| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright 2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| #include "dcn32_fpu.h" |
| #include "dcn32/dcn32_resource.h" |
| #include "dcn20/dcn20_resource.h" |
| #include "display_mode_vba_util_32.h" |
| #include "dml/dcn32/display_mode_vba_32.h" |
| // We need this includes for WATERMARKS_* defines |
| #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h" |
| #include "dcn30/dcn30_resource.h" |
| #include "link.h" |
| #include "dc_state_priv.h" |
| |
| #define DC_LOGGER_INIT(logger) |
| |
| static const struct subvp_high_refresh_list subvp_high_refresh_list = { |
| .min_refresh = 120, |
| .max_refresh = 175, |
| .res = { |
| {.width = 3840, .height = 2160, }, |
| {.width = 3440, .height = 1440, }, |
| {.width = 2560, .height = 1440, }, |
| {.width = 1920, .height = 1080, }}, |
| }; |
| |
| static const struct subvp_active_margin_list subvp_active_margin_list = { |
| .min_refresh = 55, |
| .max_refresh = 65, |
| .res = { |
| {.width = 2560, .height = 1440, }, |
| {.width = 1920, .height = 1080, }}, |
| }; |
| |
| struct _vcs_dpi_ip_params_st dcn3_2_ip = { |
| .gpuvm_enable = 0, |
| .gpuvm_max_page_table_levels = 4, |
| .hostvm_enable = 0, |
| .rob_buffer_size_kbytes = 128, |
| .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, |
| .config_return_buffer_size_in_kbytes = 1280, |
| .compressed_buffer_segment_size_in_kbytes = 64, |
| .meta_fifo_size_in_kentries = 22, |
| .zero_size_buffer_entries = 512, |
| .compbuf_reserved_space_64b = 256, |
| .compbuf_reserved_space_zs = 64, |
| .dpp_output_buffer_pixels = 2560, |
| .opp_output_buffer_lines = 1, |
| .pixel_chunk_size_kbytes = 8, |
| .alpha_pixel_chunk_size_kbytes = 4, |
| .min_pixel_chunk_size_bytes = 1024, |
| .dcc_meta_buffer_size_bytes = 6272, |
| .meta_chunk_size_kbytes = 2, |
| .min_meta_chunk_size_bytes = 256, |
| .writeback_chunk_size_kbytes = 8, |
| .ptoi_supported = false, |
| .num_dsc = 4, |
| .maximum_dsc_bits_per_component = 12, |
| .maximum_pixels_per_line_per_dsc_unit = 6016, |
| .dsc422_native_support = true, |
| .is_line_buffer_bpp_fixed = true, |
| .line_buffer_fixed_bpp = 57, |
| .line_buffer_size_bits = 1171920, |
| .max_line_buffer_lines = 32, |
| .writeback_interface_buffer_size_kbytes = 90, |
| .max_num_dpp = 4, |
| .max_num_otg = 4, |
| .max_num_hdmi_frl_outputs = 1, |
| .max_num_wb = 1, |
| .max_dchub_pscl_bw_pix_per_clk = 4, |
| .max_pscl_lb_bw_pix_per_clk = 2, |
| .max_lb_vscl_bw_pix_per_clk = 4, |
| .max_vscl_hscl_bw_pix_per_clk = 4, |
| .max_hscl_ratio = 6, |
| .max_vscl_ratio = 6, |
| .max_hscl_taps = 8, |
| .max_vscl_taps = 8, |
| .dpte_buffer_size_in_pte_reqs_luma = 64, |
| .dpte_buffer_size_in_pte_reqs_chroma = 34, |
| .dispclk_ramp_margin_percent = 1, |
| .max_inter_dcn_tile_repeaters = 8, |
| .cursor_buffer_size = 16, |
| .cursor_chunk_size = 2, |
| .writeback_line_buffer_buffer_size = 0, |
| .writeback_min_hscl_ratio = 1, |
| .writeback_min_vscl_ratio = 1, |
| .writeback_max_hscl_ratio = 1, |
| .writeback_max_vscl_ratio = 1, |
| .writeback_max_hscl_taps = 1, |
| .writeback_max_vscl_taps = 1, |
| .dppclk_delay_subtotal = 47, |
| .dppclk_delay_scl = 50, |
| .dppclk_delay_scl_lb_only = 16, |
| .dppclk_delay_cnvc_formatter = 28, |
| .dppclk_delay_cnvc_cursor = 6, |
| .dispclk_delay_subtotal = 125, |
| .dynamic_metadata_vm_enabled = false, |
| .odm_combine_4to1_supported = false, |
| .dcc_supported = true, |
| .max_num_dp2p0_outputs = 2, |
| .max_num_dp2p0_streams = 4, |
| }; |
| |
| struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { |
| .clock_limits = { |
| { |
| .state = 0, |
| .dcfclk_mhz = 1564.0, |
| .fabricclk_mhz = 2500.0, |
| .dispclk_mhz = 2150.0, |
| .dppclk_mhz = 2150.0, |
| .phyclk_mhz = 810.0, |
| .phyclk_d18_mhz = 667.0, |
| .phyclk_d32_mhz = 625.0, |
| .socclk_mhz = 1200.0, |
| .dscclk_mhz = 716.667, |
| .dram_speed_mts = 18000.0, |
| .dtbclk_mhz = 1564.0, |
| }, |
| }, |
| .num_states = 1, |
| .sr_exit_time_us = 42.97, |
| .sr_enter_plus_exit_time_us = 49.94, |
| .sr_exit_z8_time_us = 285.0, |
| .sr_enter_plus_exit_z8_time_us = 320, |
| .writeback_latency_us = 12.0, |
| .round_trip_ping_latency_dcfclk_cycles = 263, |
| .urgent_latency_pixel_data_only_us = 4.0, |
| .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, |
| .urgent_latency_vm_data_only_us = 4.0, |
| .fclk_change_latency_us = 25, |
| .usr_retraining_latency_us = 2, |
| .smn_latency_us = 2, |
| .mall_allocated_for_dcn_mbytes = 64, |
| .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, |
| .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, |
| .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, |
| .pct_ideal_sdp_bw_after_urgent = 90.0, |
| .pct_ideal_fabric_bw_after_urgent = 67.0, |
| .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, |
| .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented |
| .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented |
| .pct_ideal_dram_bw_after_urgent_strobe = 67.0, |
| .max_avg_sdp_bw_use_normal_percent = 80.0, |
| .max_avg_fabric_bw_use_normal_percent = 60.0, |
| .max_avg_dram_bw_use_normal_strobe_percent = 50.0, |
| .max_avg_dram_bw_use_normal_percent = 15.0, |
| .num_chans = 24, |
| .dram_channel_width_bytes = 2, |
| .fabric_datapath_to_dcn_data_return_bytes = 64, |
| .return_bus_width_bytes = 64, |
| .downspread_percent = 0.38, |
| .dcn_downspread_percent = 0.5, |
| .dram_clock_change_latency_us = 400, |
| .dispclk_dppclk_vco_speed_mhz = 4300.0, |
| .do_urgent_latency_adjustment = true, |
| .urgent_latency_adjustment_fabric_clock_component_us = 1.0, |
| .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000, |
| }; |
| |
| static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context, |
| bool *repopulate_pipes, int *split, bool *merge); |
| |
| void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr) |
| { |
| /* defaults */ |
| double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us; |
| double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us; |
| double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us; |
| double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us; |
| /* For min clocks use as reported by PM FW and report those as min */ |
| uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz; |
| uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; |
| uint16_t setb_min_uclk_mhz = min_uclk_mhz; |
| uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz; |
| |
| dc_assert_fp_enabled(); |
| |
| /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */ |
| if (dcfclk_mhz_for_the_second_state) |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state; |
| else |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; |
| |
| if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz) |
| setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz; |
| |
| /* Set A - Normal - default values */ |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF; |
| |
| /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */ |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF; |
| |
| /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */ |
| /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */ |
| if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) { |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF; |
| clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16; |
| clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50; |
| clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16; |
| clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9; |
| clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16; |
| clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8; |
| clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16; |
| clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5; |
| } |
| /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */ |
| /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */ |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz; |
| clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF; |
| } |
| |
| /* |
| * Finds dummy_latency_index when MCLK switching using firmware based |
| * vblank stretch is enabled. This function will iterate through the |
| * table of dummy pstate latencies until the lowest value that allows |
| * dm_allow_self_refresh_and_mclk_switch to happen is found |
| */ |
| int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc, |
| struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int pipe_cnt, |
| int vlevel) |
| { |
| const int max_latency_table_entries = 4; |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| int dummy_latency_index = 0; |
| enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
| |
| dc_assert_fp_enabled(); |
| |
| while (dummy_latency_index < max_latency_table_entries) { |
| if (temp_clock_change_support != dm_dram_clock_change_unsupported) |
| vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
| dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
| dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); |
| |
| /* for subvp + DRR case, if subvp pipes are still present we support pstate */ |
| if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported && |
| dcn32_subvp_in_use(dc, context)) |
| vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; |
| |
| if (vlevel < context->bw_ctx.dml.vba.soc.num_states && |
| vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) |
| break; |
| |
| dummy_latency_index++; |
| } |
| |
| if (dummy_latency_index == max_latency_table_entries) { |
| ASSERT(dummy_latency_index != max_latency_table_entries); |
| /* If the execution gets here, it means dummy p_states are |
| * not possible. This should never happen and would mean |
| * something is severely wrong. |
| * Here we reset dummy_latency_index to 3, because it is |
| * better to have underflows than system crashes. |
| */ |
| dummy_latency_index = max_latency_table_entries - 1; |
| } |
| |
| return dummy_latency_index; |
| } |
| |
| /** |
| * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes |
| * and populate pipe_ctx with those params. |
| * @dc: [in] current dc state |
| * @context: [in] new dc state |
| * @pipes: [in] DML pipe params array |
| * @pipe_cnt: [in] DML pipe count |
| * |
| * This function must be called AFTER the phantom pipes are added to context |
| * and run through DML (so that the DLG params for the phantom pipes can be |
| * populated), and BEFORE we program the timing for the phantom pipes. |
| */ |
| void dcn32_helper_populate_phantom_dlg_params(struct dc *dc, |
| struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int pipe_cnt) |
| { |
| uint32_t i, pipe_idx; |
| |
| dc_assert_fp_enabled(); |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| if (!pipe->stream) |
| continue; |
| |
| if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { |
| pipes[pipe_idx].pipe.dest.vstartup_start = |
| get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| pipes[pipe_idx].pipe.dest.vupdate_offset = |
| get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| pipes[pipe_idx].pipe.dest.vupdate_width = |
| get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| pipes[pipe_idx].pipe.dest.vready_offset = |
| get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest; |
| } |
| pipe_idx++; |
| } |
| } |
| |
| static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) |
| { |
| float memory_bw_kbytes_sec; |
| float fabric_bw_kbytes_sec; |
| float sdp_bw_kbytes_sec; |
| float limiting_bw_kbytes_sec; |
| |
| memory_bw_kbytes_sec = entry->dram_speed_mts * |
| dcn3_2_soc.num_chans * |
| dcn3_2_soc.dram_channel_width_bytes * |
| ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); |
| |
| fabric_bw_kbytes_sec = entry->fabricclk_mhz * |
| dcn3_2_soc.return_bus_width_bytes * |
| ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); |
| |
| sdp_bw_kbytes_sec = entry->dcfclk_mhz * |
| dcn3_2_soc.return_bus_width_bytes * |
| ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); |
| |
| limiting_bw_kbytes_sec = memory_bw_kbytes_sec; |
| |
| if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) |
| limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; |
| |
| if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) |
| limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; |
| |
| return limiting_bw_kbytes_sec; |
| } |
| |
| static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) |
| { |
| if (entry->dcfclk_mhz > 0) { |
| float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); |
| |
| entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); |
| entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * |
| dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); |
| } else if (entry->fabricclk_mhz > 0) { |
| float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); |
| |
| entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); |
| entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * |
| dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); |
| } else if (entry->dram_speed_mts > 0) { |
| float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * |
| dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); |
| |
| entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); |
| entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); |
| } |
| } |
| |
| static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, |
| unsigned int *num_entries, |
| struct _vcs_dpi_voltage_scaling_st *entry) |
| { |
| int i = 0; |
| int index = 0; |
| |
| dc_assert_fp_enabled(); |
| |
| if (*num_entries == 0) { |
| table[0] = *entry; |
| (*num_entries)++; |
| } else { |
| while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) { |
| index++; |
| if (index >= *num_entries) |
| break; |
| } |
| |
| for (i = *num_entries; i > index; i--) |
| table[i] = table[i - 1]; |
| |
| table[index] = *entry; |
| (*num_entries)++; |
| } |
| } |
| |
| /** |
| * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream |
| * @dc: current dc state |
| * @context: new dc state |
| * @ref_pipe: Main pipe for the phantom stream |
| * @phantom_stream: target phantom stream state |
| * @pipes: DML pipe params |
| * @pipe_cnt: number of DML pipes |
| * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) |
| * |
| * Set timing params of the phantom stream based on calculated output from DML. |
| * This function first gets the DML pipe index using the DC pipe index, then |
| * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of |
| * lines required for SubVP MCLK switching and assigns to the phantom stream |
| * accordingly. |
| * |
| * - The number of SubVP lines calculated in DML does not take into account |
| * FW processing delays and required pstate allow width, so we must include |
| * that separately. |
| * |
| * - Set phantom backporch = vstartup of main pipe |
| */ |
| void dcn32_set_phantom_stream_timing(struct dc *dc, |
| struct dc_state *context, |
| struct pipe_ctx *ref_pipe, |
| struct dc_stream_state *phantom_stream, |
| display_e2e_pipe_params_st *pipes, |
| unsigned int pipe_cnt, |
| unsigned int dc_pipe_idx) |
| { |
| unsigned int i, pipe_idx; |
| struct pipe_ctx *pipe; |
| uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; |
| unsigned int num_dpp; |
| unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; |
| unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
| unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| struct dc_stream_state *main_stream = ref_pipe->stream; |
| |
| dc_assert_fp_enabled(); |
| |
| // Find DML pipe index (pipe_idx) using dc_pipe_idx |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| if (!pipe->stream) |
| continue; |
| |
| if (i == dc_pipe_idx) |
| break; |
| |
| pipe_idx++; |
| } |
| |
| // Calculate lines required for pstate allow width and FW processing delays |
| pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + |
| dc->caps.subvp_pstate_allow_width_us) / 1000000) * |
| (ref_pipe->stream->timing.pix_clk_100hz * 100) / |
| (double)ref_pipe->stream->timing.h_total; |
| |
| // Update clks_cfg for calling into recalculate |
| pipes[0].clks_cfg.voltage = vlevel; |
| pipes[0].clks_cfg.dcfclk_mhz = dcfclk; |
| pipes[0].clks_cfg.socclk_mhz = socclk; |
| |
| // DML calculation for MALL region doesn't take into account FW delay |
| // and required pstate allow width for multi-display cases |
| /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned |
| * to 2 swaths (i.e. 16 lines) |
| */ |
| phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + |
| pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines; |
| |
| // W/A for DCC corruption with certain high resolution timings. |
| // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive. |
| num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]]; |
| phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0; |
| |
| /* dc->debug.subvp_extra_lines 0 by default*/ |
| phantom_vactive += dc->debug.subvp_extra_lines; |
| |
| // For backporch of phantom pipe, use vstartup of the main pipe |
| phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| |
| phantom_stream->dst.y = 0; |
| phantom_stream->dst.height = phantom_vactive; |
| /* When scaling, DML provides the end to end required number of lines for MALL. |
| * dst.height is always correct for this case, but src.height is not which causes a |
| * delta between main and phantom pipe scaling outputs. Need to adjust src.height on |
| * phantom for this case. |
| */ |
| phantom_stream->src.y = 0; |
| phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height; |
| |
| phantom_stream->timing.v_addressable = phantom_vactive; |
| phantom_stream->timing.v_front_porch = 1; |
| phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + |
| phantom_stream->timing.v_front_porch + |
| phantom_stream->timing.v_sync_width + |
| phantom_bp; |
| phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing |
| } |
| |
| /** |
| * dcn32_get_num_free_pipes - Calculate number of free pipes |
| * @dc: current dc state |
| * @context: new dc state |
| * |
| * This function assumes that a "used" pipe is a pipe that has |
| * both a stream and a plane assigned to it. |
| * |
| * Return: Number of free pipes available in the context |
| */ |
| static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) |
| { |
| unsigned int i; |
| unsigned int free_pipes = 0; |
| unsigned int num_pipes = 0; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| if (pipe->stream && !pipe->top_pipe) { |
| while (pipe) { |
| num_pipes++; |
| pipe = pipe->bottom_pipe; |
| } |
| } |
| } |
| |
| free_pipes = dc->res_pool->pipe_count - num_pipes; |
| return free_pipes; |
| } |
| |
| /** |
| * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP. |
| * @dc: current dc state |
| * @context: new dc state |
| * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned |
| * |
| * We enter this function if we are Sub-VP capable (i.e. enough pipes available) |
| * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if |
| * we are forcing SubVP P-State switching on the current config. |
| * |
| * The number of pipes used for the chosen surface must be less than or equal to the |
| * number of free pipes available. |
| * |
| * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). |
| * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own |
| * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't |
| * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). |
| * |
| * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. |
| */ |
| static bool dcn32_assign_subvp_pipe(struct dc *dc, |
| struct dc_state *context, |
| unsigned int *index) |
| { |
| unsigned int i, pipe_idx; |
| unsigned int max_frame_time = 0; |
| bool valid_assignment_found = false; |
| unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| unsigned int num_pipes = 0; |
| unsigned int refresh_rate = 0; |
| |
| if (!pipe->stream) |
| continue; |
| |
| // Round up |
| refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + |
| pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) |
| / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); |
| /* SubVP pipe candidate requirements: |
| * - Refresh rate < 120hz |
| * - Not able to switch in vactive naturally (switching in active means the |
| * DET provides enough buffer to hide the P-State switch latency -- trying |
| * to combine this with SubVP can cause issues with the scheduling). |
| * - Not TMZ surface |
| */ |
| if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) && |
| !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) && |
| (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) && |
| dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE && |
| (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) && |
| !pipe->plane_state->address.tmz_surface && |
| (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 || |
| (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && |
| dcn32_allow_subvp_with_active_margin(pipe)))) { |
| while (pipe) { |
| num_pipes++; |
| pipe = pipe->bottom_pipe; |
| } |
| |
| pipe = &context->res_ctx.pipe_ctx[i]; |
| if (num_pipes <= free_pipes) { |
| struct dc_stream_state *stream = pipe->stream; |
| unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / |
| (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; |
| if (frame_us > max_frame_time) { |
| *index = i; |
| max_frame_time = frame_us; |
| valid_assignment_found = true; |
| } |
| } |
| } |
| pipe_idx++; |
| } |
| return valid_assignment_found; |
| } |
| |
| /** |
| * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP. |
| * @dc: current dc state |
| * @context: new dc state |
| * |
| * This function returns true if there are enough free pipes |
| * to create the required phantom pipes for any given stream |
| * (that does not already have phantom pipe assigned). |
| * |
| * e.g. For a 2 stream config where the first stream uses one |
| * pipe and the second stream uses 2 pipes (i.e. pipe split), |
| * this function will return true because there is 1 remaining |
| * pipe which can be used as the phantom pipe for the non pipe |
| * split pipe. |
| * |
| * Return: |
| * True if there are enough free pipes to assign phantom pipes to at least one |
| * stream that does not already have phantom pipes assigned. Otherwise false. |
| */ |
| static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) |
| { |
| unsigned int i, split_cnt, free_pipes; |
| unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 |
| bool subvp_possible = false; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| // Find the minimum pipe split count for non SubVP pipes |
| if (resource_is_pipe_type(pipe, OPP_HEAD) && |
| dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) { |
| split_cnt = 0; |
| while (pipe) { |
| split_cnt++; |
| pipe = pipe->bottom_pipe; |
| } |
| |
| if (split_cnt < min_pipe_split) |
| min_pipe_split = split_cnt; |
| } |
| } |
| |
| free_pipes = dcn32_get_num_free_pipes(dc, context); |
| |
| // SubVP only possible if at least one pipe is being used (i.e. free_pipes |
| // should not equal to the pipe_count) |
| if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) |
| subvp_possible = true; |
| |
| return subvp_possible; |
| } |
| |
| /** |
| * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable |
| * @dc: current dc state |
| * @context: new dc state |
| * |
| * High level algorithm: |
| * 1. Find longest microschedule length (in us) between the two SubVP pipes |
| * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both |
| * pipes still allows for the maximum microschedule to fit in the active |
| * region for both pipes. |
| * |
| * Return: True if the SubVP + SubVP config is schedulable, false otherwise |
| */ |
| static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) |
| { |
| struct pipe_ctx *subvp_pipes[2] = {0}; |
| struct dc_stream_state *phantom = NULL; |
| uint32_t microschedule_lines = 0; |
| uint32_t index = 0; |
| uint32_t i; |
| uint32_t max_microschedule_us = 0; |
| int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| uint32_t time_us = 0; |
| |
| /* Loop to calculate the maximum microschedule time between the two SubVP pipes, |
| * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. |
| */ |
| if (pipe->stream && pipe->plane_state && !pipe->top_pipe && |
| dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { |
| phantom = dc_state_get_paired_subvp_stream(context, pipe->stream); |
| microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + |
| phantom->timing.v_addressable; |
| |
| // Round up when calculating microschedule time (+ 1 at the end) |
| time_us = (microschedule_lines * phantom->timing.h_total) / |
| (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + |
| dc->caps.subvp_prefetch_end_to_mall_start_us + |
| dc->caps.subvp_fw_processing_delay_us + 1; |
| if (time_us > max_microschedule_us) |
| max_microschedule_us = time_us; |
| |
| subvp_pipes[index] = pipe; |
| index++; |
| |
| // Maximum 2 SubVP pipes |
| if (index == 2) |
| break; |
| } |
| } |
| vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / |
| (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
| vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / |
| (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
| vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * |
| subvp_pipes[0]->stream->timing.h_total) / |
| (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
| vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * |
| subvp_pipes[1]->stream->timing.h_total) / |
| (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
| |
| if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && |
| (vactive2_us - vblank1_us) / 2 > max_microschedule_us) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable |
| * @dc: current dc state |
| * @context: new dc state |
| * |
| * High level algorithm: |
| * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe |
| * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching |
| * (the margin is equal to the MALL region + DRR margin (500us)) |
| * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) |
| * then report the configuration as supported |
| * |
| * Return: True if the SubVP + DRR config is schedulable, false otherwise |
| */ |
| static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context) |
| { |
| bool schedulable = false; |
| uint32_t i; |
| struct pipe_ctx *pipe = NULL; |
| struct pipe_ctx *drr_pipe = NULL; |
| struct dc_crtc_timing *main_timing = NULL; |
| struct dc_crtc_timing *phantom_timing = NULL; |
| struct dc_crtc_timing *drr_timing = NULL; |
| int16_t prefetch_us = 0; |
| int16_t mall_region_us = 0; |
| int16_t drr_frame_us = 0; // nominal frame time |
| int16_t subvp_active_us = 0; |
| int16_t stretched_drr_us = 0; |
| int16_t drr_stretched_vblank_us = 0; |
| int16_t max_vblank_mallregion = 0; |
| struct dc_stream_state *phantom_stream; |
| bool subvp_found = false; |
| bool drr_found = false; |
| |
| // Find SubVP pipe |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| // We check for master pipe, but it shouldn't matter since we only need |
| // the pipe for timing info (stream should be same for any pipe splits) |
| if (!resource_is_pipe_type(pipe, OTG_MASTER) || |
| !resource_is_pipe_type(pipe, DPP_PIPE)) |
| continue; |
| |
| // Find the SubVP pipe |
| if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { |
| subvp_found = true; |
| break; |
| } |
| } |
| |
| // Find the DRR pipe |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| drr_pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| // We check for master pipe only |
| if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) || |
| !resource_is_pipe_type(drr_pipe, DPP_PIPE)) |
| continue; |
| |
| if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param && |
| (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) { |
| drr_found = true; |
| break; |
| } |
| } |
| |
| if (subvp_found && drr_found) { |
| phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream); |
| main_timing = &pipe->stream->timing; |
| phantom_timing = &phantom_stream->timing; |
| drr_timing = &drr_pipe->stream->timing; |
| prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / |
| (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + |
| dc->caps.subvp_prefetch_end_to_mall_start_us; |
| subvp_active_us = main_timing->v_addressable * main_timing->h_total / |
| (double)(main_timing->pix_clk_100hz * 100) * 1000000; |
| drr_frame_us = drr_timing->v_total * drr_timing->h_total / |
| (double)(drr_timing->pix_clk_100hz * 100) * 1000000; |
| // P-State allow width and FW delays already included phantom_timing->v_addressable |
| mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / |
| (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; |
| stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; |
| drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / |
| (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); |
| max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; |
| } |
| |
| /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the |
| * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis |
| * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, |
| * and the max of (VBLANK blanking time, MALL region)). |
| */ |
| if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && |
| subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) |
| schedulable = true; |
| |
| return schedulable; |
| } |
| |
| |
| /** |
| * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable |
| * @dc: current dc state |
| * @context: new dc state |
| * |
| * High level algorithm: |
| * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe |
| * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) |
| * then report the configuration as supported |
| * 3. If the VBLANK display is DRR, then take the DRR static schedulability path |
| * |
| * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise |
| */ |
| static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) |
| { |
| struct pipe_ctx *pipe = NULL; |
| struct pipe_ctx *subvp_pipe = NULL; |
| bool found = false; |
| bool schedulable = false; |
| uint32_t i = 0; |
| uint8_t vblank_index = 0; |
| uint16_t prefetch_us = 0; |
| uint16_t mall_region_us = 0; |
| uint16_t vblank_frame_us = 0; |
| uint16_t subvp_active_us = 0; |
| uint16_t vblank_blank_us = 0; |
| uint16_t max_vblank_mallregion = 0; |
| struct dc_crtc_timing *main_timing = NULL; |
| struct dc_crtc_timing *phantom_timing = NULL; |
| struct dc_crtc_timing *vblank_timing = NULL; |
| struct dc_stream_state *phantom_stream; |
| enum mall_stream_type pipe_mall_type; |
| |
| /* For SubVP + VBLANK/DRR cases, we assume there can only be |
| * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK |
| * is supported, it is either a single VBLANK case or two VBLANK |
| * displays which are synchronized (in which case they have identical |
| * timings). |
| */ |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| pipe = &context->res_ctx.pipe_ctx[i]; |
| pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); |
| |
| // We check for master pipe, but it shouldn't matter since we only need |
| // the pipe for timing info (stream should be same for any pipe splits) |
| if (!resource_is_pipe_type(pipe, OTG_MASTER) || |
| !resource_is_pipe_type(pipe, DPP_PIPE)) |
| continue; |
| |
| if (!found && pipe_mall_type == SUBVP_NONE) { |
| // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). |
| vblank_index = i; |
| found = true; |
| } |
| |
| if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN) |
| subvp_pipe = pipe; |
| } |
| if (found) { |
| phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream); |
| main_timing = &subvp_pipe->stream->timing; |
| phantom_timing = &phantom_stream->timing; |
| vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; |
| // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe |
| // Also include the prefetch end to mallstart delay time |
| prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / |
| (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + |
| dc->caps.subvp_prefetch_end_to_mall_start_us; |
| // P-State allow width and FW delays already included phantom_timing->v_addressable |
| mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / |
| (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; |
| vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / |
| (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; |
| vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / |
| (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; |
| subvp_active_us = main_timing->v_addressable * main_timing->h_total / |
| (double)(main_timing->pix_clk_100hz * 100) * 1000000; |
| max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; |
| |
| // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, |
| // and the max of (VBLANK blanking time, MALL region) |
| // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) |
| if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) |
| schedulable = true; |
| } |
| return schedulable; |
| } |
| |
| /** |
| * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible |
| * |
| * @dc: Current DC state |
| * @context: New DC state to be programmed |
| * |
| * SubVP + SubVP is admissible under the following conditions: |
| * - All SubVP pipes are < 120Hz OR |
| * - All SubVP pipes are >= 120hz |
| * |
| * Return: True if admissible, false otherwise |
| */ |
| static bool subvp_subvp_admissable(struct dc *dc, |
| struct dc_state *context) |
| { |
| bool result = false; |
| uint32_t i; |
| uint8_t subvp_count = 0; |
| uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0; |
| uint64_t refresh_rate = 0; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| if (!pipe->stream) |
| continue; |
| |
| if (pipe->plane_state && !pipe->top_pipe && |
| dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { |
| refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + |
| pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); |
| refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); |
| refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); |
| |
| if ((uint32_t)refresh_rate < min_refresh) |
| min_refresh = (uint32_t)refresh_rate; |
| if ((uint32_t)refresh_rate > max_refresh) |
| max_refresh = (uint32_t)refresh_rate; |
| subvp_count++; |
| } |
| } |
| |
| if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) || |
| (min_refresh >= subvp_high_refresh_list.min_refresh && |
| max_refresh <= subvp_high_refresh_list.max_refresh))) |
| result = true; |
| |
| return result; |
| } |
| |
| /** |
| * subvp_validate_static_schedulability - Check which SubVP case is calculated |
| * and handle static analysis based on the case. |
| * @dc: current dc state |
| * @context: new dc state |
| * @vlevel: Voltage level calculated by DML |
| * |
| * Three cases: |
| * 1. SubVP + SubVP |
| * 2. SubVP + VBLANK (DRR checked internally) |
| * 3. SubVP + VACTIVE (currently unsupported) |
| * |
| * Return: True if statically schedulable, false otherwise |
| */ |
| static bool subvp_validate_static_schedulability(struct dc *dc, |
| struct dc_state *context, |
| int vlevel) |
| { |
| bool schedulable = false; |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| uint32_t i, pipe_idx; |
| uint8_t subvp_count = 0; |
| uint8_t vactive_count = 0; |
| uint8_t non_subvp_pipes = 0; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); |
| |
| if (!pipe->stream) |
| continue; |
| |
| if (pipe->plane_state && !pipe->top_pipe) { |
| if (pipe_mall_type == SUBVP_MAIN) |
| subvp_count++; |
| if (pipe_mall_type == SUBVP_NONE) |
| non_subvp_pipes++; |
| } |
| |
| // Count how many planes that aren't SubVP/phantom are capable of VACTIVE |
| // switching (SubVP + VACTIVE unsupported). In situations where we force |
| // SubVP for a VACTIVE plane, we don't want to increment the vactive_count. |
| if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && |
| pipe_mall_type == SUBVP_NONE) { |
| vactive_count++; |
| } |
| pipe_idx++; |
| } |
| |
| if (subvp_count == 2) { |
| // Static schedulability check for SubVP + SubVP case |
| schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context); |
| } else if (subvp_count == 1 && non_subvp_pipes == 0) { |
| // Single SubVP configs will be supported by default as long as it's suppported by DML |
| schedulable = true; |
| } else if (subvp_count == 1 && non_subvp_pipes == 1) { |
| if (dcn32_subvp_drr_admissable(dc, context)) |
| schedulable = subvp_drr_schedulable(dc, context); |
| else if (dcn32_subvp_vblank_admissable(dc, context, vlevel)) |
| schedulable = subvp_vblank_schedulable(dc, context); |
| } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp && |
| vactive_count > 0) { |
| // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default. |
| // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count. |
| // SubVP + VACTIVE currently unsupported |
| schedulable = false; |
| } |
| return schedulable; |
| } |
| |
| static void assign_subvp_index(struct dc *dc, struct dc_state *context) |
| { |
| int i; |
| int index = 0; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; |
| |
| if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && |
| dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) { |
| pipe_ctx->subvp_index = index++; |
| } else { |
| pipe_ctx->subvp_index = 0; |
| } |
| } |
| } |
| |
| struct pipe_slice_table { |
| struct { |
| struct dc_stream_state *stream; |
| int slice_count; |
| } odm_combines[MAX_STREAMS]; |
| int odm_combine_count; |
| |
| struct { |
| struct pipe_ctx *pri_pipe; |
| struct dc_plane_state *plane; |
| int slice_count; |
| } mpc_combines[MAX_PLANES]; |
| int mpc_combine_count; |
| }; |
| |
| |
| static void update_slice_table_for_stream(struct pipe_slice_table *table, |
| struct dc_stream_state *stream, int diff) |
| { |
| int i; |
| |
| for (i = 0; i < table->odm_combine_count; i++) { |
| if (table->odm_combines[i].stream == stream) { |
| table->odm_combines[i].slice_count += diff; |
| break; |
| } |
| } |
| |
| if (i == table->odm_combine_count) { |
| table->odm_combine_count++; |
| table->odm_combines[i].stream = stream; |
| table->odm_combines[i].slice_count = diff; |
| } |
| } |
| |
| static void update_slice_table_for_plane(struct pipe_slice_table *table, |
| struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff) |
| { |
| int i; |
| struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe); |
| |
| for (i = 0; i < table->mpc_combine_count; i++) { |
| if (table->mpc_combines[i].plane == plane && |
| table->mpc_combines[i].pri_pipe == pri_dpp_pipe) { |
| table->mpc_combines[i].slice_count += diff; |
| break; |
| } |
| } |
| |
| if (i == table->mpc_combine_count) { |
| table->mpc_combine_count++; |
| table->mpc_combines[i].plane = plane; |
| table->mpc_combines[i].pri_pipe = pri_dpp_pipe; |
| table->mpc_combines[i].slice_count = diff; |
| } |
| } |
| |
| static void init_pipe_slice_table_from_context( |
| struct pipe_slice_table *table, |
| struct dc_state *context) |
| { |
| int i, j; |
| struct pipe_ctx *otg_master; |
| struct pipe_ctx *dpp_pipes[MAX_PIPES]; |
| struct dc_stream_state *stream; |
| int count; |
| |
| memset(table, 0, sizeof(*table)); |
| |
| for (i = 0; i < context->stream_count; i++) { |
| stream = context->streams[i]; |
| otg_master = resource_get_otg_master_for_stream( |
| &context->res_ctx, stream); |
| count = resource_get_odm_slice_count(otg_master); |
| update_slice_table_for_stream(table, stream, count); |
| |
| count = resource_get_dpp_pipes_for_opp_head(otg_master, |
| &context->res_ctx, dpp_pipes); |
| for (j = 0; j < count; j++) |
| if (dpp_pipes[j]->plane_state) |
| update_slice_table_for_plane(table, dpp_pipes[j], |
| dpp_pipes[j]->plane_state, 1); |
| } |
| } |
| |
| static bool update_pipe_slice_table_with_split_flags( |
| struct pipe_slice_table *table, |
| struct dc *dc, |
| struct dc_state *context, |
| struct vba_vars_st *vba, |
| int split[MAX_PIPES], |
| bool merge[MAX_PIPES]) |
| { |
| /* NOTE: we are deprecating the support for the concept of pipe splitting |
| * or pipe merging. Instead we append slices to the end and remove |
| * slices from the end. The following code converts a pipe split or |
| * merge to an append or remove operation. |
| * |
| * For example: |
| * When split flags describe the following pipe connection transition |
| * |
| * from: |
| * pipe 0 (split=2) -> pipe 1 (split=2) |
| * to: (old behavior) |
| * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3 |
| * |
| * the code below actually does: |
| * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3 |
| * |
| * This is the new intended behavior and for future DCNs we will retire |
| * the old concept completely. |
| */ |
| struct pipe_ctx *pipe; |
| bool odm; |
| int dc_pipe_idx, dml_pipe_idx = 0; |
| bool updated = false; |
| |
| for (dc_pipe_idx = 0; |
| dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) { |
| pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; |
| if (resource_is_pipe_type(pipe, FREE_PIPE)) |
| continue; |
| |
| if (merge[dc_pipe_idx]) { |
| if (resource_is_pipe_type(pipe, OPP_HEAD)) |
| /* merging OPP head means reducing ODM slice |
| * count by 1 |
| */ |
| update_slice_table_for_stream(table, pipe->stream, -1); |
| else if (resource_is_pipe_type(pipe, DPP_PIPE) && |
| resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0) |
| /* merging DPP pipe of the first ODM slice means |
| * reducing MPC slice count by 1 |
| */ |
| update_slice_table_for_plane(table, pipe, pipe->plane_state, -1); |
| updated = true; |
| } |
| |
| if (split[dc_pipe_idx]) { |
| odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] != |
| dm_odm_combine_mode_disabled; |
| if (odm && resource_is_pipe_type(pipe, OPP_HEAD)) |
| update_slice_table_for_stream( |
| table, pipe->stream, split[dc_pipe_idx] - 1); |
| else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE)) |
| update_slice_table_for_plane(table, pipe, |
| pipe->plane_state, split[dc_pipe_idx] - 1); |
| updated = true; |
| } |
| dml_pipe_idx++; |
| } |
| return updated; |
| } |
| |
| static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context, |
| struct pipe_slice_table *table) |
| { |
| int i; |
| |
| for (i = 0; i < table->odm_combine_count; i++) |
| resource_update_pipes_for_stream_with_slice_count(context, |
| dc->current_state, dc->res_pool, |
| table->odm_combines[i].stream, |
| table->odm_combines[i].slice_count); |
| |
| for (i = 0; i < table->mpc_combine_count; i++) |
| resource_update_pipes_for_plane_with_slice_count(context, |
| dc->current_state, dc->res_pool, |
| table->mpc_combines[i].plane, |
| table->mpc_combines[i].slice_count); |
| } |
| |
| static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context, |
| struct vba_vars_st *vba, int split[MAX_PIPES], |
| bool merge[MAX_PIPES]) |
| { |
| struct pipe_slice_table slice_table; |
| bool updated; |
| |
| init_pipe_slice_table_from_context(&slice_table, context); |
| updated = update_pipe_slice_table_with_split_flags( |
| &slice_table, dc, context, vba, |
| split, merge); |
| update_pipes_with_slice_table(dc, context, &slice_table); |
| return updated; |
| } |
| |
| static bool should_apply_odm_power_optimization(struct dc *dc, |
| struct dc_state *context, struct vba_vars_st *v, int *split, |
| bool *merge) |
| { |
| struct dc_stream_state *stream = context->streams[0]; |
| struct pipe_slice_table slice_table; |
| int i; |
| |
| /* |
| * this debug flag allows us to disable ODM power optimization feature |
| * unconditionally. we force the feature off if this is set to false. |
| */ |
| if (!dc->debug.enable_single_display_2to1_odm_policy) |
| return false; |
| |
| /* current design and test coverage is only limited to allow ODM power |
| * optimization for single stream. Supporting it for multiple streams |
| * use case would require additional algorithm to decide how to |
| * optimize power consumption when there are not enough free pipes to |
| * allocate for all the streams. This level of optimization would |
| * require multiple attempts of revalidation to make an optimized |
| * decision. Unfortunately We do not support revalidation flow in |
| * current version of DML. |
| */ |
| if (context->stream_count != 1) |
| return false; |
| |
| /* |
| * Our hardware doesn't support ODM for HDMI TMDS |
| */ |
| if (dc_is_hdmi_signal(stream->signal)) |
| return false; |
| |
| /* |
| * ODM Combine 2:1 requires horizontal timing divisible by 2 so each |
| * ODM segment has the same size. |
| */ |
| if (!is_h_timing_divisible_by_2(stream)) |
| return false; |
| |
| /* |
| * No power benefits if the timing's pixel clock is not high enough to |
| * raise display clock from minimum power state. |
| */ |
| if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ) |
| return false; |
| |
| if (dc->config.enable_windowed_mpo_odm) { |
| /* |
| * ODM power optimization should only be allowed if the feature |
| * can be seamlessly toggled off within an update. This would |
| * require that the feature is applied on top of a minimal |
| * state. A minimal state is defined as a state validated |
| * without the need of pipe split. Therefore, when transition to |
| * toggle the feature off, the same stream and plane |
| * configuration can be supported by the pipe resource in the |
| * first ODM slice alone without the need to acquire extra |
| * resources. |
| */ |
| init_pipe_slice_table_from_context(&slice_table, context); |
| update_pipe_slice_table_with_split_flags( |
| &slice_table, dc, context, v, |
| split, merge); |
| for (i = 0; i < slice_table.mpc_combine_count; i++) |
| if (slice_table.mpc_combines[i].slice_count > 1) |
| return false; |
| |
| for (i = 0; i < slice_table.odm_combine_count; i++) |
| if (slice_table.odm_combines[i].slice_count > 1) |
| return false; |
| } else { |
| /* |
| * the new ODM power optimization feature reduces software |
| * design limitation and allows ODM power optimization to be |
| * supported even with presence of overlay planes. The new |
