blob: 2836f28fa3af05b9fb907e0f7e4254bd238bcfc6 [file] [log] [blame]
// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dc_spl.h"
#include "dc_spl_scl_filters.h"
#include "dc_spl_isharp_filters.h"
#define IDENTITY_RATIO(ratio) (dc_fixpt_u2d19(ratio) == (1 << 19))
#define MIN_VIEWPORT_SIZE 12
static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
{
struct spl_rect rec;
int r0_x_end = r0->x + r0->width;
int r1_x_end = r1->x + r1->width;
int r0_y_end = r0->y + r0->height;
int r1_y_end = r1->y + r1->height;
rec.x = r0->x > r1->x ? r0->x : r1->x;
rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
rec.y = r0->y > r1->y ? r0->y : r1->y;
rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
/* in case that there is no intersection */
if (rec.width < 0 || rec.height < 0)
memset(&rec, 0, sizeof(rec));
return rec;
}
static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
{
struct spl_rect rec_out = *rec_in;
rec_out.x += x;
rec_out.y += y;
return rec_out;
}
static struct spl_rect calculate_plane_rec_in_timing_active(
struct spl_in *spl_in,
const struct spl_rect *rec_in)
{
/*
* The following diagram shows an example where we map a 1920x1200
* desktop to a 2560x1440 timing with a plane rect in the middle
* of the screen. To map a plane rect from Stream Source to Timing
* Active space, we first multiply stream scaling ratios (i.e 2304/1920
* horizontal and 1440/1200 vertical) to the plane's x and y, then
* we add stream destination offsets (i.e 128 horizontal, 0 vertical).
* This will give us a plane rect's position in Timing Active. However
* we have to remove the fractional. The rule is that we find left/right
* and top/bottom positions and round the value to the adjacent integer.
*
* Stream Source Space
* ------------
* __________________________________________________
* |Stream Source (1920 x 1200) ^ |
* | y |
* | <------- w --------|> |
* | __________________V |
* |<-- x -->|Plane//////////////| ^ |
* | |(pre scale)////////| | |
* | |///////////////////| | |
* | |///////////////////| h |
* | |///////////////////| | |
* | |///////////////////| | |
* | |///////////////////| V |
* | |
* | |
* |__________________________________________________|
*
*
* Timing Active Space
* ---------------------------------
*
* Timing Active (2560 x 1440)
* __________________________________________________
* |*****| Stteam Destination (2304 x 1440) |*****|
* |*****| |*****|
* |<128>| |*****|
* |*****| __________________ |*****|
* |*****| |Plane/////////////| |*****|
* |*****| |(post scale)//////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |*****|
* |*****| |*****|
* |*****| |*****|
* |*****|______________________________________|*****|
*
* So the resulting formulas are shown below:
*
* recout_x = 128 + round(plane_x * 2304 / 1920)
* recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
* recout_y = 0 + round(plane_y * 1440 / 1280)
* recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
*
* NOTE: fixed point division is not error free. To reduce errors
* introduced by fixed point division, we divide only after
* multiplication is complete.
*/
const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
struct spl_rect rec_out = {0};
struct fixed31_32 temp;
temp = dc_fixpt_from_fraction(rec_in->x * stream_dst->width,
stream_src->width);
rec_out.x = stream_dst->x + dc_fixpt_round(temp);
temp = dc_fixpt_from_fraction(
(rec_in->x + rec_in->width) * stream_dst->width,
stream_src->width);
rec_out.width = stream_dst->x + dc_fixpt_round(temp) - rec_out.x;
temp = dc_fixpt_from_fraction(rec_in->y * stream_dst->height,
stream_src->height);
rec_out.y = stream_dst->y + dc_fixpt_round(temp);
temp = dc_fixpt_from_fraction(
(rec_in->y + rec_in->height) * stream_dst->height,
stream_src->height);
rec_out.height = stream_dst->y + dc_fixpt_round(temp) - rec_out.y;
return rec_out;
}
static struct spl_rect calculate_mpc_slice_in_timing_active(
struct spl_in *spl_in,
struct spl_rect *plane_clip_rec)
{
int mpc_slice_count = spl_in->basic_in.mpc_combine_h;
int mpc_slice_idx = spl_in->basic_in.mpc_combine_v;
int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
struct spl_rect mpc_rec;
mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
mpc_rec.height = plane_clip_rec->height;
mpc_rec.y = plane_clip_rec->y;
ASSERT(mpc_slice_count == 1 ||
spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
mpc_rec.width % 2 == 0);
/* extra pixels in the division remainder need to go to pipes after
* the extra pixel index minus one(epimo) defined here as:
*/
if (mpc_slice_idx > epimo) {
mpc_rec.x += mpc_slice_idx - epimo - 1;
mpc_rec.width += 1;
}
if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
ASSERT(mpc_rec.height % 2 == 0);
mpc_rec.height /= 2;
}
return mpc_rec;
}
static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
{
int odm_slice_count = spl_in->basic_out.odm_combine_factor;
int odm_slice_idx = spl_in->odm_slice_index;
bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
int h_active = spl_in->basic_out.output_size.width;
int v_active = spl_in->basic_out.output_size.height;
int odm_slice_width = h_active / odm_slice_count;
struct spl_rect odm_rec;
odm_rec.x = odm_slice_width * odm_slice_idx;
odm_rec.width = is_last_odm_slice ?
