blob: 194422dd979d81492669c3fc929c15860cf4eda1 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn32_fpu.h"
#include "dcn32/dcn32_resource.h"
#include "dcn20/dcn20_resource.h"
#include "display_mode_vba_util_32.h"
#include "dml/dcn32/display_mode_vba_32.h"
// We need this includes for WATERMARKS_* defines
#include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
#include "dcn30/dcn30_resource.h"
#include "link.h"
#include "dc_state_priv.h"
#define DC_LOGGER_INIT(logger)
static const struct subvp_high_refresh_list subvp_high_refresh_list = {
.min_refresh = 120,
.max_refresh = 175,
.res = {
{.width = 3840, .height = 2160, },
{.width = 3440, .height = 1440, },
{.width = 2560, .height = 1440, },
{.width = 1920, .height = 1080, }},
};
static const struct subvp_active_margin_list subvp_active_margin_list = {
.min_refresh = 55,
.max_refresh = 65,
.res = {
{.width = 2560, .height = 1440, },
{.width = 1920, .height = 1080, }},
};
struct _vcs_dpi_ip_params_st dcn3_2_ip = {
.gpuvm_enable = 0,
.gpuvm_max_page_table_levels = 4,
.hostvm_enable = 0,
.rob_buffer_size_kbytes = 128,
.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
.config_return_buffer_size_in_kbytes = 1280,
.compressed_buffer_segment_size_in_kbytes = 64,
.meta_fifo_size_in_kentries = 22,
.zero_size_buffer_entries = 512,
.compbuf_reserved_space_64b = 256,
.compbuf_reserved_space_zs = 64,
.dpp_output_buffer_pixels = 2560,
.opp_output_buffer_lines = 1,
.pixel_chunk_size_kbytes = 8,
.alpha_pixel_chunk_size_kbytes = 4,
.min_pixel_chunk_size_bytes = 1024,
.dcc_meta_buffer_size_bytes = 6272,
.meta_chunk_size_kbytes = 2,
.min_meta_chunk_size_bytes = 256,
.writeback_chunk_size_kbytes = 8,
.ptoi_supported = false,
.num_dsc = 4,
.maximum_dsc_bits_per_component = 12,
.maximum_pixels_per_line_per_dsc_unit = 6016,
.dsc422_native_support = true,
.is_line_buffer_bpp_fixed = true,
.line_buffer_fixed_bpp = 57,
.line_buffer_size_bits = 1171920,
.max_line_buffer_lines = 32,
.writeback_interface_buffer_size_kbytes = 90,
.max_num_dpp = 4,
.max_num_otg = 4,
.max_num_hdmi_frl_outputs = 1,
.max_num_wb = 1,
.max_dchub_pscl_bw_pix_per_clk = 4,
.max_pscl_lb_bw_pix_per_clk = 2,
.max_lb_vscl_bw_pix_per_clk = 4,
.max_vscl_hscl_bw_pix_per_clk = 4,
.max_hscl_ratio = 6,
.max_vscl_ratio = 6,
.max_hscl_taps = 8,
.max_vscl_taps = 8,
.dpte_buffer_size_in_pte_reqs_luma = 64,
.dpte_buffer_size_in_pte_reqs_chroma = 34,
.dispclk_ramp_margin_percent = 1,
.max_inter_dcn_tile_repeaters = 8,
.cursor_buffer_size = 16,
.cursor_chunk_size = 2,
.writeback_line_buffer_buffer_size = 0,
.writeback_min_hscl_ratio = 1,
.writeback_min_vscl_ratio = 1,
.writeback_max_hscl_ratio = 1,
.writeback_max_vscl_ratio = 1,
.writeback_max_hscl_taps = 1,
.writeback_max_vscl_taps = 1,
.dppclk_delay_subtotal = 47,
.dppclk_delay_scl = 50,
.dppclk_delay_scl_lb_only = 16,
.dppclk_delay_cnvc_formatter = 28,
.dppclk_delay_cnvc_cursor = 6,
.dispclk_delay_subtotal = 125,
.dynamic_metadata_vm_enabled = false,
.odm_combine_4to1_supported = false,
.dcc_supported = true,
.max_num_dp2p0_outputs = 2,
.max_num_dp2p0_streams = 4,
};
struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
.clock_limits = {
{
.state = 0,
.dcfclk_mhz = 1564.0,
.fabricclk_mhz = 2500.0,
.dispclk_mhz = 2150.0,
.dppclk_mhz = 2150.0,
.phyclk_mhz = 810.0,
.phyclk_d18_mhz = 667.0,
.phyclk_d32_mhz = 625.0,
.socclk_mhz = 1200.0,
.dscclk_mhz = 716.667,
.dram_speed_mts = 18000.0,
.dtbclk_mhz = 1564.0,
},
},
.num_states = 1,
.sr_exit_time_us = 42.97,
.sr_enter_plus_exit_time_us = 49.94,
.sr_exit_z8_time_us = 285.0,
.sr_enter_plus_exit_z8_time_us = 320,
.writeback_latency_us = 12.0,
.round_trip_ping_latency_dcfclk_cycles = 263,
.urgent_latency_pixel_data_only_us = 4.0,
.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
.urgent_latency_vm_data_only_us = 4.0,
.fclk_change_latency_us = 25,
.usr_retraining_latency_us = 2,
.smn_latency_us = 2,
.mall_allocated_for_dcn_mbytes = 64,
.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
.pct_ideal_sdp_bw_after_urgent = 90.0,
.pct_ideal_fabric_bw_after_urgent = 67.0,
.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
.max_avg_sdp_bw_use_normal_percent = 80.0,
.max_avg_fabric_bw_use_normal_percent = 60.0,
.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
.max_avg_dram_bw_use_normal_percent = 15.0,
.num_chans = 24,
.dram_channel_width_bytes = 2,
.fabric_datapath_to_dcn_data_return_bytes = 64,
.return_bus_width_bytes = 64,
.downspread_percent = 0.38,
.dcn_downspread_percent = 0.5,
.dram_clock_change_latency_us = 400,
.dispclk_dppclk_vco_speed_mhz = 4300.0,
.do_urgent_latency_adjustment = true,
.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
};
static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context,
bool *repopulate_pipes, int *split, bool *merge);
void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
{
/* defaults */
double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
/* For min clocks use as reported by PM FW and report those as min */
uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
uint16_t setb_min_uclk_mhz = min_uclk_mhz;
uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
dc_assert_fp_enabled();
/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
if (dcfclk_mhz_for_the_second_state)
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
else
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
/* Set A - Normal - default values */
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
}
/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
}
/*
* Finds dummy_latency_index when MCLK switching using firmware based
* vblank stretch is enabled. This function will iterate through the
* table of dummy pstate latencies until the lowest value that allows
* dm_allow_self_refresh_and_mclk_switch to happen is found
*/
int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
const int max_latency_table_entries = 4;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
int dummy_latency_index = 0;
enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
dc_assert_fp_enabled();
while (dummy_latency_index < max_latency_table_entries) {
if (temp_clock_change_support != dm_dram_clock_change_unsupported)
vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
/* for subvp + DRR case, if subvp pipes are still present we support pstate */
if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
dcn32_subvp_in_use(dc, context))
vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
break;
dummy_latency_index++;
}
if (dummy_latency_index == max_latency_table_entries) {
ASSERT(dummy_latency_index != max_latency_table_entries);
/* If the execution gets here, it means dummy p_states are
* not possible. This should never happen and would mean
* something is severely wrong.
* Here we reset dummy_latency_index to 3, because it is
* better to have underflows than system crashes.
*/
dummy_latency_index = max_latency_table_entries - 1;
}
return dummy_latency_index;
}
/**
* dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
* and populate pipe_ctx with those params.
* @dc: [in] current dc state
* @context: [in] new dc state
* @pipes: [in] DML pipe params array
* @pipe_cnt: [in] DML pipe count
*
* This function must be called AFTER the phantom pipes are added to context
* and run through DML (so that the DLG params for the phantom pipes can be
* populated), and BEFORE we program the timing for the phantom pipes.