| * feature is enabled based on enable_windowed_mpo_odm flag. If |
| * the flag is not set, we limit our feature scope due to |
| * previous software design limitation |
| */ |
| if (context->stream_status[0].plane_count != 1) |
| return false; |
| |
| if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect, |
| &stream->src, sizeof(struct rect)) != 0) |
| return false; |
| |
| if (stream->src.width >= 5120 && |
| stream->src.width > stream->dst.width) |
| return false; |
| } |
| return true; |
| } |
| |
| static void try_odm_power_optimization_and_revalidate( |
| struct dc *dc, |
| struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int *split, |
| bool *merge, |
| unsigned int *vlevel, |
| int pipe_cnt) |
| { |
| int i; |
| unsigned int new_vlevel; |
| unsigned int cur_policy[MAX_PIPES]; |
| |
| for (i = 0; i < pipe_cnt; i++) { |
| cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy; |
| pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; |
| } |
| |
| new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); |
| |
| if (new_vlevel < context->bw_ctx.dml.soc.num_states) { |
| memset(split, 0, MAX_PIPES * sizeof(int)); |
| memset(merge, 0, MAX_PIPES * sizeof(bool)); |
| *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge); |
| context->bw_ctx.dml.vba.VoltageLevel = *vlevel; |
| } else { |
| for (i = 0; i < pipe_cnt; i++) |
| pipes[i].pipe.dest.odm_combine_policy = cur_policy[i]; |
| } |
| } |
| |
| static bool is_test_pattern_enabled( |
| struct dc_state *context) |
| { |
| int i; |
| |
| for (i = 0; i < context->stream_count; i++) { |
| if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool dcn32_full_validate_bw_helper(struct dc *dc, |
| struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int *vlevel, |
| int *split, |
| bool *merge, |
| int *pipe_cnt, |
| bool *repopulate_pipes) |
| { |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| unsigned int dc_pipe_idx = 0; |
| int i = 0; |
| bool found_supported_config = false; |
| int vlevel_temp = 0; |
| |
| dc_assert_fp_enabled(); |
| |
| /* |
| * DML favors voltage over p-state, but we're more interested in |
| * supporting p-state over voltage. We can't support p-state in |
| * prefetch mode > 0 so try capping the prefetch mode to start. |
| * Override present for testing. |
| */ |
| if (dc->debug.dml_disallow_alternate_prefetch_modes) |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
| dm_prefetch_support_uclk_fclk_and_stutter; |
| else |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
| dm_prefetch_support_uclk_fclk_and_stutter_if_possible; |
| |
| *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
| /* This may adjust vlevel and maxMpcComb */ |
| if (*vlevel < context->bw_ctx.dml.soc.num_states) { |
| *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); |
| vba->VoltageLevel = *vlevel; |
| } |
| |
| /* Apply split and merge flags before checking for subvp */ |
| if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge)) |
| return false; |
| memset(split, 0, MAX_PIPES * sizeof(int)); |
| memset(merge, 0, MAX_PIPES * sizeof(bool)); |
| |
| /* Conditions for setting up phantom pipes for SubVP: |
| * 1. Not force disable SubVP |
| * 2. Full update (i.e. !fast_validate) |
| * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) |
| * 4. Display configuration passes validation |
| * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) |
| */ |
| if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) && |
| !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) && |
| (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] && |
| vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) || |
| vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || |
| dc->debug.force_subvp_mclk_switch)) { |
| |
| vlevel_temp = *vlevel; |
| |
| while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && |
| dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { |
| /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. |
| * Adding phantom pipes won't change the validation result, so change the DML input param |
| * for P-State support before adding phantom pipes and recalculating the DML result. |
| * However, this case is only applicable for SubVP + DRR cases because the prefetch mode |
| * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched |
| * enough to support MCLK switching. |
| */ |
| if (*vlevel == context->bw_ctx.dml.soc.num_states && |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final == |
| dm_prefetch_support_uclk_fclk_and_stutter) { |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
| dm_prefetch_support_fclk_and_stutter; |
| /* There are params (such as FabricClock) that need to be recalculated |
| * after validation fails (otherwise it will be 0). Calculation for |
| * phantom vactive requires call into DML, so we must ensure all the |
| * vba params are valid otherwise we'll get incorrect phantom vactive. |
| */ |
| *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
| } |
| |
| dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); |
| |
| *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); |
| // Populate dppclk to trigger a recalculate in dml_get_voltage_level |
| // so the phantom pipe DLG params can be assigned correctly. |
| pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0); |
| *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
| |
| /* Check that vlevel requested supports pstate or not |
| * if not, select the lowest vlevel that supports it |
| */ |
| for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { |
| if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) { |
| *vlevel = i; |
| break; |
| } |
| } |
| |
| if (*vlevel < context->bw_ctx.dml.soc.num_states |
| && subvp_validate_static_schedulability(dc, context, *vlevel)) |
| found_supported_config = true; |
| if (found_supported_config) { |
| // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode |
| if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) { |
| /* find lowest vlevel that supports the config */ |
| for (i = *vlevel; i >= 0; i--) { |
| if (vba->ModeSupport[i][vba->maxMpcComb]) { |
| *vlevel = i; |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp]) |
| found_supported_config = false; |
| |
| // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) |
| // remove phantom pipes and repopulate dml pipes |
| if (!found_supported_config) { |
| dc_state_remove_phantom_streams_and_planes(dc, context); |
| dc_state_release_phantom_streams_and_planes(dc, context); |
| vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; |
| *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); |
| |
| *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
| /* This may adjust vlevel and maxMpcComb */ |
| if (*vlevel < context->bw_ctx.dml.soc.num_states) { |
| *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); |
| vba->VoltageLevel = *vlevel; |
| } |
| } else { |
| // Most populate phantom DLG params before programming hardware / timing for phantom pipe |
| dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt); |
| |
| /* Call validate_apply_pipe_split flags after calling DML getters for |
| * phantom dlg params, or some of the VBA params indicating pipe split |
| * can be overwritten by the getters. |
| * |
| * When setting up SubVP config, all pipes are merged before attempting to |
| * add phantom pipes. If pipe split (ODM / MPC) is required, both the main |
| * and phantom pipes will be split in the regular pipe splitting sequence. |
| */ |
| *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); |
| vba->VoltageLevel = *vlevel; |
| // Note: We can't apply the phantom pipes to hardware at this time. We have to wait |
| // until driver has acquired the DMCUB lock to do it safely. |
| assign_subvp_index(dc, context); |
| } |
| } |
| |
| if (should_apply_odm_power_optimization(dc, context, vba, split, merge)) |
| try_odm_power_optimization_and_revalidate( |
| dc, context, pipes, split, merge, vlevel, *pipe_cnt); |
| |
| return true; |
| } |
| |
| static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) |
| { |
| int i; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| if (!context->res_ctx.pipe_ctx[i].stream) |
| continue; |
| if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) |
| return true; |
| } |
| return false; |
| } |
| |
| static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start) |
| { |
| struct dc_crtc_timing patched_crtc_timing; |
| uint32_t asic_blank_end = 0; |
| uint32_t asic_blank_start = 0; |
| uint32_t newVstartup = 0; |
| |
| patched_crtc_timing = *dc_crtc_timing; |
| |
| if (patched_crtc_timing.flags.INTERLACE == 1) { |
| if (patched_crtc_timing.v_front_porch < 2) |
| patched_crtc_timing.v_front_porch = 2; |
| } else { |
| if (patched_crtc_timing.v_front_porch < 1) |
| patched_crtc_timing.v_front_porch = 1; |
| } |
| |
| /* blank_start = frame end - front porch */ |
| asic_blank_start = patched_crtc_timing.v_total - |
| patched_crtc_timing.v_front_porch; |
| |
| /* blank_end = blank_start - active */ |
| asic_blank_end = asic_blank_start - |
| patched_crtc_timing.v_border_bottom - |
| patched_crtc_timing.v_addressable - |
| patched_crtc_timing.v_border_top; |
| |
| newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start); |
| |
| *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start); |
| } |
| |
| static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int pipe_cnt, int vlevel) |
| { |
| int i, pipe_idx, active_hubp_count = 0; |
| bool usr_retraining_support = false; |
| bool unbounded_req_enabled = false; |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| |
| dc_assert_fp_enabled(); |
| |
| /* Writeback MCIF_WB arbitration parameters */ |
| dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); |
| |
| context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; |
| context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; |
| context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; |
| context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; |
| context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; |
| context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; |
| context->bw_ctx.bw.dcn.clk.p_state_change_support = |
| context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] |
| != dm_dram_clock_change_unsupported; |
| |
| /* Pstate change might not be supported by hardware, but it might be |
| * possible with firmware driven vertical blank stretching. |
| */ |
| context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; |
| |
| context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; |
| context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); |
| context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; |
| if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) |
| context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; |
| else |
| context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; |
| |
| usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
| ASSERT(usr_retraining_support); |
| |
| if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) |
| context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; |
| |
| unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt); |
| |
| if (unbounded_req_enabled && pipe_cnt > 1) { |
| // Unbounded requesting should not ever be used when more than 1 pipe is enabled. |
| ASSERT(false); |
| unbounded_req_enabled = false; |
| } |
| |
| context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0; |
| context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0; |
| context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| if (!context->res_ctx.pipe_ctx[i].stream) |
| continue; |
| if (context->res_ctx.pipe_ctx[i].plane_state) |
| active_hubp_count++; |
| pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, |
| pipe_idx); |
| pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, |
| pipe_idx); |
| pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, |
| pipe_idx); |
| pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, |
| pipe_idx); |
| |
| if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) { |
| // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests |
| context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; |
| context->res_ctx.pipe_ctx[i].unbounded_req = false; |
| } else { |
| context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, |
| pipe_idx); |
| context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled; |
| } |
| |
| if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) |
| context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; |
| if (context->res_ctx.pipe_ctx[i].plane_state) |
| context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; |
| else |
| context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0; |
| context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; |
| |
| context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| |
| if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0) |
| context->res_ctx.pipe_ctx[i].has_vactive_margin = true; |
| else |
| context->res_ctx.pipe_ctx[i].has_vactive_margin = false; |
| |
| /* MALL Allocation Sizes */ |
| /* count from active, top pipes per plane only */ |
| if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state && |
| (context->res_ctx.pipe_ctx[i].top_pipe == NULL || |
| context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) && |
| context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { |
| /* SS: all active surfaces stored in MALL */ |
| if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) { |
| context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; |
| |
| if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) { |
| /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */ |
| context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; |
| } |
| } else { |
| /* SUBVP: phantom surfaces only stored in MALL */ |
| context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; |
| } |
| } |
| |
| if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid) |
| dcn20_adjust_freesync_v_startup( |
| &context->res_ctx.pipe_ctx[i].stream->timing, |
| &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start); |
| |
| pipe_idx++; |
| } |
| /* If DCN isn't making memory requests we can allow pstate change and lower clocks */ |
| if (!active_hubp_count) { |
| context->bw_ctx.bw.dcn.clk.socclk_khz = 0; |
| context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; |
| context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0; |
| context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0; |
| context->bw_ctx.bw.dcn.clk.dramclk_khz = 0; |
| context->bw_ctx.bw.dcn.clk.fclk_khz = 0; |
| context->bw_ctx.bw.dcn.clk.p_state_change_support = true; |
| context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; |
| } |
| /*save a original dppclock copy*/ |
| context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; |
| context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; |
| context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz |
| * 1000; |
| context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz |
| * 1000; |
| |
| context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); |
| |
| context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| if (context->res_ctx.pipe_ctx[i].stream) |
