| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * RTC subsystem, base class |
| * |
| * Copyright (C) 2005 Tower Technologies |
| * Author: Alessandro Zummo <a.zummo@towertech.it> |
| * |
| * class skeleton from drivers/hwmon/hwmon.c |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/rtc.h> |
| #include <linux/kdev_t.h> |
| #include <linux/idr.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| |
| #include "rtc-core.h" |
| |
| static DEFINE_IDA(rtc_ida); |
| struct class *rtc_class; |
| |
| static void rtc_device_release(struct device *dev) |
| { |
| struct rtc_device *rtc = to_rtc_device(dev); |
| |
| ida_simple_remove(&rtc_ida, rtc->id); |
| kfree(rtc); |
| } |
| |
| #ifdef CONFIG_RTC_HCTOSYS_DEVICE |
| /* Result of the last RTC to system clock attempt. */ |
| int rtc_hctosys_ret = -ENODEV; |
| |
| /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary |
| * whether it stores the most close value or the value with partial |
| * seconds truncated. However, it is important that we use it to store |
| * the truncated value. This is because otherwise it is necessary, |
| * in an rtc sync function, to read both xtime.tv_sec and |
| * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read |
| * of >32bits is not possible. So storing the most close value would |
| * slow down the sync API. So here we have the truncated value and |
| * the best guess is to add 0.5s. |
| */ |
| |
| static void rtc_hctosys(struct rtc_device *rtc) |
| { |
| int err; |
| struct rtc_time tm; |
| struct timespec64 tv64 = { |
| .tv_nsec = NSEC_PER_SEC >> 1, |
| }; |
| |
| err = rtc_read_time(rtc, &tm); |
| if (err) { |
| dev_err(rtc->dev.parent, |
| "hctosys: unable to read the hardware clock\n"); |
| goto err_read; |
| } |
| |
| tv64.tv_sec = rtc_tm_to_time64(&tm); |
| |
| #if BITS_PER_LONG == 32 |
| if (tv64.tv_sec > INT_MAX) { |
| err = -ERANGE; |
| goto err_read; |
| } |
| #endif |
| |
| err = do_settimeofday64(&tv64); |
| |
| dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n", |
| &tm, (long long)tv64.tv_sec); |
| |
| err_read: |
| rtc_hctosys_ret = err; |
| } |
| #endif |
| |
| #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) |
| /* |
| * On suspend(), measure the delta between one RTC and the |
| * system's wall clock; restore it on resume(). |
| */ |
| |
| static struct timespec64 old_rtc, old_system, old_delta; |
| |
| static int rtc_suspend(struct device *dev) |
| { |
| struct rtc_device *rtc = to_rtc_device(dev); |
| struct rtc_time tm; |
| struct timespec64 delta, delta_delta; |
| int err; |
| |
| if (timekeeping_rtc_skipsuspend()) |
| return 0; |
| |
| if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) |
| return 0; |
| |
| /* snapshot the current RTC and system time at suspend*/ |
| err = rtc_read_time(rtc, &tm); |
| if (err < 0) { |
| pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); |
| return 0; |
| } |
| |
| ktime_get_real_ts64(&old_system); |
| old_rtc.tv_sec = rtc_tm_to_time64(&tm); |
| |
| /* |
| * To avoid drift caused by repeated suspend/resumes, |
| * which each can add ~1 second drift error, |
| * try to compensate so the difference in system time |
| * and rtc time stays close to constant. |
| */ |
| delta = timespec64_sub(old_system, old_rtc); |
| delta_delta = timespec64_sub(delta, old_delta); |
| if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { |
| /* |
| * if delta_delta is too large, assume time correction |
| * has occurred and set old_delta to the current delta. |
| */ |
| old_delta = delta; |
| } else { |
| /* Otherwise try to adjust old_system to compensate */ |
| old_system = timespec64_sub(old_system, delta_delta); |
| } |
| |
| return 0; |
| } |
| |
| static int rtc_resume(struct device *dev) |
| { |
| struct rtc_device *rtc = to_rtc_device(dev); |
| struct rtc_time tm; |
| struct timespec64 new_system, new_rtc; |
| struct timespec64 sleep_time; |
| int err; |
| |
| if (timekeeping_rtc_skipresume()) |
| return 0; |
| |
| rtc_hctosys_ret = -ENODEV; |
| if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) |
| return 0; |
| |
| /* snapshot the current rtc and system time at resume */ |
| ktime_get_real_ts64(&new_system); |
| err = rtc_read_time(rtc, &tm); |
| if (err < 0) { |
| pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); |
| return 0; |
| } |
| |
| new_rtc.tv_sec = rtc_tm_to_time64(&tm); |
| new_rtc.tv_nsec = 0; |
| |
| if (new_rtc.tv_sec < old_rtc.tv_sec) { |
| pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); |
| return 0; |
| } |
| |
| /* calculate the RTC time delta (sleep time)*/ |
| sleep_time = timespec64_sub(new_rtc, old_rtc); |
| |
| /* |