/* last slice width is the reminder of h_active */
h_active - odm_slice_width * (odm_slice_count - 1) :
/* odm slice width is the floor of h_active / count */
odm_slice_width;
odm_rec.y = 0;
odm_rec.height = v_active;
return odm_rec;
}
static void spl_calculate_recout(struct spl_in *spl_in, struct spl_out *spl_out)
{
/*
* A plane clip represents the desired plane size and position in Stream
* Source Space. Stream Source is the destination where all planes are
* blended (i.e. positioned, scaled and overlaid). It is a canvas where
* all planes associated with the current stream are drawn together.
* After Stream Source is completed, we will further scale and
* reposition the entire canvas of the stream source to Stream
* Destination in Timing Active Space. This could be due to display
* overscan adjustment where we will need to rescale and reposition all
* the planes so they can fit into a TV with overscan or downscale
* upscale features such as GPU scaling or VSR.
*
* This two step blending is a virtual procedure in software. In
* hardware there is no such thing as Stream Source. all planes are
* blended once in Timing Active Space. Software virtualizes a Stream
* Source space to decouple the math complicity so scaling param
* calculation focuses on one step at a time.
*
* In the following two diagrams, user applied 10% overscan adjustment
* so the Stream Source needs to be scaled down a little before mapping
* to Timing Active Space. As a result the Plane Clip is also scaled
* down by the same ratio, Plane Clip position (i.e. x and y) with
* respect to Stream Source is also scaled down. To map it in Timing
* Active Space additional x and y offsets from Stream Destination are
* added to Plane Clip as well.
*
* Stream Source Space
* ------------
* __________________________________________________
* |Stream Source (3840 x 2160) ^ |
* | y |
* | | |
* | __________________V |
* |<-- x -->|Plane Clip/////////| |
* | |(pre scale)////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |
* | |
* |__________________________________________________|
*
*
* Timing Active Space (3840 x 2160)
* ---------------------------------
*
* Timing Active
* __________________________________________________
* | y_____________________________________________ |
* |x |Stream Destination (3456 x 1944) | |
* | | | |
* | | __________________ | |
* | | |Plane Clip////////| | |
* | | |(post scale)//////| | |
* | | |//////////////////| | |
* | | |//////////////////| | |
* | | |//////////////////| | |
* | | |//////////////////| | |
* | | | |
* | | | |
* | |____________________________________________| |
* |__________________________________________________|
*
*
* In Timing Active Space a plane clip could be further sliced into
* pieces called MPC slices. Each Pipe Context is responsible for
* processing only one MPC slice so the plane processing workload can be
* distributed to multiple DPP Pipes. MPC slices could be blended
* together to a single ODM slice. Each ODM slice is responsible for
* processing a portion of Timing Active divided horizontally so the
* output pixel processing workload can be distributed to multiple OPP
* pipes. All ODM slices are mapped together in ODM block so all MPC
* slices belong to different ODM slices could be pieced together to
* form a single image in Timing Active. MPC slices must belong to
* single ODM slice. If an MPC slice goes across ODM slice boundary, it
* needs to be divided into two MPC slices one for each ODM slice.
*
* In the following diagram the output pixel processing workload is
* divided horizontally into two ODM slices one for each OPP blend tree.
* OPP0 blend tree is responsible for processing left half of Timing
* Active, while OPP2 blend tree is responsible for processing right
* half.
*
* The plane has two MPC slices. However since the right MPC slice goes
* across ODM boundary, two DPP pipes are needed one for each OPP blend
* tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
*
* Assuming that we have a Pipe Context associated with OPP0 and DPP1
* working on processing the plane in the diagram. We want to know the
* width and height of the shaded rectangle and its relative position
* with respect to the ODM slice0. This is called the recout of the pipe
* context.
*
* Planes can be at arbitrary size and position and there could be an
* arbitrary number of MPC and ODM slices. The algorithm needs to take
* all scenarios into account.