*/
void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt)
{
uint32_t i, pipe_idx;
dc_assert_fp_enabled();
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
pipes[pipe_idx].pipe.dest.vstartup_start =
get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
pipes[pipe_idx].pipe.dest.vupdate_offset =
get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
pipes[pipe_idx].pipe.dest.vupdate_width =
get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
pipes[pipe_idx].pipe.dest.vready_offset =
get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
}
pipe_idx++;
}
}
static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
{
float memory_bw_kbytes_sec;
float fabric_bw_kbytes_sec;
float sdp_bw_kbytes_sec;
float limiting_bw_kbytes_sec;
memory_bw_kbytes_sec = entry->dram_speed_mts *
dcn3_2_soc.num_chans *
dcn3_2_soc.dram_channel_width_bytes *
((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
fabric_bw_kbytes_sec = entry->fabricclk_mhz *
dcn3_2_soc.return_bus_width_bytes *
((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
sdp_bw_kbytes_sec = entry->dcfclk_mhz *
dcn3_2_soc.return_bus_width_bytes *
((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
return limiting_bw_kbytes_sec;
}
static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
{
if (entry->dcfclk_mhz > 0) {
float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
} else if (entry->fabricclk_mhz > 0) {
float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
} else if (entry->dram_speed_mts > 0) {
float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
}
}
static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
unsigned int *num_entries,
struct _vcs_dpi_voltage_scaling_st *entry)
{
int i = 0;
int index = 0;
dc_assert_fp_enabled();
if (*num_entries == 0) {
table[0] = *entry;
(*num_entries)++;
} else {
while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
index++;
if (index >= *num_entries)
break;
}
for (i = *num_entries; i > index; i--)
table[i] = table[i - 1];
table[index] = *entry;
(*num_entries)++;
}
}
/**
* dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
* @dc: current dc state
* @context: new dc state
* @ref_pipe: Main pipe for the phantom stream
* @phantom_stream: target phantom stream state
* @pipes: DML pipe params
* @pipe_cnt: number of DML pipes
* @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
*
* Set timing params of the phantom stream based on calculated output from DML.
* This function first gets the DML pipe index using the DC pipe index, then
* calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
* lines required for SubVP MCLK switching and assigns to the phantom stream
* accordingly.
*
* - The number of SubVP lines calculated in DML does not take into account
* FW processing delays and required pstate allow width, so we must include
* that separately.
*
* - Set phantom backporch = vstartup of main pipe
*/
void dcn32_set_phantom_stream_timing(struct dc *dc,
struct dc_state *context,
struct pipe_ctx *ref_pipe,
struct dc_stream_state *phantom_stream,
display_e2e_pipe_params_st *pipes,
unsigned int pipe_cnt,
unsigned int dc_pipe_idx)
{
unsigned int i, pipe_idx;
struct pipe_ctx *pipe;
uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
unsigned int num_dpp;
unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
struct dc_stream_state *main_stream = ref_pipe->stream;
dc_assert_fp_enabled();
// Find DML pipe index (pipe_idx) using dc_pipe_idx
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (i == dc_pipe_idx)
break;
pipe_idx++;
}
// Calculate lines required for pstate allow width and FW processing delays
pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
dc->caps.subvp_pstate_allow_width_us) / 1000000) *
(ref_pipe->stream->timing.pix_clk_100hz * 100) /
(double)ref_pipe->stream->timing.h_total;
// Update clks_cfg for calling into recalculate
pipes[0].clks_cfg.voltage = vlevel;
pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
pipes[0].clks_cfg.socclk_mhz = socclk;
// DML calculation for MALL region doesn't take into account FW delay
// and required pstate allow width for multi-display cases
/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
* to 2 swaths (i.e. 16 lines)
*/
phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
// W/A for DCC corruption with certain high resolution timings.
// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
/* dc->debug.subvp_extra_lines 0 by default*/
phantom_vactive += dc->debug.subvp_extra_lines;
// For backporch of phantom pipe, use vstartup of the main pipe
phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
phantom_stream->dst.y = 0;
phantom_stream->dst.height = phantom_vactive;
/* When scaling, DML provides the end to end required number of lines for MALL.
* dst.height is always correct for this case, but src.height is not which causes a
* delta between main and phantom pipe scaling outputs. Need to adjust src.height on
* phantom for this case.
*/
phantom_stream->src.y = 0;
phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
phantom_stream->timing.v_addressable = phantom_vactive;
phantom_stream->timing.v_front_porch = 1;
phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
phantom_stream->timing.v_front_porch +
phantom_stream->timing.v_sync_width +
phantom_bp;
phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
}
/**
* dcn32_get_num_free_pipes - Calculate number of free pipes
* @dc: current dc state
* @context: new dc state
*
* This function assumes that a "used" pipe is a pipe that has
* both a stream and a plane assigned to it.
*
* Return: Number of free pipes available in the context
*/
static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
{
unsigned int i;
unsigned int free_pipes = 0;
unsigned int num_pipes = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && !pipe->top_pipe) {
while (pipe) {
num_pipes++;
pipe = pipe->bottom_pipe;
}
}
}
free_pipes = dc->res_pool->pipe_count - num_pipes;
return free_pipes;
}
/**
* dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
* @dc: current dc state
* @context: new dc state
* @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
*
* We enter this function if we are Sub-VP capable (i.e. enough pipes available)
* and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
* we are forcing SubVP P-State switching on the current config.
*
* The number of pipes used for the chosen surface must be less than or equal to the
* number of free pipes available.
*
* In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
* For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
* for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
* support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
*
* Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
*/
static bool dcn32_assign_subvp_pipe(struct dc *dc,
struct dc_state *context,
unsigned int *index)
{
unsigned int i, pipe_idx;
unsigned int max_frame_time = 0;
bool valid_assignment_found = false;
unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
unsigned int num_pipes = 0;
unsigned int refresh_rate = 0;
if (!pipe->stream)
continue;
// Round up
refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
/* SubVP pipe candidate requirements:
* - Refresh rate < 120hz
* - Not able to switch in vactive naturally (switching in active means the
* DET provides enough buffer to hide the P-State switch latency -- trying
* to combine this with SubVP can cause issues with the scheduling).
* - Not TMZ surface
*/
if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) &&
!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
!pipe->plane_state->address.tmz_surface &&
(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
dcn32_allow_subvp_with_active_margin(pipe)))) {
while (pipe) {
num_pipes++;
pipe = pipe->bottom_pipe;
}
pipe = &context->res_ctx.pipe_ctx[i];
if (num_pipes <= free_pipes) {
struct dc_stream_state *stream = pipe->stream;
unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
if (frame_us > max_frame_time) {
*index = i;
max_frame_time = frame_us;
valid_assignment_found = true;
}
}
}
pipe_idx++;
}
return valid_assignment_found;
}
/**
* dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
* @dc: current dc state
* @context: new dc state
*
* This function returns true if there are enough free pipes
* to create the required phantom pipes for any given stream
* (that does not already have phantom pipe assigned).
*
* e.g. For a 2 stream config where the first stream uses one
* pipe and the second stream uses 2 pipes (i.e. pipe split),
* this function will return true because there is 1 remaining
* pipe which can be used as the phantom pipe for the non pipe
* split pipe.
*
* Return:
* True if there are enough free pipes to assign phantom pipes to at least one
* stream that does not already have phantom pipes assigned. Otherwise false.
*/
static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
{
unsigned int i, split_cnt, free_pipes;
unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
bool subvp_possible = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// Find the minimum pipe split count for non SubVP pipes
if (resource_is_pipe_type(pipe, OPP_HEAD) &&
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
split_cnt = 0;
while (pipe) {
split_cnt++;
pipe = pipe->bottom_pipe;
}
if (split_cnt < min_pipe_split)
min_pipe_split = split_cnt;
}
}
free_pipes = dcn32_get_num_free_pipes(dc, context);
// SubVP only possible if at least one pipe is being used (i.e. free_pipes
// should not equal to the pipe_count)
if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
subvp_possible = true;
return subvp_possible;
}
/**
* subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
* @dc: current dc state
* @context: new dc state
*
* High level algorithm:
* 1. Find longest microschedule length (in us) between the two SubVP pipes
* 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
* pipes still allows for the maximum microschedule to fit in the active
* region for both pipes.
*
* Return: True if the SubVP + SubVP config is schedulable, false otherwise
*/
static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
{
struct pipe_ctx *subvp_pipes[2] = {0};
struct dc_stream_state *phantom = NULL;
uint32_t microschedule_lines = 0;
uint32_t index = 0;
uint32_t i;
uint32_t max_microschedule_us = 0;
int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
uint32_t time_us = 0;
/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
* and also to store the two main SubVP pipe pointers in subvp_pipes[2].
