&
nla_put_u8(skb, MPTCP_ATTR_ERROR, sk_err))
return -EMSGSIZE;
return 0;
}
static int mptcp_event_sub_established(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
return mptcp_event_put_token_and_ssk(skb, msk, ssk);
}
static int mptcp_event_sub_closed(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
const struct mptcp_subflow_context *sf;
if (mptcp_event_put_token_and_ssk(skb, msk, ssk))
return -EMSGSIZE;
sf = mptcp_subflow_ctx(ssk);
if (!sf->reset_seen)
return 0;
if (nla_put_u32(skb, MPTCP_ATTR_RESET_REASON, sf->reset_reason))
return -EMSGSIZE;
if (nla_put_u32(skb, MPTCP_ATTR_RESET_FLAGS, sf->reset_transient))
return -EMSGSIZE;
return 0;
}
static int mptcp_event_created(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
int err = nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token);
if (err)
return err;
if (nla_put_u8(skb, MPTCP_ATTR_SERVER_SIDE, READ_ONCE(msk->pm.server_side)))
return -EMSGSIZE;
return mptcp_event_add_subflow(skb, ssk);
}
void mptcp_event_addr_removed(const struct mptcp_sock *msk, uint8_t id)
{
struct net *net = sock_net((const struct sock *)msk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0, MPTCP_EVENT_REMOVED);
if (!nlh)
goto nla_put_failure;
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token))
goto nla_put_failure;
if (nla_put_u8(skb, MPTCP_ATTR_REM_ID, id))
goto nla_put_failure;
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, GFP_ATOMIC);
return;
nla_put_failure:
nlmsg_free(skb);
}
void mptcp_event_addr_announced(const struct sock *ssk,
const struct mptcp_addr_info *info)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct net *net = sock_net(ssk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0,
MPTCP_EVENT_ANNOUNCED);
if (!nlh)
goto nla_put_failure;
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token))
goto nla_put_failure;
if (nla_put_u8(skb, MPTCP_ATTR_REM_ID, info->id))
goto nla_put_failure;
if (nla_put_be16(skb, MPTCP_ATTR_DPORT,
info->port == 0 ?
inet_sk(ssk)->inet_dport :
info->port))
goto nla_put_failure;
switch (info->family) {
case AF_INET:
if (nla_put_in_addr(skb, MPTCP_ATTR_DADDR4, info->addr.s_addr))
goto nla_put_failure;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6:
if (nla_put_in6_addr(skb, MPTCP_ATTR_DADDR6, &info->addr6))
goto nla_put_failure;
break;
#endif
default:
WARN_ON_ONCE(1);
goto nla_put_failure;
}
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, GFP_ATOMIC);
return;
nla_put_failure:
nlmsg_free(skb);
}
void mptcp_event_pm_listener(const struct sock *ssk,
enum mptcp_event_type event)
{
const struct inet_sock *issk = inet_sk(ssk);
struct net *net = sock_net(ssk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0, event);
if (!nlh)
goto nla_put_failure;
if (nla_put_u16(skb, MPTCP_ATTR_FAMILY, ssk->sk_family))
goto nla_put_failure;
if (nla_put_be16(skb, MPTCP_ATTR_SPORT, issk->inet_sport))
goto nla_put_failure;
switch (ssk->sk_family) {
case AF_INET:
if (nla_put_in_addr(skb, MPTCP_ATTR_SADDR4, issk->inet_saddr))
goto nla_put_failure;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6: {
const struct ipv6_pinfo *np = inet6_sk(ssk);
if (nla_put_in6_addr(skb, MPTCP_ATTR_SADDR6, &np->saddr))
goto nla_put_failure;
break;
}
#endif
default:
WARN_ON_ONCE(1);
goto nla_put_failure;
}
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, GFP_KERNEL);
return;
nla_put_failure:
nlmsg_free(skb);
}
void mptcp_event(enum mptcp_event_type type, const struct mptcp_sock *msk,
const struct sock *ssk, gfp_t gfp)
{
struct net *net = sock_net((const struct sock *)msk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0, type);
if (!nlh)
goto nla_put_failure;
switch (type) {
case MPTCP_EVENT_UNSPEC:
WARN_ON_ONCE(1);
break;
case MPTCP_EVENT_CREATED:
case MPTCP_EVENT_ESTABLISHED:
if (mptcp_event_created(skb, msk, ssk) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_CLOSED:
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_ANNOUNCED:
case MPTCP_EVENT_REMOVED:
/* call mptcp_event_addr_announced()/removed instead */
WARN_ON_ONCE(1);
break;
case MPTCP_EVENT_SUB_ESTABLISHED:
case MPTCP_EVENT_SUB_PRIORITY:
if (mptcp_event_sub_established(skb, msk, ssk) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_SUB_CLOSED:
if (mptcp_event_sub_closed(skb, msk, ssk) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_LISTENER_CREATED:
case MPTCP_EVENT_LISTENER_CLOSED:
break;
}
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, gfp);
return;
nla_put_failure:
nlmsg_free(skb);
}
static struct genl_family mptcp_genl_family __ro_after_init = {
.name = MPTCP_PM_NAME,
.version = MPTCP_PM_VER,
.netnsok = true,
.module = THIS_MODULE,
.ops = mptcp_pm_nl_ops,
.n_ops = ARRAY_SIZE(mptcp_pm_nl_ops),
.resv_start_op = MPTCP_PM_CMD_SUBFLOW_DESTROY + 1,
.mcgrps = mptcp_pm_mcgrps,
.n_mcgrps = ARRAY_SIZE(mptcp_pm_mcgrps),
};
static int __net_init pm_nl_init_net(struct net *net)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet(net);
INIT_LIST_HEAD_RCU(&pernet->local_addr_list);
/* Cit. 2 subflows ought to be enough for anybody. */
pernet->subflows_max = 2;
pernet->next_id = 1;
pernet->stale_loss_cnt = 4;
spin_lock_init(&pernet->lock);
/* No need to initialize other pernet fields, the struct is zeroed at
* allocation time.
*/
return 0;
}
static void __net_exit pm_nl_exit_net(struct list_head *net_list)
{
struct net *net;
list_for_each_entry(net, net_list, exit_list) {
struct pm_nl_pernet *pernet = pm_nl_get_pernet(net);
/* net is removed from namespace list, can't race with
* other modifiers, also netns core already waited for a
* RCU grace period.
*/
__flush_addrs(&pernet->local_addr_list);
}
}
static struct pernet_operations mptcp_pm_pernet_ops = {
.init = pm_nl_init_net,
.exit_batch = pm_nl_exit_net,
.id = &pm_nl_pernet_id,
.size = sizeof(struct pm_nl_pernet),
};
void __init mptcp_pm_nl_init(void)
{
if (register_pernet_subsys(&mptcp_pm_pernet_ops) < 0)
panic("Failed to register MPTCP PM pernet subsystem.\n");
if (genl_register_family(&mptcp_genl_family))
panic("Failed to register MPTCP PM netlink family\n");
}