*
* Timing Active Space (3840 x 2160)
* ---------------------------------
*
* Timing Active
* __________________________________________________
* |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
* | y | |
* | | <- w -> |
* | _____V________|____ |
* | |DPP0 ^ |DPP1 |DPP2| |
* |<------ x |-----|->|/////| | |
* | | | |/////| | |
* | | h |/////| | |
* | | | |/////| | |
* | |_____V__|/////|____| |
* | | |
* | | |
* | | |
* |_________________________|________________________|
*
*
*/
struct spl_rect plane_clip;
struct spl_rect mpc_slice_of_plane_clip;
struct spl_rect odm_slice;
struct spl_rect overlapping_area;
plane_clip = calculate_plane_rec_in_timing_active(spl_in,
&spl_in->basic_in.clip_rect);
/* guard plane clip from drawing beyond stream dst here */
plane_clip = intersect_rec(&plane_clip,
&spl_in->basic_out.dst_rect);
mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
spl_in, &plane_clip);
odm_slice = calculate_odm_slice_in_timing_active(spl_in);
overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
if (overlapping_area.height > 0 &&
overlapping_area.width > 0) {
/* shift the overlapping area so it is with respect to current
* ODM slice's position
*/
spl_out->scl_data.recout = shift_rec(
&overlapping_area,
-odm_slice.x, -odm_slice.y);
spl_out->scl_data.recout.height -=
spl_in->debug.visual_confirm_base_offset;
spl_out->scl_data.recout.height -=
spl_in->debug.visual_confirm_dpp_offset;
} else
/* if there is no overlap, zero recout */
memset(&spl_out->scl_data.recout, 0,
sizeof(struct spl_rect));
}
/* Calculate scaling ratios */
static void spl_calculate_scaling_ratios(struct spl_in *spl_in, struct spl_out *spl_out)
{
const int in_w = spl_in->basic_out.src_rect.width;
const int in_h = spl_in->basic_out.src_rect.height;
const int out_w = spl_in->basic_out.dst_rect.width;
const int out_h = spl_in->basic_out.dst_rect.height;
struct spl_rect surf_src = spl_in->basic_in.src_rect;
/*Swap surf_src height and width since scaling ratios are in recout rotation*/
if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
swap(surf_src.height, surf_src.width);
spl_out->scl_data.ratios.horz = dc_fixpt_from_fraction(
surf_src.width,
spl_in->basic_in.dst_rect.width);
spl_out->scl_data.ratios.vert = dc_fixpt_from_fraction(
surf_src.height,
spl_in->basic_in.dst_rect.height);
if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
spl_out->scl_data.ratios.horz.value *= 2;
else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
spl_out->scl_data.ratios.vert.value *= 2;
spl_out->scl_data.ratios.vert.value = div64_s64(
spl_out->scl_data.ratios.vert.value * in_h, out_h);
spl_out->scl_data.ratios.horz.value = div64_s64(
spl_out->scl_data.ratios.horz.value * in_w, out_w);
spl_out->scl_data.ratios.horz_c = spl_out->scl_data.ratios.horz;
spl_out->scl_data.ratios.vert_c = spl_out->scl_data.ratios.vert;
if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
spl_out->scl_data.ratios.horz_c.value /= 2;
spl_out->scl_data.ratios.vert_c.value /= 2;
}
spl_out->scl_data.ratios.horz = dc_fixpt_truncate(
spl_out->scl_data.ratios.horz, 19);
spl_out->scl_data.ratios.vert = dc_fixpt_truncate(
spl_out->scl_data.ratios.vert, 19);
spl_out->scl_data.ratios.horz_c = dc_fixpt_truncate(
spl_out->scl_data.ratios.horz_c, 19);
spl_out->scl_data.ratios.vert_c = dc_fixpt_truncate(
spl_out->scl_data.ratios.vert_c, 19);
}
/* Calculate Viewport size */
static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_out *spl_out)
{
spl_out->scl_data.viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.horz,
spl_out->scl_data.recout.width));
spl_out->scl_data.viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.vert,
spl_out->scl_data.recout.height));
spl_out->scl_data.viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.horz_c,
spl_out->scl_data.recout.width));
spl_out->scl_data.viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.vert_c,
spl_out->scl_data.recout.height));
if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
swap(spl_out->scl_data.viewport.width, spl_out->scl_data.viewport.height);
swap(spl_out->scl_data.viewport_c.width, spl_out->scl_data.viewport_c.height);
}
}
static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
bool horizontal_mirror,
bool *orthogonal_rotation,
bool *flip_vert_scan_dir,
bool *flip_horz_scan_dir)
{
*orthogonal_rotation = false;
*flip_vert_scan_dir = false;
*flip_horz_scan_dir = false;
if (rotation == SPL_ROTATION_ANGLE_180) {
*flip_vert_scan_dir = true;
*flip_horz_scan_dir = true;
} else if (rotation == SPL_ROTATION_ANGLE_90) {
*orthogonal_rotation = true;
*flip_horz_scan_dir = true;
} else if (rotation == SPL_ROTATION_ANGLE_270) {
*orthogonal_rotation = true;
*flip_vert_scan_dir = true;
}
if (horizontal_mirror)
*flip_horz_scan_dir = !*flip_horz_scan_dir;
}
/*
* We completely calculate vp offset, size and inits here based entirely on scaling
* ratios and recout for pixel perfect pipe combine.