*/
if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
phantom->timing.v_addressable;
// Round up when calculating microschedule time (+ 1 at the end)
time_us = (microschedule_lines * phantom->timing.h_total) /
(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
dc->caps.subvp_prefetch_end_to_mall_start_us +
dc->caps.subvp_fw_processing_delay_us + 1;
if (time_us > max_microschedule_us)
max_microschedule_us = time_us;
subvp_pipes[index] = pipe;
index++;
// Maximum 2 SubVP pipes
if (index == 2)
break;
}
}
vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
subvp_pipes[0]->stream->timing.h_total) /
(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
subvp_pipes[1]->stream->timing.h_total) /
(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
(vactive2_us - vblank1_us) / 2 > max_microschedule_us)
return true;
return false;
}
/**
* subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
* @dc: current dc state
* @context: new dc state
*
* High level algorithm:
* 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
* 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
* (the margin is equal to the MALL region + DRR margin (500us))
* 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
* then report the configuration as supported
*
* Return: True if the SubVP + DRR config is schedulable, false otherwise
*/
static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
{
bool schedulable = false;
uint32_t i;
struct pipe_ctx *pipe = NULL;
struct pipe_ctx *drr_pipe = NULL;
struct dc_crtc_timing *main_timing = NULL;
struct dc_crtc_timing *phantom_timing = NULL;
struct dc_crtc_timing *drr_timing = NULL;
int16_t prefetch_us = 0;
int16_t mall_region_us = 0;
int16_t drr_frame_us = 0; // nominal frame time
int16_t subvp_active_us = 0;
int16_t stretched_drr_us = 0;
int16_t drr_stretched_vblank_us = 0;
int16_t max_vblank_mallregion = 0;
struct dc_stream_state *phantom_stream;
bool subvp_found = false;
bool drr_found = false;
// Find SubVP pipe
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
// We check for master pipe, but it shouldn't matter since we only need
// the pipe for timing info (stream should be same for any pipe splits)
if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
!resource_is_pipe_type(pipe, DPP_PIPE))
continue;
// Find the SubVP pipe
if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
subvp_found = true;
break;
}
}
// Find the DRR pipe
for (i = 0; i < dc->res_pool->pipe_count; i++) {
drr_pipe = &context->res_ctx.pipe_ctx[i];
// We check for master pipe only
if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
!resource_is_pipe_type(drr_pipe, DPP_PIPE))
continue;
if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
drr_found = true;
break;
}
}
if (subvp_found && drr_found) {
phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
main_timing = &pipe->stream->timing;
phantom_timing = &phantom_stream->timing;
drr_timing = &drr_pipe->stream->timing;
prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
dc->caps.subvp_prefetch_end_to_mall_start_us;
subvp_active_us = main_timing->v_addressable * main_timing->h_total /
(double)(main_timing->pix_clk_100hz * 100) * 1000000;
drr_frame_us = drr_timing->v_total * drr_timing->h_total /
(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
// P-State allow width and FW delays already included phantom_timing->v_addressable
mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
}
/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
* highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
* for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
* and the max of (VBLANK blanking time, MALL region)).
*/
if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
schedulable = true;
return schedulable;
}
/**
* subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
* @dc: current dc state
* @context: new dc state
*
* High level algorithm:
* 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
* 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
* then report the configuration as supported
* 3. If the VBLANK display is DRR, then take the DRR static schedulability path
*
* Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
*/
static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
{
struct pipe_ctx *pipe = NULL;
struct pipe_ctx *subvp_pipe = NULL;
bool found = false;
bool schedulable = false;
uint32_t i = 0;
uint8_t vblank_index = 0;
uint16_t prefetch_us = 0;
uint16_t mall_region_us = 0;
uint16_t vblank_frame_us = 0;
uint16_t subvp_active_us = 0;
uint16_t vblank_blank_us = 0;
uint16_t max_vblank_mallregion = 0;
struct dc_crtc_timing *main_timing = NULL;
struct dc_crtc_timing *phantom_timing = NULL;
struct dc_crtc_timing *vblank_timing = NULL;
struct dc_stream_state *phantom_stream;
enum mall_stream_type pipe_mall_type;
/* For SubVP + VBLANK/DRR cases, we assume there can only be
* a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
* is supported, it is either a single VBLANK case or two VBLANK
* displays which are synchronized (in which case they have identical
* timings).
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
// We check for master pipe, but it shouldn't matter since we only need
// the pipe for timing info (stream should be same for any pipe splits)
if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
!resource_is_pipe_type(pipe, DPP_PIPE))
continue;
if (!found && pipe_mall_type == SUBVP_NONE) {
// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
vblank_index = i;
found = true;
}
if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
subvp_pipe = pipe;
}
if (found) {
phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
main_timing = &subvp_pipe->stream->timing;
phantom_timing = &phantom_stream->timing;
vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
// Also include the prefetch end to mallstart delay time
prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
dc->caps.subvp_prefetch_end_to_mall_start_us;
// P-State allow width and FW delays already included phantom_timing->v_addressable
mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
subvp_active_us = main_timing->v_addressable * main_timing->h_total /
(double)(main_timing->pix_clk_100hz * 100) * 1000000;
max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
// and the max of (VBLANK blanking time, MALL region)
// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
schedulable = true;
}
return schedulable;
}
/**
* subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
*
* @dc: Current DC state
* @context: New DC state to be programmed
*
* SubVP + SubVP is admissible under the following conditions:
* - All SubVP pipes are < 120Hz OR
* - All SubVP pipes are >= 120hz
*
* Return: True if admissible, false otherwise
*/
static bool subvp_subvp_admissable(struct dc *dc,
struct dc_state *context)
{
bool result = false;
uint32_t i;
uint8_t subvp_count = 0;
uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
uint64_t refresh_rate = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (pipe->plane_state && !pipe->top_pipe &&
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
if ((uint32_t)refresh_rate < min_refresh)
min_refresh = (uint32_t)refresh_rate;
if ((uint32_t)refresh_rate > max_refresh)
max_refresh = (uint32_t)refresh_rate;
subvp_count++;
}
}
if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
(min_refresh >= subvp_high_refresh_list.min_refresh &&
max_refresh <= subvp_high_refresh_list.max_refresh)))
result = true;
return result;
}
/**
* subvp_validate_static_schedulability - Check which SubVP case is calculated
* and handle static analysis based on the case.
* @dc: current dc state
* @context: new dc state
* @vlevel: Voltage level calculated by DML
*
* Three cases:
* 1. SubVP + SubVP
* 2. SubVP + VBLANK (DRR checked internally)
* 3. SubVP + VACTIVE (currently unsupported)
*
* Return: True if statically schedulable, false otherwise
*/
static bool subvp_validate_static_schedulability(struct dc *dc,
struct dc_state *context,
int vlevel)
{
bool schedulable = false;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
uint32_t i, pipe_idx;
uint8_t subvp_count = 0;
uint8_t vactive_count = 0;
uint8_t non_subvp_pipes = 0;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
if (!pipe->stream)
continue;
if (pipe->plane_state && !pipe->top_pipe) {
if (pipe_mall_type == SUBVP_MAIN)
subvp_count++;
if (pipe_mall_type == SUBVP_NONE)
non_subvp_pipes++;
}
// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
// switching (SubVP + VACTIVE unsupported). In situations where we force
// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
pipe_mall_type == SUBVP_NONE) {
vactive_count++;
}
pipe_idx++;
}
if (subvp_count == 2) {
// Static schedulability check for SubVP + SubVP case
schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
} else if (subvp_count == 1 && non_subvp_pipes == 0) {
// Single SubVP configs will be supported by default as long as it's suppported by DML
schedulable = true;
} else if (subvp_count == 1 && non_subvp_pipes == 1) {
if (dcn32_subvp_drr_admissable(dc, context))
schedulable = subvp_drr_schedulable(dc, context);
else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
schedulable = subvp_vblank_schedulable(dc, context);
} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
vactive_count > 0) {
// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
// SubVP + VACTIVE currently unsupported
schedulable = false;
}
return schedulable;
}
static void assign_subvp_index(struct dc *dc, struct dc_state *context)
{
int i;
int index = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
pipe_ctx->subvp_index = index++;
} else {
pipe_ctx->subvp_index = 0;
}
}
}
struct pipe_slice_table {
struct {
struct dc_stream_state *stream;
int slice_count;
} odm_combines[MAX_STREAMS];
int odm_combine_count;
struct {
struct pipe_ctx *pri_pipe;
struct dc_plane_state *plane;
int slice_count;
} mpc_combines[MAX_PLANES];
int mpc_combine_count;
};
static void update_slice_table_for_stream(struct pipe_slice_table *table,
struct dc_stream_state *stream, int diff)
{
int i;
for (i = 0; i < table->odm_combine_count; i++) {
if (table->odm_combines[i].stream == stream) {
table->odm_combines[i].slice_count += diff;
break;
}
}
if (i == table->odm_combine_count) {
table->odm_combine_count++;
table->odm_combines[i].stream = stream;
table->odm_combines[i].slice_count = diff;
}
}
static void update_slice_table_for_plane(struct pipe_slice_table *table,
struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
{
int i;
struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
for (i = 0; i < table->mpc_combine_count; i++) {
if (table->mpc_combines[i].plane == plane &&
table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
table->mpc_combines[i].slice_count += diff;
break;
}
}
if (i == table->mpc_combine_count) {
table->mpc_combine_count++;
table->mpc_combines[i].plane = plane;
table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
table->mpc_combines[i].slice_count = diff;
}
}
static void init_pipe_slice_table_from_context(
struct pipe_slice_table *table,
struct dc_state *context)
{
int i, j;
struct pipe_ctx *otg_master;
struct pipe_ctx *dpp_pipes[MAX_PIPES];
struct dc_stream_state *stream;
int count;
memset(table, 0, sizeof(*table));
for (i = 0; i < context->stream_count; i++) {
stream = context->streams[i];
otg_master = resource_get_otg_master_for_stream(
&context->res_ctx, stream);
count = resource_get_odm_slice_count(otg_master);
update_slice_table_for_stream(table, stream, count);
count = resource_get_dpp_pipes_for_opp_head(otg_master,
&context->res_ctx, dpp_pipes);
for (j = 0; j < count; j++)
if (dpp_pipes[j]->plane_state)
update_slice_table_for_plane(table, dpp_pipes[j],
dpp_pipes[j]->plane_state, 1);
}
}
static bool update_pipe_slice_table_with_split_flags(
struct pipe_slice_table *table,
struct dc *dc,
struct dc_state *context,
struct vba_vars_st *vba,
int split[MAX_PIPES],
bool merge[MAX_PIPES])
{
/* NOTE: we are deprecating the support for the concept of pipe splitting
* or pipe merging. Instead we append slices to the end and remove
* slices from the end. The following code converts a pipe split or
* merge to an append or remove operation.