| context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; |
| } |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| |
| if (!context->res_ctx.pipe_ctx[i].stream) |
| continue; |
| |
| context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, |
| &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, |
| pipe_cnt, pipe_idx); |
| |
| context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, |
| &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| pipe_idx++; |
| } |
| } |
| |
| static struct pipe_ctx *dcn32_find_split_pipe( |
| struct dc *dc, |
| struct dc_state *context, |
| int old_index) |
| { |
| struct pipe_ctx *pipe = NULL; |
| int i; |
| |
| if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { |
| pipe = &context->res_ctx.pipe_ctx[old_index]; |
| pipe->pipe_idx = old_index; |
| } |
| |
| if (!pipe) |
| for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { |
| if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL |
| && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { |
| if (context->res_ctx.pipe_ctx[i].stream == NULL) { |
| pipe = &context->res_ctx.pipe_ctx[i]; |
| pipe->pipe_idx = i; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * May need to fix pipes getting tossed from 1 opp to another on flip |
| * Add for debugging transient underflow during topology updates: |
| * ASSERT(pipe); |
| */ |
| if (!pipe) |
| for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { |
| if (context->res_ctx.pipe_ctx[i].stream == NULL) { |
| pipe = &context->res_ctx.pipe_ctx[i]; |
| pipe->pipe_idx = i; |
| break; |
| } |
| } |
| |
| return pipe; |
| } |
| |
| static bool dcn32_split_stream_for_mpc_or_odm( |
| const struct dc *dc, |
| struct resource_context *res_ctx, |
| struct pipe_ctx *pri_pipe, |
| struct pipe_ctx *sec_pipe, |
| bool odm) |
| { |
| int pipe_idx = sec_pipe->pipe_idx; |
| const struct resource_pool *pool = dc->res_pool; |
| |
| DC_LOGGER_INIT(dc->ctx->logger); |
| |
| if (odm && pri_pipe->plane_state) { |
| /* ODM + window MPO, where MPO window is on left half only */ |
| if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= |
| pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { |
| |
| DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n", |
| __func__, |
| pri_pipe->pipe_idx); |
| return true; |
| } |
| |
| /* ODM + window MPO, where MPO window is on right half only */ |
| if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { |
| |
| DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n", |
| __func__, |
| pri_pipe->pipe_idx); |
| return true; |
| } |
| } |
| |
| *sec_pipe = *pri_pipe; |
| |
| sec_pipe->pipe_idx = pipe_idx; |
| sec_pipe->plane_res.mi = pool->mis[pipe_idx]; |
| sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; |
| sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; |
| sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; |
| sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; |
| sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; |
| sec_pipe->stream_res.dsc = NULL; |
| if (odm) { |
| if (pri_pipe->next_odm_pipe) { |
| ASSERT(pri_pipe->next_odm_pipe != sec_pipe); |
| sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; |
| sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; |
| } |
| if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { |
| pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; |
| sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; |
| } |
| if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { |
| pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; |
| sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; |
| } |
| pri_pipe->next_odm_pipe = sec_pipe; |
| sec_pipe->prev_odm_pipe = pri_pipe; |
| ASSERT(sec_pipe->top_pipe == NULL); |
| |
| if (!sec_pipe->top_pipe) |
| sec_pipe->stream_res.opp = pool->opps[pipe_idx]; |
| else |
| sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; |
| if (sec_pipe->stream->timing.flags.DSC == 1) { |
| dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); |
| ASSERT(sec_pipe->stream_res.dsc); |
| if (sec_pipe->stream_res.dsc == NULL) |
| return false; |
| } |
| } else { |
| if (pri_pipe->bottom_pipe) { |
| ASSERT(pri_pipe->bottom_pipe != sec_pipe); |
| sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; |
| sec_pipe->bottom_pipe->top_pipe = sec_pipe; |
| } |
| pri_pipe->bottom_pipe = sec_pipe; |
| sec_pipe->top_pipe = pri_pipe; |
| |
| ASSERT(pri_pipe->plane_state); |
| } |
| |
| return true; |
| } |
| |
| static bool dcn32_apply_merge_split_flags_helper( |
| struct dc *dc, |
| struct dc_state *context, |
| bool *repopulate_pipes, |
| int *split, |
| bool *merge) |
| { |
| int i, pipe_idx; |
| bool newly_split[MAX_PIPES] = { false }; |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| |
| if (dc->config.enable_windowed_mpo_odm) { |
| if (update_pipes_with_split_flags( |
| dc, context, vba, split, merge)) |
| *repopulate_pipes = true; |
| } else { |
| |
| /* the code below will be removed once windowed mpo odm is fully |
| * enabled. |
| */ |
| /* merge pipes if necessary */ |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| /*skip pipes that don't need merging*/ |
| if (!merge[i]) |
| continue; |
| |
| /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ |
| if (pipe->prev_odm_pipe) { |
| /*split off odm pipe*/ |
| pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; |
| if (pipe->next_odm_pipe) |
| pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; |
| |
| /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/ |
| if (pipe->bottom_pipe) { |
| if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) { |
| /*MPC split rules will handle this case*/ |
| pipe->bottom_pipe->top_pipe = NULL; |
| } else { |
| /* when merging an ODM pipes, the bottom MPC pipe must now point to |
| * the previous ODM pipe and its associated stream assets |
| */ |
| if (pipe->prev_odm_pipe->bottom_pipe) { |
| /* 3 plane MPO*/ |
| pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe; |
| pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe; |
| } else { |
| /* 2 plane MPO*/ |
| pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe; |
| pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe; |
| } |
| |
| memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource)); |
| } |
| } |
| |
| if (pipe->top_pipe) { |
| pipe->top_pipe->bottom_pipe = NULL; |
| } |
| |
| pipe->bottom_pipe = NULL; |
| pipe->next_odm_pipe = NULL; |
| pipe->plane_state = NULL; |
| pipe->stream = NULL; |
| pipe->top_pipe = NULL; |
| pipe->prev_odm_pipe = NULL; |
| if (pipe->stream_res.dsc) |
| dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); |
| memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); |
| memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); |
| memset(&pipe->link_res, 0, sizeof(pipe->link_res)); |
| *repopulate_pipes = true; |
| } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { |
| struct pipe_ctx *top_pipe = pipe->top_pipe; |
| struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; |
| |
| top_pipe->bottom_pipe = bottom_pipe; |
| if (bottom_pipe) |
| bottom_pipe->top_pipe = top_pipe; |
| |
| pipe->top_pipe = NULL; |
| pipe->bottom_pipe = NULL; |
| pipe->plane_state = NULL; |
| pipe->stream = NULL; |
| memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); |
| memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); |
| memset(&pipe->link_res, 0, sizeof(pipe->link_res)); |
| *repopulate_pipes = true; |
| } else |
| ASSERT(0); /* Should never try to merge master pipe */ |
| |
| } |
| |
| for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; |
| struct pipe_ctx *hsplit_pipe = NULL; |
| bool odm; |
| int old_index = -1; |
| |
| if (!pipe->stream || newly_split[i]) |
| continue; |
| |
| pipe_idx++; |
| odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; |
| |
| if (!pipe->plane_state && !odm) |
| continue; |
| |
| if (split[i]) { |
| if (odm) { |
| if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) |
| old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; |
| else if (old_pipe->next_odm_pipe) |
| old_index = old_pipe->next_odm_pipe->pipe_idx; |
| } else { |
| if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && |
| old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
| old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; |
| else if (old_pipe->bottom_pipe && |
| old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
| old_index = old_pipe->bottom_pipe->pipe_idx; |
| } |
| hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); |
| ASSERT(hsplit_pipe); |
| if (!hsplit_pipe) |
| return false; |
| |
| if (!dcn32_split_stream_for_mpc_or_odm( |
| dc, &context->res_ctx, |
| pipe, hsplit_pipe, odm)) |
| return false; |
| |
| newly_split[hsplit_pipe->pipe_idx] = true; |
| *repopulate_pipes = true; |
| } |
| if (split[i] == 4) { |
| struct pipe_ctx *pipe_4to1; |
| |
| if (odm && old_pipe->next_odm_pipe) |
| old_index = old_pipe->next_odm_pipe->pipe_idx; |
| else if (!odm && old_pipe->bottom_pipe && |
| old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
| old_index = old_pipe->bottom_pipe->pipe_idx; |
| else |
| old_index = -1; |
| pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); |
| ASSERT(pipe_4to1); |
| if (!pipe_4to1) |
| return false; |
| if (!dcn32_split_stream_for_mpc_or_odm( |
| dc, &context->res_ctx, |
| pipe, pipe_4to1, odm)) |
| return false; |
| newly_split[pipe_4to1->pipe_idx] = true; |
| |
| if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe |
| && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) |
| old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; |
| else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && |
| old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && |
| old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
| old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; |
| else |
| old_index = -1; |
| pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); |
| ASSERT(pipe_4to1); |
| if (!pipe_4to1) |
| return false; |
| if (!dcn32_split_stream_for_mpc_or_odm( |
| dc, &context->res_ctx, |
| hsplit_pipe, pipe_4to1, odm)) |
| return false; |
| newly_split[pipe_4to1->pipe_idx] = true; |
| } |
| if (odm) |
| dcn20_build_mapped_resource(dc, context, pipe->stream); |
| } |
| |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| if (pipe->plane_state) { |
| if (!resource_build_scaling_params(pipe)) |
| return false; |
| } |
| } |
| |
| for (i = 0; i < context->stream_count; i++) { |
| struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx, |
| context->streams[i]); |
| |
| if (otg_master) |
| resource_build_test_pattern_params(&context->res_ctx, otg_master); |
| } |
| } |
| return true; |
| } |
| |
| bool dcn32_internal_validate_bw(struct dc *dc, |
| struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int *pipe_cnt_out, |
| int *vlevel_out, |
| bool fast_validate) |
| { |
| bool out = false; |
| bool repopulate_pipes = false; |
| int split[MAX_PIPES] = { 0 }; |
| bool merge[MAX_PIPES] = { false }; |
| int pipe_cnt, i, pipe_idx; |
| int vlevel = context->bw_ctx.dml.soc.num_states; |
| struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| |
| dc_assert_fp_enabled(); |
| |
| ASSERT(pipes); |
| if (!pipes) |
| return false; |
| |
| /* For each full update, remove all existing phantom pipes first */ |
| dc_state_remove_phantom_streams_and_planes(dc, context); |
| dc_state_release_phantom_streams_and_planes(dc, context); |
| |
| dc->res_pool->funcs->update_soc_for_wm_a(dc, context); |
| |
| pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); |
| |
| if (!pipe_cnt) { |
| out = true; |
| goto validate_out; |
| } |
| |
| dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); |
| context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context); |
| |
| if (!fast_validate) { |
| if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, |
| &pipe_cnt, &repopulate_pipes)) |
| goto validate_fail; |
| } |
| |
| if (fast_validate || |
| (dc->debug.dml_disallow_alternate_prefetch_modes && |
| (vlevel == context->bw_ctx.dml.soc.num_states || |
| vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) { |
| /* |
| * If dml_disallow_alternate_prefetch_modes is false, then we have already |
| * tried alternate prefetch modes during full validation. |
| * |
| * If mode is unsupported or there is no p-state support, then |
| * fall back to favouring voltage. |
| * |
| * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try |
| * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2) |
| */ |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
| dm_prefetch_support_none; |
| |
| context->bw_ctx.dml.validate_max_state = fast_validate; |
| vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); |
| |
| context->bw_ctx.dml.validate_max_state = false; |
| |
| if (vlevel < context->bw_ctx.dml.soc.num_states) { |
| memset(split, 0, sizeof(split)); |
| memset(merge, 0, sizeof(merge)); |
| vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); |
| /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */ |
| vba->VoltageLevel = vlevel; |
| } |
| } |
| |
| dml_log_mode_support_params(&context->bw_ctx.dml); |
| |
| if (vlevel == context->bw_ctx.dml.soc.num_states) |
| goto validate_fail; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; |
| |
| if (!pipe->stream) |
| continue; |
| |
| if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled |
| && !dc->config.enable_windowed_mpo_odm |
| && pipe->plane_state && mpo_pipe |
| && memcmp(&mpo_pipe->plane_state->clip_rect, |
| &pipe->stream->src, |
| sizeof(struct rect)) != 0) { |
| ASSERT(mpo_pipe->plane_state != pipe->plane_state); |
| goto validate_fail; |
| } |
| pipe_idx++; |
| } |
| |
| if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge)) |
| goto validate_fail; |
| |
| /* Actual dsc count per stream dsc validation*/ |
| if (!dcn20_validate_dsc(dc, context)) { |
| vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; |
| goto validate_fail; |
| } |
| |
| if (repopulate_pipes) { |
| int flag_max_mpc_comb = vba->maxMpcComb; |
| int flag_vlevel = vlevel; |
| int i; |
| |
| pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); |
| if (!dc->config.enable_windowed_mpo_odm) |
| dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes); |
| |
| /* repopulate_pipes = 1 means the pipes were either split or merged. In this case |
| * we have to re-calculate the DET allocation and run through DML once more to |
| * ensure all the params are calculated correctly. We do not need to run the |
| * pipe split check again after this call (pipes are already split / merged). |
| * */ |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
| dm_prefetch_support_uclk_fclk_and_stutter_if_possible; |
| |
| vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); |
| |
| if (vlevel == context->bw_ctx.dml.soc.num_states) { |
| /* failed after DET size changes */ |
| goto validate_fail; |
| } else if (flag_max_mpc_comb == 0 && |
| flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) { |
| /* check the context constructed with pipe split flags is still valid*/ |
| bool flags_valid = false; |
| for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { |
| if (vba->ModeSupport[i][flag_max_mpc_comb]) { |
| vba->maxMpcComb = flag_max_mpc_comb; |
| vba->VoltageLevel = i; |