*/
static void spl_calculate_init_and_vp(bool flip_scan_dir,
int recout_offset_within_recout_full,
int recout_size,
int src_size,
int taps,
struct fixed31_32 ratio,
struct fixed31_32 init_adj,
struct fixed31_32 *init,
int *vp_offset,
int *vp_size)
{
struct fixed31_32 temp;
int int_part;
/*
* First of the taps starts sampling pixel number <init_int_part> corresponding to recout
* pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
* All following calculations are based on this logic.
*
* Init calculated according to formula:
* init = (scaling_ratio + number_of_taps + 1) / 2
* init_bot = init + scaling_ratio
* to get pixel perfect combine add the fraction from calculating vp offset
*/
temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
*vp_offset = dc_fixpt_floor(temp);
temp.value &= 0xffffffff;
*init = dc_fixpt_add(dc_fixpt_div_int(dc_fixpt_add_int(ratio, taps + 1), 2), temp);
*init = dc_fixpt_add(*init, init_adj);
*init = dc_fixpt_truncate(*init, 19);
/*
* If viewport has non 0 offset and there are more taps than covered by init then
* we should decrease the offset and increase init so we are never sampling
* outside of viewport.
*/
int_part = dc_fixpt_floor(*init);
if (int_part < taps) {
int_part = taps - int_part;
if (int_part > *vp_offset)
int_part = *vp_offset;
*vp_offset -= int_part;
*init = dc_fixpt_add_int(*init, int_part);
}
/*
* If taps are sampling outside of viewport at end of recout and there are more pixels
* available in the surface we should increase the viewport size, regardless set vp to
* only what is used.
*/
temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
*vp_size = dc_fixpt_floor(temp);
if (*vp_size + *vp_offset > src_size)
*vp_size = src_size - *vp_offset;
/* We did all the math assuming we are scanning same direction as display does,
* however mirror/rotation changes how vp scans vs how it is offset. If scan direction
* is flipped we simply need to calculate offset from the other side of plane.
* Note that outside of viewport all scaling hardware works in recout space.
*/
if (flip_scan_dir)
*vp_offset = src_size - *vp_offset - *vp_size;
}
static bool spl_is_yuv420(enum spl_pixel_format format)
{
if ((format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN) &&
(format <= SPL_PIXEL_FORMAT_VIDEO_END))
return true;
return false;
}
/*Calculate inits and viewport */
static void spl_calculate_inits_and_viewports(struct spl_in *spl_in, struct spl_out *spl_out)
{
struct spl_rect src = spl_in->basic_in.src_rect;
struct spl_rect recout_dst_in_active_timing;
struct spl_rect recout_clip_in_active_timing;
struct spl_rect recout_clip_in_recout_dst;
struct spl_rect overlap_in_active_timing;
struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
struct fixed31_32 init_adj_h = dc_fixpt_zero;
struct fixed31_32 init_adj_v = dc_fixpt_zero;
recout_clip_in_active_timing = shift_rec(
&spl_out->scl_data.recout, odm_slice.x, odm_slice.y);
recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
spl_in, &spl_in->basic_in.dst_rect);
overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
&recout_dst_in_active_timing);
if (overlap_in_active_timing.width > 0 &&
overlap_in_active_timing.height > 0)
recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
-recout_dst_in_active_timing.x,
-recout_dst_in_active_timing.y);
else
memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
/*
* Work in recout rotation since that requires less transformations
*/
spl_get_vp_scan_direction(
spl_in->basic_in.rotation,
spl_in->basic_in.horizontal_mirror,
&orthogonal_rotation,
&flip_vert_scan_dir,
&flip_horz_scan_dir);
if (orthogonal_rotation) {
swap(src.width, src.height);
swap(flip_vert_scan_dir, flip_horz_scan_dir);
}
if (spl_is_yuv420(spl_in->basic_in.format)) {
/* this gives the direction of the cositing (negative will move
* left, right otherwise)
*/
int sign = 1;
switch (spl_in->basic_in.cositing) {
case CHROMA_COSITING_LEFT:
init_adj_h = dc_fixpt_zero;
init_adj_v = dc_fixpt_from_fraction(sign, 2);
break;
case CHROMA_COSITING_NONE:
init_adj_h = dc_fixpt_from_fraction(sign, 2);
init_adj_v = dc_fixpt_from_fraction(sign, 2);
break;
case CHROMA_COSITING_TOPLEFT:
default:
init_adj_h = dc_fixpt_zero;
init_adj_v = dc_fixpt_zero;
break;
}
}
spl_calculate_init_and_vp(
flip_horz_scan_dir,
recout_clip_in_recout_dst.x,
spl_out->scl_data.recout.width,
src.width,