*
* For example:
* When split flags describe the following pipe connection transition
*
* from:
* pipe 0 (split=2) -> pipe 1 (split=2)
* to: (old behavior)
* pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
*
* the code below actually does:
* pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
*
* This is the new intended behavior and for future DCNs we will retire
* the old concept completely.
*/
struct pipe_ctx *pipe;
bool odm;
int dc_pipe_idx, dml_pipe_idx = 0;
bool updated = false;
for (dc_pipe_idx = 0;
dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
if (resource_is_pipe_type(pipe, FREE_PIPE))
continue;
if (merge[dc_pipe_idx]) {
if (resource_is_pipe_type(pipe, OPP_HEAD))
/* merging OPP head means reducing ODM slice
* count by 1
*/
update_slice_table_for_stream(table, pipe->stream, -1);
else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
/* merging DPP pipe of the first ODM slice means
* reducing MPC slice count by 1
*/
update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
updated = true;
}
if (split[dc_pipe_idx]) {
odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
dm_odm_combine_mode_disabled;
if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
update_slice_table_for_stream(
table, pipe->stream, split[dc_pipe_idx] - 1);
else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
update_slice_table_for_plane(table, pipe,
pipe->plane_state, split[dc_pipe_idx] - 1);
updated = true;
}
dml_pipe_idx++;
}
return updated;
}
static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
struct pipe_slice_table *table)
{
int i;
for (i = 0; i < table->odm_combine_count; i++)
resource_update_pipes_for_stream_with_slice_count(context,
dc->current_state, dc->res_pool,
table->odm_combines[i].stream,
table->odm_combines[i].slice_count);
for (i = 0; i < table->mpc_combine_count; i++)
resource_update_pipes_for_plane_with_slice_count(context,
dc->current_state, dc->res_pool,
table->mpc_combines[i].plane,
table->mpc_combines[i].slice_count);
}
static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
struct vba_vars_st *vba, int split[MAX_PIPES],
bool merge[MAX_PIPES])
{
struct pipe_slice_table slice_table;
bool updated;
init_pipe_slice_table_from_context(&slice_table, context);
updated = update_pipe_slice_table_with_split_flags(
&slice_table, dc, context, vba,
split, merge);
update_pipes_with_slice_table(dc, context, &slice_table);
return updated;
}
static bool should_apply_odm_power_optimization(struct dc *dc,
struct dc_state *context, struct vba_vars_st *v, int *split,
bool *merge)
{
struct dc_stream_state *stream = context->streams[0];
struct pipe_slice_table slice_table;
int i;
/*
* this debug flag allows us to disable ODM power optimization feature
* unconditionally. we force the feature off if this is set to false.
*/
if (!dc->debug.enable_single_display_2to1_odm_policy)
return false;
/* current design and test coverage is only limited to allow ODM power
* optimization for single stream. Supporting it for multiple streams
* use case would require additional algorithm to decide how to
* optimize power consumption when there are not enough free pipes to
* allocate for all the streams. This level of optimization would
* require multiple attempts of revalidation to make an optimized
* decision. Unfortunately We do not support revalidation flow in
* current version of DML.
*/
if (context->stream_count != 1)
return false;
/*
* Our hardware doesn't support ODM for HDMI TMDS
*/
if (dc_is_hdmi_signal(stream->signal))
return false;
/*
* ODM Combine 2:1 requires horizontal timing divisible by 2 so each
* ODM segment has the same size.
*/
if (!is_h_timing_divisible_by_2(stream))
return false;
/*
* No power benefits if the timing's pixel clock is not high enough to
* raise display clock from minimum power state.
*/
if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
return false;
if (dc->config.enable_windowed_mpo_odm) {
/*
* ODM power optimization should only be allowed if the feature
* can be seamlessly toggled off within an update. This would
* require that the feature is applied on top of a minimal
* state. A minimal state is defined as a state validated
* without the need of pipe split. Therefore, when transition to
* toggle the feature off, the same stream and plane
* configuration can be supported by the pipe resource in the
* first ODM slice alone without the need to acquire extra
* resources.
*/
init_pipe_slice_table_from_context(&slice_table, context);
update_pipe_slice_table_with_split_flags(
&slice_table, dc, context, v,
split, merge);
for (i = 0; i < slice_table.mpc_combine_count; i++)
if (slice_table.mpc_combines[i].slice_count > 1)
return false;
for (i = 0; i < slice_table.odm_combine_count; i++)
if (slice_table.odm_combines[i].slice_count > 1)
return false;
} else {
/*
* the new ODM power optimization feature reduces software
* design limitation and allows ODM power optimization to be
* supported even with presence of overlay planes. The new
* feature is enabled based on enable_windowed_mpo_odm flag. If
* the flag is not set, we limit our feature scope due to
* previous software design limitation
*/
if (context->stream_status[0].plane_count != 1)
return false;
if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
&stream->src, sizeof(struct rect)) != 0)
return false;
if (stream->src.width >= 5120 &&
stream->src.width > stream->dst.width)
return false;
}
return true;
}
static void try_odm_power_optimization_and_revalidate(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int *split,
bool *merge,
unsigned int *vlevel,
int pipe_cnt)
{
int i;
unsigned int new_vlevel;
unsigned int cur_policy[MAX_PIPES];
for (i = 0; i < pipe_cnt; i++) {
cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
}
new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
memset(split, 0, MAX_PIPES * sizeof(int));
memset(merge, 0, MAX_PIPES * sizeof(bool));
*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
} else {
for (i = 0; i < pipe_cnt; i++)
pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
}
}
static bool is_test_pattern_enabled(
struct dc_state *context)
{
int i;
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
return true;
}
return false;
}
static bool dcn32_full_validate_bw_helper(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int *vlevel,
int *split,
bool *merge,
int *pipe_cnt,
bool *repopulate_pipes)
{
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
unsigned int dc_pipe_idx = 0;
int i = 0;
bool found_supported_config = false;
int vlevel_temp = 0;
dc_assert_fp_enabled();
/*
* DML favors voltage over p-state, but we're more interested in
* supporting p-state over voltage. We can't support p-state in
* prefetch mode > 0 so try capping the prefetch mode to start.
* Override present for testing.
*/
if (dc->debug.dml_disallow_alternate_prefetch_modes)
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
dm_prefetch_support_uclk_fclk_and_stutter;
else
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
/* This may adjust vlevel and maxMpcComb */
if (*vlevel < context->bw_ctx.dml.soc.num_states) {
*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
vba->VoltageLevel = *vlevel;
}
/* Apply split and merge flags before checking for subvp */
if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge))
return false;
memset(split, 0, MAX_PIPES * sizeof(int));
memset(merge, 0, MAX_PIPES * sizeof(bool));
/* Conditions for setting up phantom pipes for SubVP:
* 1. Not force disable SubVP
* 2. Full update (i.e. !fast_validate)
* 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
* 4. Display configuration passes validation
* 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
*/
if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
!dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
(*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
dc->debug.force_subvp_mclk_switch)) {
vlevel_temp = *vlevel;
while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
* Adding phantom pipes won't change the validation result, so change the DML input param
* for P-State support before adding phantom pipes and recalculating the DML result.
* However, this case is only applicable for SubVP + DRR cases because the prefetch mode
* will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
* enough to support MCLK switching.
*/
if (*vlevel == context->bw_ctx.dml.soc.num_states &&
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
dm_prefetch_support_uclk_fclk_and_stutter) {
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
dm_prefetch_support_fclk_and_stutter;
/* There are params (such as FabricClock) that need to be recalculated
* after validation fails (otherwise it will be 0). Calculation for
* phantom vactive requires call into DML, so we must ensure all the
* vba params are valid otherwise we'll get incorrect phantom vactive.
*/
*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
}
dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
// Populate dppclk to trigger a recalculate in dml_get_voltage_level
// so the phantom pipe DLG params can be assigned correctly.
pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
/* Check that vlevel requested supports pstate or not
* if not, select the lowest vlevel that supports it
*/
for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
*vlevel = i;
break;
}
}
if (*vlevel < context->bw_ctx.dml.soc.num_states
&& subvp_validate_static_schedulability(dc, context, *vlevel))
found_supported_config = true;
if (found_supported_config) {
// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
/* find lowest vlevel that supports the config */
for (i = *vlevel; i >= 0; i--) {
if (vba->ModeSupport[i][vba->maxMpcComb]) {
*vlevel = i;
} else {
break;
}
}
}
}
}
if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
found_supported_config = false;
// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
// remove phantom pipes and repopulate dml pipes
if (!found_supported_config) {
dc_state_remove_phantom_streams_and_planes(dc, context);
dc_state_release_phantom_streams_and_planes(dc, context);
vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
/* This may adjust vlevel and maxMpcComb */
if (*vlevel < context->bw_ctx.dml.soc.num_states) {
*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
vba->VoltageLevel = *vlevel;
}
} else {
// Most populate phantom DLG params before programming hardware / timing for phantom pipe
dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
/* Call validate_apply_pipe_split flags after calling DML getters for
* phantom dlg params, or some of the VBA params indicating pipe split
* can be overwritten by the getters.