| vlevel = i; |
| flags_valid = true; |
| break; |
| } |
| } |
| |
| /* this should never happen */ |
| if (!flags_valid) |
| goto validate_fail; |
| } |
| } |
| *vlevel_out = vlevel; |
| *pipe_cnt_out = pipe_cnt; |
| |
| out = true; |
| goto validate_out; |
| |
| validate_fail: |
| out = false; |
| |
| validate_out: |
| return out; |
| } |
| |
| |
| void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context, |
| display_e2e_pipe_params_st *pipes, |
| int pipe_cnt, |
| int vlevel) |
| { |
| int i, pipe_idx, vlevel_temp = 0; |
| double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; |
| double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
| double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed; |
| double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation; |
| bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != |
| dm_dram_clock_change_unsupported; |
| unsigned int dummy_latency_index = 0; |
| int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; |
| unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; |
| bool subvp_in_use = dcn32_subvp_in_use(dc, context); |
| unsigned int min_dram_speed_mts_margin; |
| bool need_fclk_lat_as_dummy = false; |
| bool is_subvp_p_drr = false; |
| struct dc_stream_state *fpo_candidate_stream = NULL; |
| struct dc_stream_status *stream_status = NULL; |
| |
| dc_assert_fp_enabled(); |
| |
| /* need to find dummy latency index for subvp */ |
| if (subvp_in_use) { |
| /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */ |
| if (!pstate_en) { |
| context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; |
| context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter; |
| pstate_en = true; |
| is_subvp_p_drr = true; |
| } |
| dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, |
| context, pipes, pipe_cnt, vlevel); |
| |
| /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is |
| * scheduled correctly to account for dummy pstate. |
| */ |
| if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { |
| need_fclk_lat_as_dummy = true; |
| context->bw_ctx.dml.soc.fclk_change_latency_us = |
| dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
| } |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
| dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; |
| dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); |
| maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; |
| if (is_subvp_p_drr) { |
| context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; |
| } |
| } |
| |
| context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; |
| for (i = 0; i < context->stream_count; i++) { |
| stream_status = NULL; |
| if (context->streams[i]) |
| stream_status = dc_state_get_stream_status(context, context->streams[i]); |
| if (stream_status) |
| stream_status->fpo_in_use = false; |
| } |
| |
| if (!pstate_en || (!dc->debug.disable_fpo_optimizations && |
| pstate_en && vlevel != 0)) { |
| /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */ |
| fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context); |
| if (fpo_candidate_stream) { |
| stream_status = dc_state_get_stream_status(context, fpo_candidate_stream); |
| if (stream_status) |
| stream_status->fpo_in_use = true; |
| context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true; |
| } |
| |
| if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { |
| dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, |
| context, pipes, pipe_cnt, vlevel); |
| |
| /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch |
| * we reinstate the original dram_clock_change_latency_us on the context |
| * and all variables that may have changed up to this point, except the |
| * newly found dummy_latency_index |
| */ |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
| dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; |
| /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so |
| * prefetch is scheduled correctly to account for dummy pstate. |
| */ |
| if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { |
| need_fclk_lat_as_dummy = true; |
| context->bw_ctx.dml.soc.fclk_change_latency_us = |
| dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
| } |
| dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false); |
| if (vlevel_temp < vlevel) { |
| vlevel = vlevel_temp; |
| maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; |
| dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
| pstate_en = true; |
| context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank; |
| } else { |
| /* Restore FCLK latency and re-run validation to go back to original validation |
| * output if we find that enabling FPO does not give us any benefit (i.e. lower |
| * voltage level) |
| */ |
| context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; |
| for (i = 0; i < context->stream_count; i++) { |
| stream_status = NULL; |
| if (context->streams[i]) |
| stream_status = dc_state_get_stream_status(context, context->streams[i]); |
| if (stream_status) |
| stream_status->fpo_in_use = false; |
| } |
| context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; |
| dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); |
| } |
| } |
| } |
| |
| /* Set B: |
| * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, |
| * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark |
| * calculations to cover bootup clocks. |
| * DCFCLK: soc.clock_limits[2] when available |
| * UCLK: soc.clock_limits[2] when available |
| */ |
| if (dcn3_2_soc.num_states > 2) { |
| vlevel_temp = 2; |
| dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; |
| } else |
| dcfclk = 615; //DCFCLK Vmin_lv |
| |
| pipes[0].clks_cfg.voltage = vlevel_temp; |
| pipes[0].clks_cfg.dcfclk_mhz = dcfclk; |
| pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; |
| |
| if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; |
| context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; |
| context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; |
| context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; |
| } |
| context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| |
| /* Set D: |
| * All clocks min. |
| * DCFCLK: Min, as reported by PM FW when available |
| * UCLK : Min, as reported by PM FW when available |
| * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) |
| */ |
| |
| /* |
| if (dcn3_2_soc.num_states > 2) { |
| vlevel_temp = 0; |
| dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; |
| } else |
| dcfclk = 615; //DCFCLK Vmin_lv |
| |
| pipes[0].clks_cfg.voltage = vlevel_temp; |
| pipes[0].clks_cfg.dcfclk_mhz = dcfclk; |
| pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; |
| |
| if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; |
| context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; |
| context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; |
| context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; |
| } |
| context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| */ |
| |
| /* Set C, for Dummy P-State: |
| * All clocks min. |
| * DCFCLK: Min, as reported by PM FW, when available |
| * UCLK : Min, as reported by PM FW, when available |
| * pstate latency as per UCLK state dummy pstate latency |
| */ |
| |
| // For Set A and Set C use values from validation |
| pipes[0].clks_cfg.voltage = vlevel; |
| pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; |
| pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; |
| |
| if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { |
| pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching; |
| } |
| |
| if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { |
| min_dram_speed_mts = dram_speed_from_validation; |
| min_dram_speed_mts_margin = 160; |
| |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
| dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us; |
| |
| if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] == |
| dm_dram_clock_change_unsupported) { |
| int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1; |
| |
| min_dram_speed_mts = |
| dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16; |
| } |
| |
| if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) { |
| /* find largest table entry that is lower than dram speed, |
| * but lower than DPM0 still uses DPM0 |
| */ |
| for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--) |
| if (min_dram_speed_mts + min_dram_speed_mts_margin > |
| dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts) |
| break; |
| } |
| |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
| dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
| |
| context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; |
| context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; |
| context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; |
| } |
| |
| context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state. |
| * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM |
| * value. |
| */ |
| context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| |
| if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { |
| /* The only difference between A and C is p-state latency, if p-state is not supported |
| * with full p-state latency we want to calculate DLG based on dummy p-state latency, |
| * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30. |
| */ |
| context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; |
| context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; |
| /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case |
| * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported |
| */ |
| context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| } else { |
| /* Set A: |
| * All clocks min. |
| * DCFCLK: Min, as reported by PM FW, when available |
| * UCLK: Min, as reported by PM FW, when available |
| */ |
| |
| /* For set A set the correct latency values (i.e. non-dummy values) unconditionally |
| */ |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; |
| context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; |
| context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; |
| |
| context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
| } |
| |
| /* Make set D = set A since we do not optimized watermarks for MALL */ |
| context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| if (!context->res_ctx.pipe_ctx[i].stream) |
| continue; |
| |
| pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); |
| pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
| |
| if (dc->config.forced_clocks) { |
| pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; |
| pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; |
| } |
| if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) |
| pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; |
| if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) |
| pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; |
| |
| pipe_idx++; |
| } |
| |
| context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; |
| |
| /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */ |
| if (need_fclk_lat_as_dummy) |
| context->bw_ctx.dml.soc.fclk_change_latency_us = |
| dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
| |
| dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); |
| |
| if (!pstate_en) |
| /* Restore full p-state latency */ |
| context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
| dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; |
| |
| /* revert fclk lat changes if required */ |
| if (need_fclk_lat_as_dummy) |
| context->bw_ctx.dml.soc.fclk_change_latency_us = |
| dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; |
| } |
| |
| static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, |
| unsigned int *optimal_dcfclk, |
| unsigned int *optimal_fclk) |
| { |
| double bw_from_dram, bw_from_dram1, bw_from_dram2; |
| |
| bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * |
| dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); |
| bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * |
| dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); |
| |
| bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; |
| |
| if (optimal_fclk) |
| *optimal_fclk = bw_from_dram / |
| (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); |
| |
| if (optimal_dcfclk) |
| *optimal_dcfclk = bw_from_dram / |
| (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); |
| } |
| |
| static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, |
| unsigned int index) |
| { |
| int i; |
| |
| if (*num_entries == 0) |
| return; |
| |
| for (i = index; i < *num_entries - 1; i++) { |
| table[i] = table[i + 1]; |
| } |
| memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); |
| } |
| |
| void dcn32_patch_dpm_table(struct clk_bw_params *bw_params) |
| { |
| int i; |
| unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, |
| max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; |
| |
| for (i = 0; i < MAX_NUM_DPM_LVL; i++) { |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
| max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
| if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) |
| max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
| if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) |
| max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; |
| if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
| max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
| if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
| max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
| if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
| max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
| if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) |
| max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| } |
| |
| /* Scan through clock values we currently have and if they are 0, |
| * then populate it with dcn3_2_soc.clock_limits[] value. |
| * |
| * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being |
| * 0, will cause it to skip building the clock table. |
| */ |
| if (max_dcfclk_mhz == 0) |
| bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; |
| if (max_dispclk_mhz == 0) |
| bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; |
| if (max_dtbclk_mhz == 0) |
| bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz; |
| if (max_uclk_mhz == 0) |
| bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16; |
| } |
| |
| static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry, |
| struct _vcs_dpi_voltage_scaling_st *second_entry) |
| { |
| struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry; |
| *first_entry = *second_entry; |
| *second_entry = temp_entry; |
| } |
| |
| /* |
| * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK |
| */ |
| static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) |
| { |
| unsigned int start_index = 0; |
| unsigned int end_index = 0; |
| unsigned int current_bw = 0; |
| |
| for (int i = 0; i < (*num_entries - 1); i++) { |
| if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { |
| current_bw = table[i].net_bw_in_kbytes_sec; |
| start_index = i; |
| end_index = ++i; |
| |
| while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw)) |
| end_index = ++i; |
| } |
| |