spl_out->scl_data.taps.h_taps,
spl_out->scl_data.ratios.horz,
dc_fixpt_zero,
&spl_out->scl_data.inits.h,
&spl_out->scl_data.viewport.x,
&spl_out->scl_data.viewport.width);
spl_calculate_init_and_vp(
flip_horz_scan_dir,
recout_clip_in_recout_dst.x,
spl_out->scl_data.recout.width,
src.width / vpc_div,
spl_out->scl_data.taps.h_taps_c,
spl_out->scl_data.ratios.horz_c,
init_adj_h,
&spl_out->scl_data.inits.h_c,
&spl_out->scl_data.viewport_c.x,
&spl_out->scl_data.viewport_c.width);
spl_calculate_init_and_vp(
flip_vert_scan_dir,
recout_clip_in_recout_dst.y,
spl_out->scl_data.recout.height,
src.height,
spl_out->scl_data.taps.v_taps,
spl_out->scl_data.ratios.vert,
dc_fixpt_zero,
&spl_out->scl_data.inits.v,
&spl_out->scl_data.viewport.y,
&spl_out->scl_data.viewport.height);
spl_calculate_init_and_vp(
flip_vert_scan_dir,
recout_clip_in_recout_dst.y,
spl_out->scl_data.recout.height,
src.height / vpc_div,
spl_out->scl_data.taps.v_taps_c,
spl_out->scl_data.ratios.vert_c,
init_adj_v,
&spl_out->scl_data.inits.v_c,
&spl_out->scl_data.viewport_c.y,
&spl_out->scl_data.viewport_c.height);
if (orthogonal_rotation) {
swap(spl_out->scl_data.viewport.x, spl_out->scl_data.viewport.y);
swap(spl_out->scl_data.viewport.width, spl_out->scl_data.viewport.height);
swap(spl_out->scl_data.viewport_c.x, spl_out->scl_data.viewport_c.y);
swap(spl_out->scl_data.viewport_c.width, spl_out->scl_data.viewport_c.height);
}
spl_out->scl_data.viewport.x += src.x;
spl_out->scl_data.viewport.y += src.y;
ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
spl_out->scl_data.viewport_c.x += src.x / vpc_div;
spl_out->scl_data.viewport_c.y += src.y / vpc_div;
}
static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
{
/*
* Handle side by side and top bottom 3d recout offsets after vp calculation
* since 3d is special and needs to calculate vp as if there is no recout offset
* This may break with rotation, good thing we aren't mixing hw rotation and 3d
*/
if (spl_in->basic_in.mpc_combine_v) {
ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
recout->y += recout->height;
else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
recout->x += recout->width;
}
}
static void spl_clamp_viewport(struct spl_rect *viewport)
{
/* Clamp minimum viewport size */
if (viewport->height < MIN_VIEWPORT_SIZE)
viewport->height = MIN_VIEWPORT_SIZE;
if (viewport->width < MIN_VIEWPORT_SIZE)
viewport->width = MIN_VIEWPORT_SIZE;
}
static bool spl_dscl_is_420_format(enum spl_pixel_format format)
{
if (format == SPL_PIXEL_FORMAT_420BPP8 ||
format == SPL_PIXEL_FORMAT_420BPP10)
return true;
else
return false;
}
static bool spl_dscl_is_video_format(enum spl_pixel_format format)
{
if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
&& format <= SPL_PIXEL_FORMAT_VIDEO_END)
return true;
else
return false;
}
static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
const struct spl_scaler_data *data)
{
const long long one = dc_fixpt_one.value;
enum spl_pixel_format pixel_format = spl_in->basic_in.format;
if (data->ratios.horz.value == one
&& data->ratios.vert.value == one
&& data->ratios.horz_c.value == one
&& data->ratios.vert_c.value == one
&& !spl_in->basic_out.always_scale)
return SCL_MODE_SCALING_444_BYPASS;
if (!spl_dscl_is_420_format(pixel_format)) {
if (spl_dscl_is_video_format(pixel_format))
return SCL_MODE_SCALING_444_YCBCR_ENABLE;
else
return SCL_MODE_SCALING_444_RGB_ENABLE;
}
if (data->ratios.horz.value == one && data->ratios.vert.value == one)
return SCL_MODE_SCALING_420_LUMA_BYPASS;
if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
return SCL_MODE_SCALING_420_CHROMA_BYPASS;
return SCL_MODE_SCALING_420_YCBCR_ENABLE;
}
/* Calculate optimal number of taps */
static bool spl_get_optimal_number_of_taps(
int max_downscale_src_width, struct spl_in *spl_in, struct spl_out *spl_out,
const struct spl_taps *in_taps)
{
int num_part_y, num_part_c;
int max_taps_y, max_taps_c;
int min_taps_y, min_taps_c;
enum lb_memory_config lb_config;
if (spl_out->scl_data.viewport.width > spl_out->scl_data.h_active &&
max_downscale_src_width != 0 &&
spl_out->scl_data.viewport.width > max_downscale_src_width)
return false;
/*
* Set default taps if none are provided
* From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
* taps = 4 for upscaling
*/
if (in_taps->h_taps == 0) {
if (dc_fixpt_ceil(spl_out->scl_data.ratios.horz) > 1)