*
* When setting up SubVP config, all pipes are merged before attempting to
* add phantom pipes. If pipe split (ODM / MPC) is required, both the main
* and phantom pipes will be split in the regular pipe splitting sequence.
*/
*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
vba->VoltageLevel = *vlevel;
// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
// until driver has acquired the DMCUB lock to do it safely.
assign_subvp_index(dc, context);
}
}
if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
try_odm_power_optimization_and_revalidate(
dc, context, pipes, split, merge, vlevel, *pipe_cnt);
return true;
}
static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
{
int i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
return true;
}
return false;
}
static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
{
struct dc_crtc_timing patched_crtc_timing;
uint32_t asic_blank_end = 0;
uint32_t asic_blank_start = 0;
uint32_t newVstartup = 0;
patched_crtc_timing = *dc_crtc_timing;
if (patched_crtc_timing.flags.INTERLACE == 1) {
if (patched_crtc_timing.v_front_porch < 2)
patched_crtc_timing.v_front_porch = 2;
} else {
if (patched_crtc_timing.v_front_porch < 1)
patched_crtc_timing.v_front_porch = 1;
}
/* blank_start = frame end - front porch */
asic_blank_start = patched_crtc_timing.v_total -
patched_crtc_timing.v_front_porch;
/* blank_end = blank_start - active */
asic_blank_end = asic_blank_start -
patched_crtc_timing.v_border_bottom -
patched_crtc_timing.v_addressable -
patched_crtc_timing.v_border_top;
newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
}
static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt, int vlevel)
{
int i, pipe_idx, active_hubp_count = 0;
bool usr_retraining_support = false;
bool unbounded_req_enabled = false;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
dc_assert_fp_enabled();
/* Writeback MCIF_WB arbitration parameters */
dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
context->bw_ctx.bw.dcn.clk.p_state_change_support =
context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
!= dm_dram_clock_change_unsupported;
/* Pstate change might not be supported by hardware, but it might be
* possible with firmware driven vertical blank stretching.
*/
context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
else
context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
ASSERT(usr_retraining_support);
if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
if (unbounded_req_enabled && pipe_cnt > 1) {
// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
ASSERT(false);
unbounded_req_enabled = false;
}
context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
if (context->res_ctx.pipe_ctx[i].plane_state)
active_hubp_count++;
pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
pipe_idx);
pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
pipe_idx);
pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
pipe_idx);
pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
pipe_idx);
if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
context->res_ctx.pipe_ctx[i].unbounded_req = false;
} else {
context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
pipe_idx);
context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
}
if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
if (context->res_ctx.pipe_ctx[i].plane_state)
context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
else
context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
else
context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
/* MALL Allocation Sizes */
/* count from active, top pipes per plane only */
if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
/* SS: all active surfaces stored in MALL */
if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
}
} else {
/* SUBVP: phantom surfaces only stored in MALL */
context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
}
}
if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
dcn20_adjust_freesync_v_startup(
&context->res_ctx.pipe_ctx[i].stream->timing,
&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
pipe_idx++;
}
/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
if (!active_hubp_count) {
context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
}
/*save a original dppclock copy*/
context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
* 1000;
context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
* 1000;
context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (context->res_ctx.pipe_ctx[i].stream)
context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
}
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
pipe_cnt, pipe_idx);
context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
pipe_idx++;
}
}
static struct pipe_ctx *dcn32_find_split_pipe(
struct dc *dc,
struct dc_state *context,
int old_index)
{
struct pipe_ctx *pipe = NULL;
int i;
if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
pipe = &context->res_ctx.pipe_ctx[old_index];
pipe->pipe_idx = old_index;
}
if (!pipe)
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
if (context->res_ctx.pipe_ctx[i].stream == NULL) {
pipe = &context->res_ctx.pipe_ctx[i];
pipe->pipe_idx = i;
break;
}
}
}
/*
* May need to fix pipes getting tossed from 1 opp to another on flip
* Add for debugging transient underflow during topology updates:
* ASSERT(pipe);
*/
if (!pipe)
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (context->res_ctx.pipe_ctx[i].stream == NULL) {
pipe = &context->res_ctx.pipe_ctx[i];
pipe->pipe_idx = i;
break;
}
}
return pipe;
}
static bool dcn32_split_stream_for_mpc_or_odm(
const struct dc *dc,
struct resource_context *res_ctx,
struct pipe_ctx *pri_pipe,
struct pipe_ctx *sec_pipe,
bool odm)
{
int pipe_idx = sec_pipe->pipe_idx;
const struct resource_pool *pool = dc->res_pool;
DC_LOGGER_INIT(dc->ctx->logger);
if (odm && pri_pipe->plane_state) {
/* ODM + window MPO, where MPO window is on left half only */
if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
__func__,
pri_pipe->pipe_idx);
return true;
}
/* ODM + window MPO, where MPO window is on right half only */
if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
__func__,
pri_pipe->pipe_idx);
return true;
}
}
*sec_pipe = *pri_pipe;
sec_pipe->pipe_idx = pipe_idx;
sec_pipe->plane_res.mi = pool->mis[pipe_idx];
sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
sec_pipe->stream_res.dsc = NULL;
if (odm) {
if (pri_pipe->next_odm_pipe) {
ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
}
if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
}
if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
}
pri_pipe->next_odm_pipe = sec_pipe;
sec_pipe->prev_odm_pipe = pri_pipe;
ASSERT(sec_pipe->top_pipe == NULL);
if (!sec_pipe->top_pipe)
sec_pipe->stream_res.opp = pool->opps[pipe_idx];
else
sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
if (sec_pipe->stream->timing.flags.DSC == 1) {
dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
ASSERT(sec_pipe->stream_res.dsc);
if (sec_pipe->stream_res.dsc == NULL)
return false;
}
} else {
if (pri_pipe->bottom_pipe) {
ASSERT(pri_pipe->bottom_pipe != sec_pipe);
sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
sec_pipe->bottom_pipe->top_pipe = sec_pipe;
}
pri_pipe->bottom_pipe = sec_pipe;
sec_pipe->top_pipe = pri_pipe;
ASSERT(pri_pipe->plane_state);
}
return true;
}
static bool dcn32_apply_merge_split_flags_helper(
struct dc *dc,
struct dc_state *context,
bool *repopulate_pipes,
int *split,
bool *merge)
{
int i, pipe_idx;
bool newly_split[MAX_PIPES] = { false };
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
if (dc->config.enable_windowed_mpo_odm) {
if (update_pipes_with_split_flags(
dc, context, vba, split, merge))
*repopulate_pipes = true;
} else {
/* the code below will be removed once windowed mpo odm is fully
* enabled.