| if (start_index != end_index) { |
| for (int j = start_index; j < end_index; j++) { |
| for (int k = start_index; k < end_index; k++) { |
| if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz) |
| swap_table_entries(&table[k], &table[k+1]); |
| } |
| } |
| } |
| |
| start_index = 0; |
| end_index = 0; |
| |
| } |
| } |
| |
| /* |
| * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing |
| * and remove entries that do not |
| */ |
| static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) |
| { |
| for (int i = 0; i < (*num_entries - 1); i++) { |
| if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { |
| if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) || |
| (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz)) |
| remove_entry_from_table_at_index(table, num_entries, i); |
| } |
| } |
| } |
| |
| /* |
| * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings |
| * Input: |
| * max_clk_limit - struct containing the desired clock timings |
| * Output: |
| * curr_clk_limit - struct containing the timings that need to be overwritten |
| * Return: 0 upon success, non-zero for failure |
| */ |
| static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit, |
| struct clk_limit_table_entry *curr_clk_limit) |
| { |
| if (NULL == max_clk_limit || NULL == curr_clk_limit) |
| return -1; //invalid parameters |
| |
| //only overwrite if desired max clock frequency is initialized |
| if (max_clk_limit->dcfclk_mhz != 0) |
| curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz; |
| |
| if (max_clk_limit->fclk_mhz != 0) |
| curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz; |
| |
| if (max_clk_limit->memclk_mhz != 0) |
| curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz; |
| |
| if (max_clk_limit->socclk_mhz != 0) |
| curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz; |
| |
| if (max_clk_limit->dtbclk_mhz != 0) |
| curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz; |
| |
| if (max_clk_limit->dispclk_mhz != 0) |
| curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz; |
| |
| return 0; |
| } |
| |
| static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params, |
| struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) |
| { |
| int i, j; |
| struct _vcs_dpi_voltage_scaling_st entry = {0}; |
| struct clk_limit_table_entry max_clk_data = {0}; |
| |
| unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; |
| |
| static const unsigned int num_dcfclk_stas = 5; |
| unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; |
| |
| unsigned int num_uclk_dpms = 0; |
| unsigned int num_fclk_dpms = 0; |
| unsigned int num_dcfclk_dpms = 0; |
| |
| unsigned int num_dc_uclk_dpms = 0; |
| unsigned int num_dc_fclk_dpms = 0; |
| unsigned int num_dc_dcfclk_dpms = 0; |
| |
| for (i = 0; i < MAX_NUM_DPM_LVL; i++) { |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz) |
| max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
| if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz) |
| max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
| if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz) |
| max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; |
| if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz) |
| max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
| if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz) |
| max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
| if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz) |
| max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
| if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz) |
| max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| |
| if (bw_params->clk_table.entries[i].memclk_mhz > 0) { |
| num_uclk_dpms++; |
| if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz) |
| num_dc_uclk_dpms++; |
| } |
| if (bw_params->clk_table.entries[i].fclk_mhz > 0) { |
| num_fclk_dpms++; |
| if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz) |
| num_dc_fclk_dpms++; |
| } |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) { |
| num_dcfclk_dpms++; |
| if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz) |
| num_dc_dcfclk_dpms++; |
| } |
| } |
| |
| if (!disable_dc_mode_overwrite) { |
| //Overwrite max frequencies with max DC mode frequencies for DC mode systems |
| override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data); |
| num_uclk_dpms = num_dc_uclk_dpms; |
| num_fclk_dpms = num_dc_fclk_dpms; |
| num_dcfclk_dpms = num_dc_dcfclk_dpms; |
| bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms; |
| bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms; |
| } |
| |
| if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz) |
| min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz; |
| |
| if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz) |
| return -1; |
| |
| if (max_clk_data.dppclk_mhz == 0) |
| max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz; |
| |
| if (max_clk_data.fclk_mhz == 0) |
| max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz * |
| dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / |
| dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; |
| |
| if (max_clk_data.phyclk_mhz == 0) |
| max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; |
| |
| *num_entries = 0; |
| entry.dispclk_mhz = max_clk_data.dispclk_mhz; |
| entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3; |
| entry.dppclk_mhz = max_clk_data.dppclk_mhz; |
| entry.dtbclk_mhz = max_clk_data.dtbclk_mhz; |
| entry.phyclk_mhz = max_clk_data.phyclk_mhz; |
| entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; |
| entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; |
| |
| // Insert all the DCFCLK STAs |
| for (i = 0; i < num_dcfclk_stas; i++) { |
| entry.dcfclk_mhz = dcfclk_sta_targets[i]; |
| entry.fabricclk_mhz = 0; |
| entry.dram_speed_mts = 0; |
| |
| get_optimal_ntuple(&entry); |
| entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); |
| insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| |
| // Insert the max DCFCLK |
| entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; |
| entry.fabricclk_mhz = 0; |
| entry.dram_speed_mts = 0; |
| |
| get_optimal_ntuple(&entry); |
| entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); |
| insert_entry_into_table_sorted(table, num_entries, &entry); |
| |
| // Insert the UCLK DPMS |
| for (i = 0; i < num_uclk_dpms; i++) { |
| entry.dcfclk_mhz = 0; |
| entry.fabricclk_mhz = 0; |
| entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; |
| |
| get_optimal_ntuple(&entry); |
| entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); |
| insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| |
| // If FCLK is coarse grained, insert individual DPMs. |
| if (num_fclk_dpms > 2) { |
| for (i = 0; i < num_fclk_dpms; i++) { |
| entry.dcfclk_mhz = 0; |
| entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
| entry.dram_speed_mts = 0; |
| |
| get_optimal_ntuple(&entry); |
| entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); |
| insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| } |
| // If FCLK fine grained, only insert max |
| else { |
| entry.dcfclk_mhz = 0; |
| entry.fabricclk_mhz = max_clk_data.fclk_mhz; |
| entry.dram_speed_mts = 0; |
| |
| get_optimal_ntuple(&entry); |
| entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); |
| insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| |
| // At this point, the table contains all "points of interest" based on |
| // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock |
| // ratios (by derate, are exact). |
| |
| // Remove states that require higher clocks than are supported |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz || |
| table[i].fabricclk_mhz > max_clk_data.fclk_mhz || |
| table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16) |
| remove_entry_from_table_at_index(table, num_entries, i); |
| } |
| |
| // Insert entry with all max dc limits without bandwidth matching |
| if (!disable_dc_mode_overwrite) { |
| struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry; |
| |
| max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; |
| max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz; |
| max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16; |
| |
| max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry); |
| insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry); |
| |
| sort_entries_with_same_bw(table, num_entries); |
| remove_inconsistent_entries(table, num_entries); |
| } |
| |
| // At this point, the table only contains supported points of interest |
| // it could be used as is, but some states may be redundant due to |
| // coarse grained nature of some clocks, so we want to round up to |
| // coarse grained DPMs and remove duplicates. |
| |
| // Round up UCLKs |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| for (j = 0; j < num_uclk_dpms; j++) { |
| if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { |
| table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; |
| break; |
| } |
| } |
| } |
| |
| // If FCLK is coarse grained, round up to next DPMs |
| if (num_fclk_dpms > 2) { |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| for (j = 0; j < num_fclk_dpms; j++) { |
| if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { |
| table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; |
| break; |
| } |
| } |
| } |
| } |
| // Otherwise, round up to minimum. |
| else { |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| if (table[i].fabricclk_mhz < min_fclk_mhz) { |
| table[i].fabricclk_mhz = min_fclk_mhz; |
| } |
| } |
| } |
| |
| // Round DCFCLKs up to minimum |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| if (table[i].dcfclk_mhz < min_dcfclk_mhz) { |
| table[i].dcfclk_mhz = min_dcfclk_mhz; |
| } |
| } |
| |
| // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. |
| i = 0; |
| while (i < *num_entries - 1) { |
| if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && |
| table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && |
| table[i].dram_speed_mts == table[i + 1].dram_speed_mts) |
| remove_entry_from_table_at_index(table, num_entries, i + 1); |
| else |
| i++; |
| } |
| |
| // Fix up the state indicies |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| table[i].state = i; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * dcn32_update_bw_bounding_box |
| * |
| * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from |
| * spreadsheet with actual values as per dGPU SKU: |
| * - with passed few options from dc->config |
| * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might |
| * need to get it from PM FW) |
| * - with passed latency values (passed in ns units) in dc-> bb override for |
| * debugging purposes |
| * - with passed latencies from VBIOS (in 100_ns units) if available for |
| * certain dGPU SKU |
| * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU |
| * of the same ASIC) |
| * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM |
| * FW for different clocks (which might differ for certain dGPU SKU of the |
| * same ASIC) |
| */ |
| void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) |
| { |
| dc_assert_fp_enabled(); |
| |
| /* Overrides from dc->config options */ |
| dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; |
| |
| /* Override from passed dc->bb_overrides if available*/ |
| if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns |
| && dc->bb_overrides.sr_exit_time_ns) { |
| dc->dml2_options.bbox_overrides.sr_exit_latency_us = |
| dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) |
| != dc->bb_overrides.sr_enter_plus_exit_time_ns |
| && dc->bb_overrides.sr_enter_plus_exit_time_ns) { |
| dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = |
| dcn3_2_soc.sr_enter_plus_exit_time_us = |
| dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns |
| && dc->bb_overrides.urgent_latency_ns) { |
| dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; |
| dc->dml2_options.bbox_overrides.urgent_latency_us = |
| dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) |
| != dc->bb_overrides.dram_clock_change_latency_ns |
| && dc->bb_overrides.dram_clock_change_latency_ns) { |
| dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = |
| dcn3_2_soc.dram_clock_change_latency_us = |
| dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000) |
| != dc->bb_overrides.fclk_clock_change_latency_ns |
| && dc->bb_overrides.fclk_clock_change_latency_ns) { |
| dc->dml2_options.bbox_overrides.fclk_change_latency_us = |
| dcn3_2_soc.fclk_change_latency_us = |
| dc->bb_overrides.fclk_clock_change_latency_ns / 1000; |
| } |
| |
| if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) |
| != dc->bb_overrides.dummy_clock_change_latency_ns |
| && dc->bb_overrides.dummy_clock_change_latency_ns) { |
| dcn3_2_soc.dummy_pstate_latency_us = |
| dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; |
| } |
| |
| /* Override from VBIOS if VBIOS bb_info available */ |
| if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { |
| struct bp_soc_bb_info bb_info = {0}; |
| |
| if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { |
| if (bb_info.dram_clock_change_latency_100ns > 0) |
| dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = |
| dcn3_2_soc.dram_clock_change_latency_us = |
| bb_info.dram_clock_change_latency_100ns * 10; |
| |
| if (bb_info.dram_sr_enter_exit_latency_100ns > 0) |
| dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = |
| dcn3_2_soc.sr_enter_plus_exit_time_us = |
| bb_info.dram_sr_enter_exit_latency_100ns * 10; |
| |
| if (bb_info.dram_sr_exit_latency_100ns > 0) |
| dc->dml2_options.bbox_overrides.sr_exit_latency_us = |
| dcn3_2_soc.sr_exit_time_us = |
| bb_info.dram_sr_exit_latency_100ns * 10; |
| } |
| } |
| |
| /* Override from VBIOS for num_chan */ |
| if (dc->ctx->dc_bios->vram_info.num_chans) { |
| dc->dml2_options.bbox_overrides.dram_num_chan = |
| dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; |
| dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc, |
| dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel); |
| } |
| |
| if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) |
| dc->dml2_options.bbox_overrides.dram_chanel_width_bytes = |
| dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; |
| |
| /* DML DSC delay factor workaround */ |
| dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0; |
| |
| dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0; |
| |
| /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ |
| dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
| dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
| dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
| dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0; |
| dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; |
| dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0; |
| |
| /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ |
| if (bw_params->clk_table.entries[0].memclk_mhz) { |
| if (dc->debug.use_legacy_soc_bb_mechanism) { |
| unsigned int i = 0, j = 0, num_states = 0; |
| |
| unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; |
| unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; |
| unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; |
| unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; |