spl_out->scl_data.taps.h_taps = min(2 * dc_fixpt_ceil(spl_out->scl_data.ratios.horz), 8);
else
spl_out->scl_data.taps.h_taps = 4;
} else
spl_out->scl_data.taps.h_taps = in_taps->h_taps;
if (in_taps->v_taps == 0) {
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert) > 1)
spl_out->scl_data.taps.v_taps = min(dc_fixpt_ceil(dc_fixpt_mul_int(
spl_out->scl_data.ratios.vert, 2)), 8);
else
spl_out->scl_data.taps.v_taps = 4;
} else
spl_out->scl_data.taps.v_taps = in_taps->v_taps;
if (in_taps->v_taps_c == 0) {
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c) > 1)
spl_out->scl_data.taps.v_taps_c = min(dc_fixpt_ceil(dc_fixpt_mul_int(
spl_out->scl_data.ratios.vert_c, 2)), 8);
else
spl_out->scl_data.taps.v_taps_c = 4;
} else
spl_out->scl_data.taps.v_taps_c = in_taps->v_taps_c;
if (in_taps->h_taps_c == 0) {
if (dc_fixpt_ceil(spl_out->scl_data.ratios.horz_c) > 1)
spl_out->scl_data.taps.h_taps_c = min(2 * dc_fixpt_ceil(spl_out->scl_data.ratios.horz_c), 8);
else
spl_out->scl_data.taps.h_taps_c = 4;
} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
/* Only 1 and even h_taps_c are supported by hw */
spl_out->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
else
spl_out->scl_data.taps.h_taps_c = in_taps->h_taps_c;
/*Ensure we can support the requested number of vtaps*/
min_taps_y = dc_fixpt_ceil(spl_out->scl_data.ratios.vert);
min_taps_c = dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c);
/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
|| (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10))
lb_config = LB_MEMORY_CONFIG_3;
else
lb_config = LB_MEMORY_CONFIG_0;
// Determine max vtap support by calculating how much line buffer can fit
spl_in->funcs->spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_out->scl_data,
lb_config, &num_part_y, &num_part_c);
/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert) > 2)
max_taps_y = num_part_y - (dc_fixpt_ceil(spl_out->scl_data.ratios.vert) - 2);
else
max_taps_y = num_part_y;
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c) > 2)
max_taps_c = num_part_c - (dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c) - 2);
else
max_taps_c = num_part_c;
if (max_taps_y < min_taps_y)
return false;
else if (max_taps_c < min_taps_c)
return false;
if (spl_out->scl_data.taps.v_taps > max_taps_y)
spl_out->scl_data.taps.v_taps = max_taps_y;
if (spl_out->scl_data.taps.v_taps_c > max_taps_c)
spl_out->scl_data.taps.v_taps_c = max_taps_c;
if (spl_in->prefer_easf) {
// EASF can be enabled only for taps 3,4,6
// If optimal no of taps is 5, then set it to 4
// If optimal no of taps is 7 or 8, then set it to 6
if (spl_out->scl_data.taps.v_taps == 5)
spl_out->scl_data.taps.v_taps = 4;
if (spl_out->scl_data.taps.v_taps == 7 || spl_out->scl_data.taps.v_taps == 8)
spl_out->scl_data.taps.v_taps = 6;
if (spl_out->scl_data.taps.v_taps_c == 5)
spl_out->scl_data.taps.v_taps_c = 4;
if (spl_out->scl_data.taps.v_taps_c == 7 || spl_out->scl_data.taps.v_taps_c == 8)
spl_out->scl_data.taps.v_taps_c = 6;
if (spl_out->scl_data.taps.h_taps == 5)
spl_out->scl_data.taps.h_taps = 4;
if (spl_out->scl_data.taps.h_taps == 7 || spl_out->scl_data.taps.h_taps == 8)
spl_out->scl_data.taps.h_taps = 6;
if (spl_out->scl_data.taps.h_taps_c == 5)
spl_out->scl_data.taps.h_taps_c = 4;
if (spl_out->scl_data.taps.h_taps_c == 7 || spl_out->scl_data.taps.h_taps_c == 8)
spl_out->scl_data.taps.h_taps_c = 6;
} // end of if prefer_easf
if (!spl_in->basic_out.always_scale) {
if (IDENTITY_RATIO(spl_out->scl_data.ratios.horz))
spl_out->scl_data.taps.h_taps = 1;
if (IDENTITY_RATIO(spl_out->scl_data.ratios.vert))
spl_out->scl_data.taps.v_taps = 1;
if (IDENTITY_RATIO(spl_out->scl_data.ratios.horz_c))
spl_out->scl_data.taps.h_taps_c = 1;
if (IDENTITY_RATIO(spl_out->scl_data.ratios.vert_c))
spl_out->scl_data.taps.v_taps_c = 1;
}
return true;
}
static void spl_set_black_color_data(enum spl_pixel_format format,
struct scl_black_color *scl_black_color)
{
bool ycbcr = format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
&& format <= SPL_PIXEL_FORMAT_VIDEO_END;
if (ycbcr) {
scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
} else {
scl_black_color->offset_rgb_y = 0x0;
scl_black_color->offset_rgb_cbcr = 0x0;
}
}
static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *scl_data)
{
struct fixed31_32 bot;
dscl_prog_data->ratios.h_scale_ratio = dc_fixpt_u3d19(scl_data->ratios.horz) << 5;