*/
/* merge pipes if necessary */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
/*skip pipes that don't need merging*/
if (!merge[i])
continue;
/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
if (pipe->prev_odm_pipe) {
/*split off odm pipe*/
pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
if (pipe->next_odm_pipe)
pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
if (pipe->bottom_pipe) {
if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
/*MPC split rules will handle this case*/
pipe->bottom_pipe->top_pipe = NULL;
} else {
/* when merging an ODM pipes, the bottom MPC pipe must now point to
* the previous ODM pipe and its associated stream assets
*/
if (pipe->prev_odm_pipe->bottom_pipe) {
/* 3 plane MPO*/
pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
} else {
/* 2 plane MPO*/
pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
}
memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
}
}
if (pipe->top_pipe) {
pipe->top_pipe->bottom_pipe = NULL;
}
pipe->bottom_pipe = NULL;
pipe->next_odm_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
pipe->top_pipe = NULL;
pipe->prev_odm_pipe = NULL;
if (pipe->stream_res.dsc)
dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
memset(&pipe->link_res, 0, sizeof(pipe->link_res));
*repopulate_pipes = true;
} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
struct pipe_ctx *top_pipe = pipe->top_pipe;
struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
top_pipe->bottom_pipe = bottom_pipe;
if (bottom_pipe)
bottom_pipe->top_pipe = top_pipe;
pipe->top_pipe = NULL;
pipe->bottom_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
memset(&pipe->link_res, 0, sizeof(pipe->link_res));
*repopulate_pipes = true;
} else
ASSERT(0); /* Should never try to merge master pipe */
}
for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *hsplit_pipe = NULL;
bool odm;
int old_index = -1;
if (!pipe->stream || newly_split[i])
continue;
pipe_idx++;
odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
if (!pipe->plane_state && !odm)
continue;
if (split[i]) {
if (odm) {
if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
else if (old_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->pipe_idx;
} else {
if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
else if (old_pipe->bottom_pipe &&
old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->pipe_idx;
}
hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
ASSERT(hsplit_pipe);
if (!hsplit_pipe)
return false;
if (!dcn32_split_stream_for_mpc_or_odm(
dc, &context->res_ctx,
pipe, hsplit_pipe, odm))
return false;
newly_split[hsplit_pipe->pipe_idx] = true;
*repopulate_pipes = true;
}
if (split[i] == 4) {
struct pipe_ctx *pipe_4to1;
if (odm && old_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->pipe_idx;
else if (!odm && old_pipe->bottom_pipe &&
old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->pipe_idx;
else
old_index = -1;
pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
ASSERT(pipe_4to1);
if (!pipe_4to1)
return false;
if (!dcn32_split_stream_for_mpc_or_odm(
dc, &context->res_ctx,
pipe, pipe_4to1, odm))
return false;
newly_split[pipe_4to1->pipe_idx] = true;
if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
else
old_index = -1;
pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
ASSERT(pipe_4to1);
if (!pipe_4to1)
return false;
if (!dcn32_split_stream_for_mpc_or_odm(
dc, &context->res_ctx,
hsplit_pipe, pipe_4to1, odm))
return false;
newly_split[pipe_4to1->pipe_idx] = true;
}
if (odm)
dcn20_build_mapped_resource(dc, context, pipe->stream);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->plane_state) {
if (!resource_build_scaling_params(pipe))
return false;
}
}
for (i = 0; i < context->stream_count; i++) {
struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
context->streams[i]);
if (otg_master)
resource_build_test_pattern_params(&context->res_ctx, otg_master);
}
}
return true;
}
bool dcn32_internal_validate_bw(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int *pipe_cnt_out,
int *vlevel_out,
bool fast_validate)
{
bool out = false;
bool repopulate_pipes = false;
int split[MAX_PIPES] = { 0 };
bool merge[MAX_PIPES] = { false };
int pipe_cnt, i, pipe_idx;
int vlevel = context->bw_ctx.dml.soc.num_states;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
dc_assert_fp_enabled();
ASSERT(pipes);
if (!pipes)
return false;
/* For each full update, remove all existing phantom pipes first */
dc_state_remove_phantom_streams_and_planes(dc, context);
dc_state_release_phantom_streams_and_planes(dc, context);
dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
if (!pipe_cnt) {
out = true;
goto validate_out;
}
dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
if (!fast_validate) {
if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge,
&pipe_cnt, &repopulate_pipes))
goto validate_fail;
}
if (fast_validate ||
(dc->debug.dml_disallow_alternate_prefetch_modes &&
(vlevel == context->bw_ctx.dml.soc.num_states ||
vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
/*
* If dml_disallow_alternate_prefetch_modes is false, then we have already
* tried alternate prefetch modes during full validation.
*
* If mode is unsupported or there is no p-state support, then
* fall back to favouring voltage.
*
* If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
* to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
*/
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
dm_prefetch_support_none;
context->bw_ctx.dml.validate_max_state = fast_validate;
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
context->bw_ctx.dml.validate_max_state = false;
if (vlevel < context->bw_ctx.dml.soc.num_states) {
memset(split, 0, sizeof(split));
memset(merge, 0, sizeof(merge));
vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
/* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */
vba->VoltageLevel = vlevel;
}
}
dml_log_mode_support_params(&context->bw_ctx.dml);
if (vlevel == context->bw_ctx.dml.soc.num_states)
goto validate_fail;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
if (!pipe->stream)
continue;
if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
&& !dc->config.enable_windowed_mpo_odm
&& pipe->plane_state && mpo_pipe
&& memcmp(&mpo_pipe->plane_state->clip_rect,
&pipe->stream->src,
sizeof(struct rect)) != 0) {
ASSERT(mpo_pipe->plane_state != pipe->plane_state);
goto validate_fail;
}
pipe_idx++;
}
if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge))
goto validate_fail;
/* Actual dsc count per stream dsc validation*/
if (!dcn20_validate_dsc(dc, context)) {
vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
goto validate_fail;
}
if (repopulate_pipes) {
int flag_max_mpc_comb = vba->maxMpcComb;
int flag_vlevel = vlevel;
int i;
pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
if (!dc->config.enable_windowed_mpo_odm)
dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
* we have to re-calculate the DET allocation and run through DML once more to
* ensure all the params are calculated correctly. We do not need to run the
* pipe split check again after this call (pipes are already split / merged).
* */
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
if (vlevel == context->bw_ctx.dml.soc.num_states) {
/* failed after DET size changes */
goto validate_fail;
} else if (flag_max_mpc_comb == 0 &&
flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
/* check the context constructed with pipe split flags is still valid*/
bool flags_valid = false;
for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
if (vba->ModeSupport[i][flag_max_mpc_comb]) {
vba->maxMpcComb = flag_max_mpc_comb;
vba->VoltageLevel = i;
vlevel = i;
flags_valid = true;
break;
}
}
/* this should never happen */
if (!flags_valid)
goto validate_fail;
}
}
*vlevel_out = vlevel;
*pipe_cnt_out = pipe_cnt;
out = true;
goto validate_out;
validate_fail:
out = false;
validate_out:
return out;
}
void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
int i, pipe_idx, vlevel_temp = 0;
double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
dm_dram_clock_change_unsupported;
unsigned int dummy_latency_index = 0;
int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
bool subvp_in_use = dcn32_subvp_in_use(dc, context);
unsigned int min_dram_speed_mts_margin;
bool need_fclk_lat_as_dummy = false;
bool is_subvp_p_drr = false;
struct dc_stream_state *fpo_candidate_stream = NULL;
struct dc_stream_status *stream_status = NULL;
dc_assert_fp_enabled();
/* need to find dummy latency index for subvp */
if (subvp_in_use) {
/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
if (!pstate_en) {
context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
pstate_en = true;
is_subvp_p_drr = true;
}
dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
context, pipes, pipe_cnt, vlevel);
/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
* scheduled correctly to account for dummy pstate.
*/
if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
need_fclk_lat_as_dummy = true;
context->bw_ctx.dml.soc.fclk_change_latency_us =
dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
}
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
if (is_subvp_p_drr) {
context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
}
}
context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
for (i = 0; i < context->stream_count; i++) {
stream_status = NULL;
if (context->streams[i])
stream_status = dc_state_get_stream_status(context, context->streams[i]);
if (stream_status)
stream_status->fpo_in_use = false;
}
if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
pstate_en && vlevel != 0)) {
/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
if (fpo_candidate_stream) {
stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
if (stream_status)
stream_status->fpo_in_use = true;
context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
}
if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
context, pipes, pipe_cnt, vlevel);
/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
* we reinstate the original dram_clock_change_latency_us on the context
* and all variables that may have changed up to this point, except the
* newly found dummy_latency_index
*/
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
* prefetch is scheduled correctly to account for dummy pstate.
*/
if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
need_fclk_lat_as_dummy = true;
context->bw_ctx.dml.soc.fclk_change_latency_us =
dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
}
dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
if (vlevel_temp < vlevel) {
vlevel = vlevel_temp;
maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
pstate_en = true;
context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
} else {
/* Restore FCLK latency and re-run validation to go back to original validation
* output if we find that enabling FPO does not give us any benefit (i.e. lower
* voltage level)
*/
context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
for (i = 0; i < context->stream_count; i++) {
stream_status = NULL;
if (context->streams[i])
stream_status = dc_state_get_stream_status(context, context->streams[i]);
if (stream_status)
stream_status->fpo_in_use = false;
}
context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
}
}
}
/* Set B:
* For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
* otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
* calculations to cover bootup clocks.
* DCFCLK: soc.clock_limits[2] when available
* UCLK: soc.clock_limits[2] when available
*/
if (dcn3_2_soc.num_states > 2) {
vlevel_temp = 2;
dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
} else
dcfclk = 615; //DCFCLK Vmin_lv
pipes[0].clks_cfg.voltage = vlevel_temp;
pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
/* Set D:
* All clocks min.
* DCFCLK: Min, as reported by PM FW when available
* UCLK : Min, as reported by PM FW when available
* sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
*/
/*
if (dcn3_2_soc.num_states > 2) {
vlevel_temp = 0;
dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
} else
dcfclk = 615; //DCFCLK Vmin_lv
pipes[0].clks_cfg.voltage = vlevel_temp;
pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
*/
/* Set C, for Dummy P-State:
* All clocks min.
* DCFCLK: Min, as reported by PM FW, when available
* UCLK : Min, as reported by PM FW, when available
* pstate latency as per UCLK state dummy pstate latency
*/
// For Set A and Set C use values from validation
pipes[0].clks_cfg.voltage = vlevel;
pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
}
if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
min_dram_speed_mts = dram_speed_from_validation;
min_dram_speed_mts_margin = 160;
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
dm_dram_clock_change_unsupported) {
int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
min_dram_speed_mts =
dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
}
if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
/* find largest table entry that is lower than dram speed,
* but lower than DPM0 still uses DPM0
*/
for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
if (min_dram_speed_mts + min_dram_speed_mts_margin >
dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
break;
}
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
}
context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
* In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
* value.