| * Since these RTC suspend/resume handlers are not called |
| * at the very end of suspend or the start of resume, |
| * some run-time may pass on either sides of the sleep time |
| * so subtract kernel run-time between rtc_suspend to rtc_resume |
| * to keep things accurate. |
| */ |
| sleep_time = timespec64_sub(sleep_time, |
| timespec64_sub(new_system, old_system)); |
| |
| if (sleep_time.tv_sec >= 0) |
| timekeeping_inject_sleeptime64(&sleep_time); |
| rtc_hctosys_ret = 0; |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); |
| #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) |
| #else |
| #define RTC_CLASS_DEV_PM_OPS NULL |
| #endif |
| |
| /* Ensure the caller will set the id before releasing the device */ |
| static struct rtc_device *rtc_allocate_device(void) |
| { |
| struct rtc_device *rtc; |
| |
| rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); |
| if (!rtc) |
| return NULL; |
| |
| device_initialize(&rtc->dev); |
| |
| /* |
| * Drivers can revise this default after allocating the device. |
| * The default is what most RTCs do: Increment seconds exactly one |
| * second after the write happened. This adds a default transport |
| * time of 5ms which is at least halfways close to reality. |
| */ |
| rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC; |
| |
| rtc->irq_freq = 1; |
| rtc->max_user_freq = 64; |
| rtc->dev.class = rtc_class; |
| rtc->dev.groups = rtc_get_dev_attribute_groups(); |
| rtc->dev.release = rtc_device_release; |
| |
| mutex_init(&rtc->ops_lock); |
| spin_lock_init(&rtc->irq_lock); |
| init_waitqueue_head(&rtc->irq_queue); |
| |
| /* Init timerqueue */ |
| timerqueue_init_head(&rtc->timerqueue); |
| INIT_WORK(&rtc->irqwork, rtc_timer_do_work); |
| /* Init aie timer */ |
| rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); |
| /* Init uie timer */ |
| rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); |
| /* Init pie timer */ |
| hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| rtc->pie_timer.function = rtc_pie_update_irq; |
| rtc->pie_enabled = 0; |
| |
| return rtc; |
| } |
| |
| static int rtc_device_get_id(struct device *dev) |
| { |
| int of_id = -1, id = -1; |
| |
| if (dev->of_node) |
| of_id = of_alias_get_id(dev->of_node, "rtc"); |
| else if (dev->parent && dev->parent->of_node) |
| of_id = of_alias_get_id(dev->parent->of_node, "rtc"); |
| |
| if (of_id >= 0) { |
| id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); |
| if (id < 0) |
| dev_warn(dev, "/aliases ID %d not available\n", of_id); |
| } |
| |
| if (id < 0) |
| id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); |
| |
| return id; |
| } |
| |
| static void rtc_device_get_offset(struct rtc_device *rtc) |
| { |
| time64_t range_secs; |
| u32 start_year; |
| int ret; |
| |
| /* |
| * If RTC driver did not implement the range of RTC hardware device, |
| * then we can not expand the RTC range by adding or subtracting one |
| * offset. |
| */ |
| if (rtc->range_min == rtc->range_max) |
| return; |
| |
| ret = device_property_read_u32(rtc->dev.parent, "start-year", |
| &start_year); |
| if (!ret) { |
| rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); |
| rtc->set_start_time = true; |
| } |
| |
| /* |
| * If user did not implement the start time for RTC driver, then no |
| * need to expand the RTC range. |
| */ |
| if (!rtc->set_start_time) |
| return; |
| |
| range_secs = rtc->range_max - rtc->range_min + 1; |
| |
| /* |
| * If the start_secs is larger than the maximum seconds (rtc->range_max) |
| * supported by RTC hardware or the maximum seconds of new expanded |
| * range (start_secs + rtc->range_max - rtc->range_min) is less than |
| * rtc->range_min, which means the minimum seconds (rtc->range_min) of |
| * RTC hardware will be mapped to start_secs by adding one offset, so |
| * the offset seconds calculation formula should be: |
| * rtc->offset_secs = rtc->start_secs - rtc->range_min; |
| * |
| * If the start_secs is larger than the minimum seconds (rtc->range_min) |
| * supported by RTC hardware, then there is one region is overlapped |
| * between the original RTC hardware range and the new expanded range, |
| * and this overlapped region do not need to be mapped into the new |
| * expanded range due to it is valid for RTC device. So the minimum |
| * seconds of RTC hardware (rtc->range_min) should be mapped to |
| * rtc->range_max + 1, then the offset seconds formula should be: |
| * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; |
| * |
| * If the start_secs is less than the minimum seconds (rtc->range_min), |
| * which is similar to case 2. So the start_secs should be mapped to |