dscl_prog_data->ratios.v_scale_ratio = dc_fixpt_u3d19(scl_data->ratios.vert) << 5;
dscl_prog_data->ratios.h_scale_ratio_c = dc_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
dscl_prog_data->ratios.v_scale_ratio_c = dc_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
/*
* 0.24 format for fraction, first five bits zeroed
*/
dscl_prog_data->init.h_filter_init_frac =
dc_fixpt_u0d19(scl_data->inits.h) << 5;
dscl_prog_data->init.h_filter_init_int =
dc_fixpt_floor(scl_data->inits.h);
dscl_prog_data->init.h_filter_init_frac_c =
dc_fixpt_u0d19(scl_data->inits.h_c) << 5;
dscl_prog_data->init.h_filter_init_int_c =
dc_fixpt_floor(scl_data->inits.h_c);
dscl_prog_data->init.v_filter_init_frac =
dc_fixpt_u0d19(scl_data->inits.v) << 5;
dscl_prog_data->init.v_filter_init_int =
dc_fixpt_floor(scl_data->inits.v);
dscl_prog_data->init.v_filter_init_frac_c =
dc_fixpt_u0d19(scl_data->inits.v_c) << 5;
dscl_prog_data->init.v_filter_init_int_c =
dc_fixpt_floor(scl_data->inits.v_c);
bot = dc_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
dscl_prog_data->init.v_filter_init_bot_frac = dc_fixpt_u0d19(bot) << 5;
dscl_prog_data->init.v_filter_init_bot_int = dc_fixpt_floor(bot);
bot = dc_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
dscl_prog_data->init.v_filter_init_bot_frac_c = dc_fixpt_u0d19(bot) << 5;
dscl_prog_data->init.v_filter_init_bot_int_c = dc_fixpt_floor(bot);
}
static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *scl_data)
{
dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
}
static const uint16_t *spl_dscl_get_filter_coeffs_64p(int taps, struct fixed31_32 ratio)
{
if (taps == 8)
return spl_get_filter_8tap_64p(ratio);
else if (taps == 7)
return spl_get_filter_7tap_64p(ratio);
else if (taps == 6)
return spl_get_filter_6tap_64p(ratio);
else if (taps == 5)
return spl_get_filter_5tap_64p(ratio);
else if (taps == 4)
return spl_get_filter_4tap_64p(ratio);
else if (taps == 3)
return spl_get_filter_3tap_64p(ratio);
else if (taps == 2)
return spl_get_filter_2tap_64p();
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
return NULL;
}
}
static void spl_set_filters_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data)
{
dscl_prog_data->filter_h = spl_dscl_get_filter_coeffs_64p(
data->taps.h_taps, data->ratios.horz);
dscl_prog_data->filter_v = spl_dscl_get_filter_coeffs_64p(
data->taps.v_taps, data->ratios.vert);
dscl_prog_data->filter_h_c = spl_dscl_get_filter_coeffs_64p(
data->taps.h_taps_c, data->ratios.horz_c);
dscl_prog_data->filter_v_c = spl_dscl_get_filter_coeffs_64p(
data->taps.v_taps_c, data->ratios.vert_c);
}
static const uint16_t *spl_dscl_get_blur_scale_coeffs_64p(int taps)
{
if ((taps == 3) || (taps == 4) || (taps == 6))
return spl_get_filter_isharp_bs_4tap_64p();
else {
/* should never happen, bug */
return NULL;
}
}
static void spl_set_blur_scale_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data)
{
dscl_prog_data->filter_blur_scale_h = spl_dscl_get_blur_scale_coeffs_64p(
data->taps.h_taps);
dscl_prog_data->filter_blur_scale_v = spl_dscl_get_blur_scale_coeffs_64p(
data->taps.v_taps);
}
/* Populate dscl prog data structure from scaler data calculated by SPL */
static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_out *spl_out)
{
struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
const struct spl_scaler_data *data = &spl_out->scl_data;
struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
// Set values for recout
dscl_prog_data->recout = spl_out->scl_data.recout;
// Set values for MPC Size
dscl_prog_data->mpc_size.width = spl_out->scl_data.h_active;
dscl_prog_data->mpc_size.height = spl_out->scl_data.v_active;
// SCL_MODE - Set SCL_MODE data
dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data);
// SCL_BLACK_COLOR
spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
/* Manually calculate scale ratio and init values */
spl_set_manual_ratio_init_data(dscl_prog_data, data);
// Set HTaps/VTaps
spl_set_taps_data(dscl_prog_data, data);
// Set viewport
dscl_prog_data->viewport = spl_out->scl_data.viewport;
// Set viewport_c
dscl_prog_data->viewport_c = spl_out->scl_data.viewport_c;
// Set filters data
spl_set_filters_data(dscl_prog_data, data);
}
/* Enable EASF ?*/
static bool enable_easf(int scale_ratio, int taps,
enum linear_light_scaling lls_pref, bool prefer_easf)
{
// Is downscaling > 6:1 ?