*/
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
/* The only difference between A and C is p-state latency, if p-state is not supported
* with full p-state latency we want to calculate DLG based on dummy p-state latency,
* Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
*/
context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
* UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
*/
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
} else {
/* Set A:
* All clocks min.
* DCFCLK: Min, as reported by PM FW, when available
* UCLK: Min, as reported by PM FW, when available
*/
/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
*/
context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
}
/* Make set D = set A since we do not optimized watermarks for MALL */
context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
if (dc->config.forced_clocks) {
pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
}
if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
pipe_idx++;
}
context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
if (need_fclk_lat_as_dummy)
context->bw_ctx.dml.soc.fclk_change_latency_us =
dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
if (!pstate_en)
/* Restore full p-state latency */
context->bw_ctx.dml.soc.dram_clock_change_latency_us =
dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
/* revert fclk lat changes if required */
if (need_fclk_lat_as_dummy)
context->bw_ctx.dml.soc.fclk_change_latency_us =
dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
}
static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
unsigned int *optimal_dcfclk,
unsigned int *optimal_fclk)
{
double bw_from_dram, bw_from_dram1, bw_from_dram2;
bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
if (optimal_fclk)
*optimal_fclk = bw_from_dram /
(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
if (optimal_dcfclk)
*optimal_dcfclk = bw_from_dram /
(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
}
static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
unsigned int index)
{
int i;
if (*num_entries == 0)
return;
for (i = index; i < *num_entries - 1; i++) {
table[i] = table[i + 1];
}
memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
}
void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
{
int i;
unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
}
/* Scan through clock values we currently have and if they are 0,
* then populate it with dcn3_2_soc.clock_limits[] value.
*
* Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
* 0, will cause it to skip building the clock table.
*/
if (max_dcfclk_mhz == 0)
bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
if (max_dispclk_mhz == 0)
bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
if (max_dtbclk_mhz == 0)
bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
if (max_uclk_mhz == 0)
bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
}
static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
struct _vcs_dpi_voltage_scaling_st *second_entry)
{
struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
*first_entry = *second_entry;
*second_entry = temp_entry;
}
/*
* sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
*/
static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
unsigned int start_index = 0;
unsigned int end_index = 0;
unsigned int current_bw = 0;
for (int i = 0; i < (*num_entries - 1); i++) {
if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
current_bw = table[i].net_bw_in_kbytes_sec;
start_index = i;
end_index = ++i;
while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
end_index = ++i;
}
if (start_index != end_index) {
for (int j = start_index; j < end_index; j++) {
for (int k = start_index; k < end_index; k++) {
if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
swap_table_entries(&table[k], &table[k+1]);
}
}
}
start_index = 0;
end_index = 0;
}
}
/*
* remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
* and remove entries that do not
*/
static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
for (int i = 0; i < (*num_entries - 1); i++) {
if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
remove_entry_from_table_at_index(table, num_entries, i);
}
}
}
/*
* override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
* Input:
* max_clk_limit - struct containing the desired clock timings
* Output:
* curr_clk_limit - struct containing the timings that need to be overwritten
* Return: 0 upon success, non-zero for failure
*/
static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
struct clk_limit_table_entry *curr_clk_limit)
{
if (NULL == max_clk_limit || NULL == curr_clk_limit)
return -1; //invalid parameters
//only overwrite if desired max clock frequency is initialized
if (max_clk_limit->dcfclk_mhz != 0)
curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
if (max_clk_limit->fclk_mhz != 0)
curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
if (max_clk_limit->memclk_mhz != 0)
curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
if (max_clk_limit->socclk_mhz != 0)
curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
if (max_clk_limit->dtbclk_mhz != 0)
curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
if (max_clk_limit->dispclk_mhz != 0)
curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
return 0;
}
static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
int i, j;
struct _vcs_dpi_voltage_scaling_st entry = {0};
struct clk_limit_table_entry max_clk_data = {0};
unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
static const unsigned int num_dcfclk_stas = 5;
unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
unsigned int num_uclk_dpms = 0;
unsigned int num_fclk_dpms = 0;
unsigned int num_dcfclk_dpms = 0;
unsigned int num_dc_uclk_dpms = 0;
unsigned int num_dc_fclk_dpms = 0;
unsigned int num_dc_dcfclk_dpms = 0;
for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
num_uclk_dpms++;
if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
num_dc_uclk_dpms++;
}
if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
num_fclk_dpms++;
if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
num_dc_fclk_dpms++;
}
if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
num_dcfclk_dpms++;
if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
num_dc_dcfclk_dpms++;
}
}
if (!disable_dc_mode_overwrite) {
//Overwrite max frequencies with max DC mode frequencies for DC mode systems
override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
num_uclk_dpms = num_dc_uclk_dpms;
num_fclk_dpms = num_dc_fclk_dpms;
num_dcfclk_dpms = num_dc_dcfclk_dpms;
bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
}
if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
return -1;
if (max_clk_data.dppclk_mhz == 0)
max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
if (max_clk_data.fclk_mhz == 0)
max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
if (max_clk_data.phyclk_mhz == 0)
max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
*num_entries = 0;
entry.dispclk_mhz = max_clk_data.dispclk_mhz;
entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
entry.dppclk_mhz = max_clk_data.dppclk_mhz;
entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
entry.phyclk_mhz = max_clk_data.phyclk_mhz;
entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
// Insert all the DCFCLK STAs
for (i = 0; i < num_dcfclk_stas; i++) {
entry.dcfclk_mhz = dcfclk_sta_targets[i];
entry.fabricclk_mhz = 0;
entry.dram_speed_mts = 0;
get_optimal_ntuple(&entry);
entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
insert_entry_into_table_sorted(table, num_entries, &entry);
}
// Insert the max DCFCLK
entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
entry.fabricclk_mhz = 0;
entry.dram_speed_mts = 0;
get_optimal_ntuple(&entry);
entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
insert_entry_into_table_sorted(table, num_entries, &entry);
// Insert the UCLK DPMS
for (i = 0; i < num_uclk_dpms; i++) {
entry.dcfclk_mhz = 0;
entry.fabricclk_mhz = 0;
entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
get_optimal_ntuple(&entry);
entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
insert_entry_into_table_sorted(table, num_entries, &entry);
}
// If FCLK is coarse grained, insert individual DPMs.
if (num_fclk_dpms > 2) {
for (i = 0; i < num_fclk_dpms; i++) {
entry.dcfclk_mhz = 0;
entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
entry.dram_speed_mts = 0;
get_optimal_ntuple(&entry);
entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
insert_entry_into_table_sorted(table, num_entries, &entry);
}
}
// If FCLK fine grained, only insert max
else {
entry.dcfclk_mhz = 0;
entry.fabricclk_mhz = max_clk_data.fclk_mhz;
entry.dram_speed_mts = 0;
get_optimal_ntuple(&entry);
entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
insert_entry_into_table_sorted(table, num_entries, &entry);
}
// At this point, the table contains all "points of interest" based on
// DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
// ratios (by derate, are exact).
// Remove states that require higher clocks than are supported
for (i = *num_entries - 1; i >= 0 ; i--) {
if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
remove_entry_from_table_at_index(table, num_entries, i);
}
// Insert entry with all max dc limits without bandwidth matching
if (!disable_dc_mode_overwrite) {
struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
sort_entries_with_same_bw(table, num_entries);
remove_inconsistent_entries(table, num_entries);
}
// At this point, the table only contains supported points of interest
// it could be used as is, but some states may be redundant due to
// coarse grained nature of some clocks, so we want to round up to
// coarse grained DPMs and remove duplicates.
// Round up UCLKs
for (i = *num_entries - 1; i >= 0 ; i--) {
for (j = 0; j < num_uclk_dpms; j++) {
if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
break;
}
}
}
// If FCLK is coarse grained, round up to next DPMs
if (num_fclk_dpms > 2) {
for (i = *num_entries - 1; i >= 0 ; i--) {
for (j = 0; j < num_fclk_dpms; j++) {
if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
break;
}
}
}
}
// Otherwise, round up to minimum.
