| /* |
| * Copyright (C) 2014 Imagination Technologies |
| * Author: Paul Burton <paul.burton@imgtec.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| |
| #include <linux/elf.h> |
| #include <linux/sched.h> |
| |
| #include <asm/cpu-info.h> |
| |
| /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ |
| bool mips_use_nan_legacy; |
| bool mips_use_nan_2008; |
| |
| /* FPU modes */ |
| enum { |
| FP_FRE, |
| FP_FR0, |
| FP_FR1, |
| }; |
| |
| /** |
| * struct mode_req - ABI FPU mode requirements |
| * @single: The program being loaded needs an FPU but it will only issue |
| * single precision instructions meaning that it can execute in |
| * either FR0 or FR1. |
| * @soft: The soft(-float) requirement means that the program being |
| * loaded needs has no FPU dependency at all (i.e. it has no |
| * FPU instructions). |
| * @fr1: The program being loaded depends on FPU being in FR=1 mode. |
| * @frdefault: The program being loaded depends on the default FPU mode. |
| * That is FR0 for O32 and FR1 for N32/N64. |
| * @fre: The program being loaded depends on FPU with FRE=1. This mode is |
| * a bridge which uses FR=1 whilst still being able to maintain |
| * full compatibility with pre-existing code using the O32 FP32 |
| * ABI. |
| * |
| * More information about the FP ABIs can be found here: |
| * |
| * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up |
| * |
| */ |
| |
| struct mode_req { |
| bool single; |
| bool soft; |
| bool fr1; |
| bool frdefault; |
| bool fre; |
| }; |
| |
| static const struct mode_req fpu_reqs[] = { |
| [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, |
| [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, |
| [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, |
| [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, |
| [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, |
| [MIPS_ABI_FP_XX] = { false, false, true, true, true }, |
| [MIPS_ABI_FP_64] = { false, false, true, false, false }, |
| [MIPS_ABI_FP_64A] = { false, false, true, false, true } |
| }; |
| |
| /* |
| * Mode requirements when .MIPS.abiflags is not present in the ELF. |
| * Not present means that everything is acceptable except FR1. |
| */ |
| static struct mode_req none_req = { true, true, false, true, true }; |
| |
| int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, |
| bool is_interp, struct arch_elf_state *state) |
| { |
| union { |
| struct elf32_hdr e32; |
| struct elf64_hdr e64; |
| } *ehdr = _ehdr; |
| struct elf32_phdr *phdr32 = _phdr; |
| struct elf64_phdr *phdr64 = _phdr; |
| struct mips_elf_abiflags_v0 abiflags; |
| bool elf32; |
| u32 flags; |
| int ret; |
| |
| elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; |
| flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; |
| |
| /* Lets see if this is an O32 ELF */ |
| if (elf32) { |
| if (flags & EF_MIPS_FP64) { |
| /* |
| * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it |
| * later if needed |
| */ |
| if (is_interp) |
| state->interp_fp_abi = MIPS_ABI_FP_OLD_64; |
| else |
| state->fp_abi = MIPS_ABI_FP_OLD_64; |
| } |
| if (phdr32->p_type != PT_MIPS_ABIFLAGS) |
| return 0; |
| |
| if (phdr32->p_filesz < sizeof(abiflags)) |
| return -EINVAL; |
| |
| ret = kernel_read(elf, phdr32->p_offset, |
| (char *)&abiflags, |
| sizeof(abiflags)); |
| } else { |
| if (phdr64->p_type != PT_MIPS_ABIFLAGS) |
| return 0; |
| if (phdr64->p_filesz < sizeof(abiflags)) |
| return -EINVAL; |
| |
| ret = kernel_read(elf, phdr64->p_offset, |
| (char *)&abiflags, |
| sizeof(abiflags)); |
| } |
| |
| if (ret < 0) |
| return ret; |
| if (ret != sizeof(abiflags)) |
| return -EIO; |
| |
| /* Record the required FP ABIs for use by mips_check_elf */ |
| if (is_interp) |
| state->interp_fp_abi = abiflags.fp_abi; |
| else |
| state->fp_abi = abiflags.fp_abi; |
| |
| return 0; |
| } |
| |
| int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, |
| struct arch_elf_state *state) |
| { |
| union { |
| struct elf32_hdr e32; |
| struct elf64_hdr e64; |
| } *ehdr = _ehdr; |
| union { |
| struct elf32_hdr e32; |
| struct elf64_hdr e64; |
| } *iehdr = _interp_ehdr; |
| struct mode_req prog_req, interp_req; |
| int fp_abi, interp_fp_abi, abi0, abi1, max_abi; |
| bool elf32; |
| u32 flags; |
| |
| elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; |
| flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; |
| |
| /* |
| * Determine the NaN personality, reject the binary if not allowed. |
| * Also ensure that any interpreter matches the executable. |
| */ |
| if (flags & EF_MIPS_NAN2008) { |
| if (mips_use_nan_2008) |
| state->nan_2008 = 1; |
| else |
| return -ENOEXEC; |
| } else { |
| if (mips_use_nan_legacy) |
| state->nan_2008 = 0; |
| else |
| return -ENOEXEC; |
| } |
| if (has_interpreter) { |
| bool ielf32; |
| u32 iflags; |
| |
| ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; |
| iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; |