| * start_secs + rtc->range_max - rtc->range_min + 1, then the |
| * offset seconds formula should be: |
| * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); |
| * |
| * Otherwise the offset seconds should be 0. |
| */ |
| if (rtc->start_secs > rtc->range_max || |
| rtc->start_secs + range_secs - 1 < rtc->range_min) |
| rtc->offset_secs = rtc->start_secs - rtc->range_min; |
| else if (rtc->start_secs > rtc->range_min) |
| rtc->offset_secs = range_secs; |
| else if (rtc->start_secs < rtc->range_min) |
| rtc->offset_secs = -range_secs; |
| else |
| rtc->offset_secs = 0; |
| } |
| |
| /** |
| * rtc_device_unregister - removes the previously registered RTC class device |
| * |
| * @rtc: the RTC class device to destroy |
| */ |
| static void rtc_device_unregister(struct rtc_device *rtc) |
| { |
| mutex_lock(&rtc->ops_lock); |
| /* |
| * Remove innards of this RTC, then disable it, before |
| * letting any rtc_class_open() users access it again |
| */ |
| rtc_proc_del_device(rtc); |
| cdev_device_del(&rtc->char_dev, &rtc->dev); |
| rtc->ops = NULL; |
| mutex_unlock(&rtc->ops_lock); |
| put_device(&rtc->dev); |
| } |
| |
| static void devm_rtc_release_device(struct device *dev, void *res) |
| { |
| struct rtc_device *rtc = *(struct rtc_device **)res; |
| |
| rtc_nvmem_unregister(rtc); |
| |
| if (rtc->registered) |
| rtc_device_unregister(rtc); |
| else |
| put_device(&rtc->dev); |
| } |
| |
| struct rtc_device *devm_rtc_allocate_device(struct device *dev) |
| { |
| struct rtc_device **ptr, *rtc; |
| int id, err; |
| |
| id = rtc_device_get_id(dev); |
| if (id < 0) |
| return ERR_PTR(id); |
| |
| ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) { |
| err = -ENOMEM; |
| goto exit_ida; |
| } |
| |
| rtc = rtc_allocate_device(); |
| if (!rtc) { |
| err = -ENOMEM; |
| goto exit_devres; |
| } |
| |
| *ptr = rtc; |
| devres_add(dev, ptr); |
| |
| rtc->id = id; |
| rtc->dev.parent = dev; |
| dev_set_name(&rtc->dev, "rtc%d", id); |
| |
| return rtc; |
| |
| exit_devres: |
| devres_free(ptr); |
| exit_ida: |
| ida_simple_remove(&rtc_ida, id); |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); |
| |
| int __rtc_register_device(struct module *owner, struct rtc_device *rtc) |
| { |
| struct rtc_wkalrm alrm; |
| int err; |
| |
| if (!rtc->ops) { |
| dev_dbg(&rtc->dev, "no ops set\n"); |
| return -EINVAL; |
| } |
| |
| rtc->owner = owner; |
| rtc_device_get_offset(rtc); |
| |
| /* Check to see if there is an ALARM already set in hw */ |
| err = __rtc_read_alarm(rtc, &alrm); |
| if (!err && !rtc_valid_tm(&alrm.time)) |
| rtc_initialize_alarm(rtc, &alrm); |
| |
| rtc_dev_prepare(rtc); |
| |
| err = cdev_device_add(&rtc->char_dev, &rtc->dev); |
| if (err) |
| dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", |
| MAJOR(rtc->dev.devt), rtc->id); |
| else |
| dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", |
| MAJOR(rtc->dev.devt), rtc->id); |
| |
| rtc_proc_add_device(rtc); |
| |
| rtc->registered = true; |
| dev_info(rtc->dev.parent, "registered as %s\n", |
| dev_name(&rtc->dev)); |
| |
| #ifdef CONFIG_RTC_HCTOSYS_DEVICE |
| if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE)) |
| rtc_hctosys(rtc); |
| #endif |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__rtc_register_device); |
| |
| /** |
| * devm_rtc_device_register - resource managed rtc_device_register() |
| * @dev: the device to register |
| * @name: the name of the device (unused) |
| * @ops: the rtc operations structure |
| * @owner: the module owner |
| * |
| * @return a struct rtc on success, or an ERR_PTR on error |
| * |
| * Managed rtc_device_register(). The rtc_device returned from this function |
| * are automatically freed on driver detach. |
| * This function is deprecated, use devm_rtc_allocate_device and |
| * rtc_register_device instead |
| */ |
| struct rtc_device *devm_rtc_device_register(struct device *dev, |
| const char *name, |
| const struct rtc_class_ops *ops, |
| struct module *owner) |
| { |
| struct rtc_device *rtc; |
| int err; |
| |
| rtc = devm_rtc_allocate_device(dev); |
| if (IS_ERR(rtc)) |
| return rtc; |
| |
| rtc->ops = ops; |
| |
| err = __rtc_register_device(owner, rtc); |
| if (err) |
| return ERR_PTR(err); |
| |
| return rtc; |
| } |
| EXPORT_SYMBOL_GPL(devm_rtc_device_register); |
| |
| static int __init rtc_init(void) |
| { |
| rtc_class = class_create(THIS_MODULE, "rtc"); |
| if (IS_ERR(rtc_class)) { |
| pr_err("couldn't create class\n"); |
| return PTR_ERR(rtc_class); |
| } |
| rtc_class->pm = RTC_CLASS_DEV_PM_OPS; |
| rtc_dev_init(); |
| return 0; |
| } |
| subsys_initcall(rtc_init); |