else {
for (i = *num_entries - 1; i >= 0 ; i--) {
if (table[i].fabricclk_mhz < min_fclk_mhz) {
table[i].fabricclk_mhz = min_fclk_mhz;
}
}
}
// Round DCFCLKs up to minimum
for (i = *num_entries - 1; i >= 0 ; i--) {
if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
table[i].dcfclk_mhz = min_dcfclk_mhz;
}
}
// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
i = 0;
while (i < *num_entries - 1) {
if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
remove_entry_from_table_at_index(table, num_entries, i + 1);
else
i++;
}
// Fix up the state indicies
for (i = *num_entries - 1; i >= 0 ; i--) {
table[i].state = i;
}
return 0;
}
/*
* dcn32_update_bw_bounding_box
*
* This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
* spreadsheet with actual values as per dGPU SKU:
* - with passed few options from dc->config
* - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
* need to get it from PM FW)
* - with passed latency values (passed in ns units) in dc-> bb override for
* debugging purposes
* - with passed latencies from VBIOS (in 100_ns units) if available for
* certain dGPU SKU
* - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
* of the same ASIC)
* - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
* FW for different clocks (which might differ for certain dGPU SKU of the
* same ASIC)
*/
void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
{
dc_assert_fp_enabled();
/* Overrides from dc->config options */
dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
/* Override from passed dc->bb_overrides if available*/
if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
&& dc->bb_overrides.sr_exit_time_ns) {
dc->dml2_options.bbox_overrides.sr_exit_latency_us =
dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
}
if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
!= dc->bb_overrides.sr_enter_plus_exit_time_ns
&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
dcn3_2_soc.sr_enter_plus_exit_time_us =
dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
}
if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
&& dc->bb_overrides.urgent_latency_ns) {
dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
dc->dml2_options.bbox_overrides.urgent_latency_us =
dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
}
if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
!= dc->bb_overrides.dram_clock_change_latency_ns
&& dc->bb_overrides.dram_clock_change_latency_ns) {
dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
dcn3_2_soc.dram_clock_change_latency_us =
dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
}
if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
!= dc->bb_overrides.fclk_clock_change_latency_ns
&& dc->bb_overrides.fclk_clock_change_latency_ns) {
dc->dml2_options.bbox_overrides.fclk_change_latency_us =
dcn3_2_soc.fclk_change_latency_us =
dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
}
if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
!= dc->bb_overrides.dummy_clock_change_latency_ns
&& dc->bb_overrides.dummy_clock_change_latency_ns) {
dcn3_2_soc.dummy_pstate_latency_us =
dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
}
/* Override from VBIOS if VBIOS bb_info available */
if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
struct bp_soc_bb_info bb_info = {0};
if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
if (bb_info.dram_clock_change_latency_100ns > 0)
dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
dcn3_2_soc.dram_clock_change_latency_us =
bb_info.dram_clock_change_latency_100ns * 10;
if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
dcn3_2_soc.sr_enter_plus_exit_time_us =
bb_info.dram_sr_enter_exit_latency_100ns * 10;
if (bb_info.dram_sr_exit_latency_100ns > 0)
dc->dml2_options.bbox_overrides.sr_exit_latency_us =
dcn3_2_soc.sr_exit_time_us =
bb_info.dram_sr_exit_latency_100ns * 10;
}
}
/* Override from VBIOS for num_chan */
if (dc->ctx->dc_bios->vram_info.num_chans) {
dc->dml2_options.bbox_overrides.dram_num_chan =
dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
}
if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
/* DML DSC delay factor workaround */
dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
if (bw_params->clk_table.entries[0].memclk_mhz) {
if (dc->debug.use_legacy_soc_bb_mechanism) {
unsigned int i = 0, j = 0, num_states = 0;
unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
unsigned int min_dcfclk = UINT_MAX;
/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
* For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
}
if (min_dcfclk > dcfclk_sta_targets[0])
dcfclk_sta_targets[0] = min_dcfclk;
if (!max_dcfclk_mhz)
max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
if (!max_dispclk_mhz)
max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
if (!max_dppclk_mhz)
max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
if (!max_phyclk_mhz)
max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
num_dcfclk_sta_targets++;
} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
for (i = 0; i < num_dcfclk_sta_targets; i++) {
if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
dcfclk_sta_targets[i] = max_dcfclk_mhz;
break;
}
}
// Update size of array since we "removed" duplicates
num_dcfclk_sta_targets = i + 1;
}
num_uclk_states = bw_params->clk_table.num_entries;
// Calculate optimal dcfclk for each uclk
for (i = 0; i < num_uclk_states; i++) {
dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
&optimal_dcfclk_for_uclk[i], NULL);
if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
}
}
// Calculate optimal uclk for each dcfclk sta target
for (i = 0; i < num_dcfclk_sta_targets; i++) {
for (j = 0; j < num_uclk_states; j++) {
if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
optimal_uclk_for_dcfclk_sta_targets[i] =
bw_params->clk_table.entries[j].memclk_mhz * 16;
break;
}
}
}
i = 0;
j = 0;
// create the final dcfclk and uclk table
while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
} else {
if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
} else {
j = num_uclk_states;
}
}
}
while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
}
while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
}
/* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
* MAX_NUM_DPM_LVL is 8.
* dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
* DC__VOLTAGE_STATES is 40.
*/
if (num_states > MAX_NUM_DPM_LVL) {
ASSERT(0);
return;
}
dcn3_2_soc.num_states = num_states;
for (i = 0; i < dcn3_2_soc.num_states; i++) {
dcn3_2_soc.clock_limits[i].state = i;
dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
/* Fill all states with max values of all these clocks */
dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
/* Populate from bw_params for DTBCLK, SOCCLK */
if (i > 0) {
if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
} else {
dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
}
} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
}
if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
else
dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
if (!dram_speed_mts[i] && i > 0)
dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
else
dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
/* PHYCLK_D18, PHYCLK_D32 */
dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
}
} else {
build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
}
/* Re-init DML with updated bb */
dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
if (dc->current_state)
dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
}
if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
unsigned int i = 0;
dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
}
for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
}
for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
}
for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
}
for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
}
for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
}
}
}
}
void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
int pipe_cnt)
{
dc_assert_fp_enabled();
pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
}
bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
{
bool allow = false;
uint32_t refresh_rate = 0;
uint32_t min_refresh = subvp_active_margin_list.min_refresh;
uint32_t max_refresh = subvp_active_margin_list.max_refresh;
uint32_t i;
for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
uint32_t width = subvp_active_margin_list.res[i].width;
uint32_t height = subvp_active_margin_list.res[i].height;
refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
dcn32_check_native_scaling_for_res(pipe, width, height)) {
allow = true;
break;
}
}
return allow;
}
/**
* dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
*
* @dc: Current DC state
* @context: New DC state to be programmed
* @pipe: Pipe to be considered for use in subvp
*
* On high refresh rate display configs, we will allow subvp under the following conditions:
* 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
* 2. Refresh rate is between 120hz - 165hz
* 3. No scaling
* 4. Freesync is inactive
* 5. For single display cases, freesync must be disabled
*
* Return: True if pipe can be used for subvp, false otherwise
*/
bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
{
bool allow = false;
uint32_t refresh_rate = 0;
uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
uint32_t min_refresh = subvp_max_refresh;
uint32_t i;
/* Only allow SubVP on high refresh displays if all connected displays
* are considered "high refresh" (i.e. >= 120hz). We do not want to
* allow combinations such as 120hz (SubVP) + 60hz (SubVP).
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx->stream)
continue;
refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
if (refresh_rate < min_refresh)
min_refresh = refresh_rate;
}
if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
uint32_t width = subvp_high_refresh_list.res[i].width;
uint32_t height = subvp_high_refresh_list.res[i].height;
if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
allow = true;
break;
}
}
}
}
}
return allow;
}
/**
* dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
*
* @dc: Current DC state
* @context: New DC state to be programmed
*
* Return: Max vratio for prefetch
*/
double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
{
double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
int i;
/* For single display MPO configs, allow the max vratio to be 8
* if any plane is YUV420 format
*/
if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
for (i = 0; i < context->stream_status[0].plane_count; i++) {
if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
max_vratio_pre = __DML_MAX_VRATIO_PRE__;
}
}
}
return max_vratio_pre;
}
/**
* dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
*
* This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
* For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
* other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
* ActiveMargin <= 0 to be the FPO stream candidate if found.
*
*
* @dc: current dc state
* @context: new dc state
* @fpo_candidate_stream: pointer to FPO stream candidate if one is found
*
* Return: void
*/
void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
{
unsigned int i, pipe_idx;
const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
/* In DCN32/321, FPO uses per-pipe P-State force.
* If there's no planes, HUBP is power gated and
* therefore programming UCLK_PSTATE_FORCE does
* nothing (P-State will always be asserted naturally
* on a pipe that has HUBP power gated. Therefore we
* only want to enable FPO if the FPO pipe has both
* a stream and a plane.
*/
if (!pipe->stream || !pipe->plane_state)
continue;
if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
*fpo_candidate_stream = pipe->stream;
break;
}
pipe_idx++;
}
}
/**
* dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
*
* @dc: current dc state
* @context: new dc state
* @fpo_candidate_stream: candidate stream to be chosen for FPO
* @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
*
* Return: True if VACTIVE display is found, false otherwise
*/
bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us)
{
unsigned int i, pipe_idx;
const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
bool vactive_found = true;
unsigned int blank_us = 0;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
/* Don't need to check for vactive margin on the FPO candidate stream */
if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) {
pipe_idx++;
continue;
}
/* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin
* in order for us to have found a valid "vactive" config for FPO + Vactive
*/
blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us ||
pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) {
vactive_found = false;
break;
}
pipe_idx++;
}
return vactive_found;
}
void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
{
dc_assert_fp_enabled();
dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
}
void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
{
// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
dc->dml.soc.num_chans <= 8) {
int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
num_mclk_levels > 1) {
context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
}
}
}