| |
| if ((flags ^ iflags) & EF_MIPS_NAN2008) |
| return -ELIBBAD; |
| } |
| |
| if (!config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT)) |
| return 0; |
| |
| fp_abi = state->fp_abi; |
| |
| if (has_interpreter) { |
| interp_fp_abi = state->interp_fp_abi; |
| |
| abi0 = min(fp_abi, interp_fp_abi); |
| abi1 = max(fp_abi, interp_fp_abi); |
| } else { |
| abi0 = abi1 = fp_abi; |
| } |
| |
| if (elf32 && !(flags & EF_MIPS_ABI2)) { |
| /* Default to a mode capable of running code expecting FR=0 */ |
| state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; |
| |
| /* Allow all ABIs we know about */ |
| max_abi = MIPS_ABI_FP_64A; |
| } else { |
| /* MIPS64 code always uses FR=1, thus the default is easy */ |
| state->overall_fp_mode = FP_FR1; |
| |
| /* Disallow access to the various FPXX & FP64 ABIs */ |
| max_abi = MIPS_ABI_FP_SOFT; |
| } |
| |
| if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || |
| (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) |
| return -ELIBBAD; |
| |
| /* It's time to determine the FPU mode requirements */ |
| prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; |
| interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; |
| |
| /* |
| * Check whether the program's and interp's ABIs have a matching FPU |
| * mode requirement. |
| */ |
| prog_req.single = interp_req.single && prog_req.single; |
| prog_req.soft = interp_req.soft && prog_req.soft; |
| prog_req.fr1 = interp_req.fr1 && prog_req.fr1; |
| prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; |
| prog_req.fre = interp_req.fre && prog_req.fre; |
| |
| /* |
| * Determine the desired FPU mode |
| * |
| * Decision making: |
| * |
| * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This |
| * means that we have a combination of program and interpreter |
| * that inherently require the hybrid FP mode. |
| * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or |
| * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU |
| * instructions so we don't care about the mode. We will simply use |
| * the one preferred by the hardware. In fpxx case, that ABI can |
| * handle both FR=1 and FR=0, so, again, we simply choose the one |
| * preferred by the hardware. Next, if we only use single-precision |
| * FPU instructions, and the default ABI FPU mode is not good |
| * (ie single + any ABI combination), we set again the FPU mode to the |
| * one is preferred by the hardware. Next, if we know that the code |
| * will only use single-precision instructions, shown by single being |
| * true but frdefault being false, then we again set the FPU mode to |
| * the one that is preferred by the hardware. |
| * - We want FP_FR1 if that's the only matching mode and the default one |
| * is not good. |
| * - Return with -ELIBADD if we can't find a matching FPU mode. |
| */ |
| if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) |
| state->overall_fp_mode = FP_FRE; |
| else if ((prog_req.fr1 && prog_req.frdefault) || |
| (prog_req.single && !prog_req.frdefault)) |
| /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ |
| state->overall_fp_mode = ((current_cpu_data.fpu_id & MIPS_FPIR_F64) && |
| cpu_has_mips_r2_r6) ? |
| FP_FR1 : FP_FR0; |
| else if (prog_req.fr1) |
| state->overall_fp_mode = FP_FR1; |
| else if (!prog_req.fre && !prog_req.frdefault && |
| !prog_req.fr1 && !prog_req.single && !prog_req.soft) |
| return -ELIBBAD; |
| |
| return 0; |
| } |
| |
| static inline void set_thread_fp_mode(int hybrid, int regs32) |
| { |
| if (hybrid) |
| set_thread_flag(TIF_HYBRID_FPREGS); |
| else |
| clear_thread_flag(TIF_HYBRID_FPREGS); |
| if (regs32) |
| set_thread_flag(TIF_32BIT_FPREGS); |
| else |
| clear_thread_flag(TIF_32BIT_FPREGS); |
| } |
| |
| void mips_set_personality_fp(struct arch_elf_state *state) |
| { |
| /* |
| * This function is only ever called for O32 ELFs so we should |
| * not be worried about N32/N64 binaries. |
| */ |
| |
| if (!config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT)) |
| return; |
| |
| switch (state->overall_fp_mode) { |
| case FP_FRE: |
| set_thread_fp_mode(1, 0); |
| break; |
| case FP_FR0: |
| set_thread_fp_mode(0, 1); |
| break; |
| case FP_FR1: |
| set_thread_fp_mode(0, 0); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode |
| * in FCSR according to the ELF NaN personality. |
| */ |
| void mips_set_personality_nan(struct arch_elf_state *state) |
| { |
| struct cpuinfo_mips *c = &boot_cpu_data; |
| struct task_struct *t = current; |
| |
| t->thread.fpu.fcr31 = c->fpu_csr31; |
| switch (state->nan_2008) { |
| case 0: |
| break; |
| case 1: |
| if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) |
| t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; |
| if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) |
| t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; |
| break; |
| default: |
| BUG(); |
| } |
| } |