| unsigned int min_dcfclk = UINT_MAX; |
| /* Set 199 as first value in STA target array to have a minimum DCFCLK value. |
| * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ |
| unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; |
| unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; |
| unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; |
| |
| for (i = 0; i < MAX_NUM_DPM_LVL; i++) { |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
| max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
| if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && |
| bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) |
| min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; |
| if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
| max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
| if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
| max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
| if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
| max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
| } |
| if (min_dcfclk > dcfclk_sta_targets[0]) |
| dcfclk_sta_targets[0] = min_dcfclk; |
| if (!max_dcfclk_mhz) |
| max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; |
| if (!max_dispclk_mhz) |
| max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; |
| if (!max_dppclk_mhz) |
| max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; |
| if (!max_phyclk_mhz) |
| max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; |
| |
| if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { |
| // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array |
| dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; |
| num_dcfclk_sta_targets++; |
| } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { |
| // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates |
| for (i = 0; i < num_dcfclk_sta_targets; i++) { |
| if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { |
| dcfclk_sta_targets[i] = max_dcfclk_mhz; |
| break; |
| } |
| } |
| // Update size of array since we "removed" duplicates |
| num_dcfclk_sta_targets = i + 1; |
| } |
| |
| num_uclk_states = bw_params->clk_table.num_entries; |
| |
| // Calculate optimal dcfclk for each uclk |
| for (i = 0; i < num_uclk_states; i++) { |
| dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, |
| &optimal_dcfclk_for_uclk[i], NULL); |
| if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { |
| optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; |
| } |
| } |
| |
| // Calculate optimal uclk for each dcfclk sta target |
| for (i = 0; i < num_dcfclk_sta_targets; i++) { |
| for (j = 0; j < num_uclk_states; j++) { |
| if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { |
| optimal_uclk_for_dcfclk_sta_targets[i] = |
| bw_params->clk_table.entries[j].memclk_mhz * 16; |
| break; |
| } |
| } |
| } |
| |
| i = 0; |
| j = 0; |
| // create the final dcfclk and uclk table |
| while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { |
| if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { |
| dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; |
| dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; |
| } else { |
| if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { |
| dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; |
| dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; |
| } else { |
| j = num_uclk_states; |
| } |
| } |
| } |
| |
| while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { |
| dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; |
| dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; |
| } |
| |
| while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && |
| optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { |
| dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; |
| dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; |
| } |
| |
| /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL]. |
| * MAX_NUM_DPM_LVL is 8. |
| * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES]. |
| * DC__VOLTAGE_STATES is 40. |
| */ |
| if (num_states > MAX_NUM_DPM_LVL) { |
| ASSERT(0); |
| return; |
| } |
| |
| dcn3_2_soc.num_states = num_states; |
| for (i = 0; i < dcn3_2_soc.num_states; i++) { |
| dcn3_2_soc.clock_limits[i].state = i; |
| dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; |
| dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; |
| |
| /* Fill all states with max values of all these clocks */ |
| dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; |
| dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; |
| dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; |
| dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; |
| |
| /* Populate from bw_params for DTBCLK, SOCCLK */ |
| if (i > 0) { |
| if (!bw_params->clk_table.entries[i].dtbclk_mhz) { |
| dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; |
| } else { |
| dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| } |
| } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { |
| dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| } |
| |
| if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) |
| dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; |
| else |
| dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; |
| |
| if (!dram_speed_mts[i] && i > 0) |
| dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; |
| else |
| dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; |
| |
| /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ |
| /* PHYCLK_D18, PHYCLK_D32 */ |
| dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; |
| dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; |
| } |
| } else { |
| build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params, |
| dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); |
| } |
| |
| /* Re-init DML with updated bb */ |
| dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); |
| if (dc->current_state) |
| dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); |
| } |
| |
| if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) { |
| unsigned int i = 0; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; |
| |
| dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels = |
| dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels; |
| |
| for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) { |
| if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz) |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz; |
| } |
| |
| for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) { |
| if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz) |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz; |
| } |
| |
| for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) { |
| if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz) |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz; |
| } |
| |
| for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) { |
| if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz) |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz; |
| } |
| |
| for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) { |
| if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz) |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz; |
| } |
| |
| for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) { |
| if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) { |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; |
| dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz = |
| dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; |
| } |
| } |
| } |
| } |
| |
| void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes, |
| int pipe_cnt) |
| { |
| dc_assert_fp_enabled(); |
| |
| pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; |
| pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; |
| } |
| |
| bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe) |
| { |
| bool allow = false; |
| uint32_t refresh_rate = 0; |
| uint32_t min_refresh = subvp_active_margin_list.min_refresh; |
| uint32_t max_refresh = subvp_active_margin_list.max_refresh; |
| uint32_t i; |
| |
| for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) { |
| uint32_t width = subvp_active_margin_list.res[i].width; |
| uint32_t height = subvp_active_margin_list.res[i].height; |
| |
| refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + |
| pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); |
| refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); |
| refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); |
| |
| if (refresh_rate >= min_refresh && refresh_rate <= max_refresh && |
| dcn32_check_native_scaling_for_res(pipe, width, height)) { |
| allow = true; |
| break; |
| } |
| } |
| return allow; |
| } |
| |
| /** |
| * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp |
| * |
| * @dc: Current DC state |
| * @context: New DC state to be programmed |
| * @pipe: Pipe to be considered for use in subvp |
| * |
| * On high refresh rate display configs, we will allow subvp under the following conditions: |
| * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440 |
| * 2. Refresh rate is between 120hz - 165hz |
| * 3. No scaling |
| * 4. Freesync is inactive |
| * 5. For single display cases, freesync must be disabled |
| * |
| * Return: True if pipe can be used for subvp, false otherwise |
| */ |
| bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe) |
| { |
| bool allow = false; |
| uint32_t refresh_rate = 0; |
| uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh; |
| uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh; |
| uint32_t min_refresh = subvp_max_refresh; |
| uint32_t i; |
| |
| /* Only allow SubVP on high refresh displays if all connected displays |
| * are considered "high refresh" (i.e. >= 120hz). We do not want to |
| * allow combinations such as 120hz (SubVP) + 60hz (SubVP). |
| */ |
| for (i = 0; i < dc->res_pool->pipe_count; i++) { |
| struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; |
| |
| if (!pipe_ctx->stream) |
| continue; |
| refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 + |
| pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1) |
| / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total); |
| |
| if (refresh_rate < min_refresh) |
| min_refresh = refresh_rate; |
| } |
| |
| if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream && |
| pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) { |
| refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + |
| pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) |
| / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); |
| if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) { |
| for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) { |
| uint32_t width = subvp_high_refresh_list.res[i].width; |
| uint32_t height = subvp_high_refresh_list.res[i].height; |
| |
| if (dcn32_check_native_scaling_for_res(pipe, width, height)) { |
| if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) { |
| allow = true; |
| break; |
| } |
| } |
| } |
| } |
| } |
| return allow; |
| } |
| |
| /** |
| * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy |
| * |
| * @dc: Current DC state |
| * @context: New DC state to be programmed |
| * |
| * Return: Max vratio for prefetch |
| */ |
| double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context) |
| { |
| double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4 |
| int i; |
| |
| /* For single display MPO configs, allow the max vratio to be 8 |
| * if any plane is YUV420 format |
| */ |
| if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) { |
| for (i = 0; i < context->stream_status[0].plane_count; i++) { |
| if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr || |
| context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) { |
| max_vratio_pre = __DML_MAX_VRATIO_PRE__; |
| } |
| } |
| } |
| return max_vratio_pre; |
| } |
| |
| /** |
| * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case |
| * |
| * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config). |
| * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the |
| * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has |
| * ActiveMargin <= 0 to be the FPO stream candidate if found. |
| * |
| * |
| * @dc: current dc state |
| * @context: new dc state |
| * @fpo_candidate_stream: pointer to FPO stream candidate if one is found |
| * |
| * Return: void |
| */ |
| void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream) |
| { |
| unsigned int i, pipe_idx; |
| const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| /* In DCN32/321, FPO uses per-pipe P-State force. |
| * If there's no planes, HUBP is power gated and |
| * therefore programming UCLK_PSTATE_FORCE does |
| * nothing (P-State will always be asserted naturally |
| * on a pipe that has HUBP power gated. Therefore we |
| * only want to enable FPO if the FPO pipe has both |
| * a stream and a plane. |
| */ |
| if (!pipe->stream || !pipe->plane_state) |
| continue; |
| |
| if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) { |
| *fpo_candidate_stream = pipe->stream; |
| break; |
| } |
| pipe_idx++; |
| } |
| } |
| |
| /** |
| * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE |
| * |
| * @dc: current dc state |
| * @context: new dc state |
| * @fpo_candidate_stream: candidate stream to be chosen for FPO |
| * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found" |
| * |
| * Return: True if VACTIVE display is found, false otherwise |
| */ |
| bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us) |
| { |
| unsigned int i, pipe_idx; |
| const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
| bool vactive_found = true; |
| unsigned int blank_us = 0; |
| |
| for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
| const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
| |
| if (!pipe->stream) |
| continue; |
| |
| /* Don't need to check for vactive margin on the FPO candidate stream */ |
| if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) { |
| pipe_idx++; |
| continue; |
| } |
| |
| /* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin |
| * in order for us to have found a valid "vactive" config for FPO + Vactive |
| */ |
| blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total / |
| (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000; |
| if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us || |
| pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) { |
| vactive_found = false; |
| break; |
| } |
| pipe_idx++; |
| } |
| return vactive_found; |
| } |
| |
| void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb) |
| { |
| dc_assert_fp_enabled(); |
| dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0; |
| } |
| |
| void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context) |
| { |
| // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue) |
| if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) && |
| dc->dml.soc.num_chans <= 8) { |
| int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; |
| |
| if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 && |
| num_mclk_levels > 1) { |
| context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16; |
| context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; |
| } |
| } |
| } |