if (scale_ratio > 6) {
// END - No EASF support for downscaling > 6:1
return false;
}
// Is upscaling or downscaling up to 2:1?
if (scale_ratio <= 2) {
// Is linear scaling or EASF preferred?
if (lls_pref == LLS_PREF_YES || prefer_easf) {
// LB support taps 3, 4, 6
if (taps == 3 || taps == 4 || taps == 6) {
// END - EASF supported
return true;
}
}
}
// END - EASF not supported
return false;
}
/* Set EASF data */
static void spl_set_easf_data(struct dscl_prog_data *dscl_prog_data,
bool enable_easf_v, bool enable_easf_h, enum linear_light_scaling lls_pref,
enum spl_pixel_format format)
{
if (spl_is_yuv420(format)) /* TODO: 0 = RGB, 1 = YUV */
dscl_prog_data->easf_matrix_mode = 1;
else
dscl_prog_data->easf_matrix_mode = 0;
if (enable_easf_v) {
dscl_prog_data->easf_v_en = true;
dscl_prog_data->easf_v_ring = 0;
dscl_prog_data->easf_v_sharp_factor = 1;
dscl_prog_data->easf_v_bf1_en = 1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable
dscl_prog_data->easf_v_bf2_mode = 0xF; // 4-bit, BF2 calculation mode
dscl_prog_data->easf_v_bf3_mode = 2; // 2-bit, BF3 chroma mode correction calculation mode
dscl_prog_data->easf_v_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_v_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_v_bf2_roc_gain = 4; // U2.2, Rate Of Change control
dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
0x9F00;// FP1.5.10 [minCoef] (-0.036109167214271)
dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
0x24FE; // FP1.5.10 [upTiltMaxVal] ( 0.904556445553545)
dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
0x3940; // FP1.5.10 [dnTiltSlope] ( 0.910488988173371)
dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
0x359C; // FP1.5.10 [upTilt1Slope] ( 0.125620179040899)
dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
0x359C; // FP1.5.10 [upTilt2Slope] ( 0.006786817723568)
dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
0x9F00; // FP1.5.10 [upTilt2Offset] (-0.006139059716651)
dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
0x4000; // FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4]
dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
0x4100; // FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6]
dscl_prog_data->easf_v_ringest_eventap_gain1 =
0xB058; // FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024
dscl_prog_data->easf_v_ringest_eventap_gain2 =
0xA640; // FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024
dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
dscl_prog_data->easf_v_bf_mina = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
dscl_prog_data->easf_v_bf_minb = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
dscl_prog_data->easf_v_bf1_pwl_in_seg0 = -512; // S0.10, BF1 PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_in_seg1 = -20; // S0.10, BF1 PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = -56; // S7.3, BF1 Slope PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = -48; // S7.3, BF1 Slope PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = -240; // S7.3, BF1 Slope PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = -160; // S7.3, BF1 Slope PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7
dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_in_set1 =
0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62; // S0.6, BF3 Base PWL Segment 1
dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
0x13B8; // FP1.6.6, BF3 Slope PWL Segment 1
dscl_prog_data->easf_v_bf3_pwl_in_set2 =
0x0BB7; // FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
0x1356; // FP1.6.6, BF3 Slope PWL Segment 2
dscl_prog_data->easf_v_bf3_pwl_in_set3 =
0x0BF7; // FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
0x136B; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_v_bf3_pwl_in_set4 =
0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set4 = -50; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
0x1200; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_in_set5 =
0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
} else {
dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_in_set1 =
0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63; // S0.6, BF3 Base PWL Segment 1
dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896; // FP1.6.6, BF3 Slope PWL Segment 1
dscl_prog_data->easf_v_bf3_pwl_in_set2 =
0x0700; // FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810; // FP1.6.6, BF3 Slope PWL Segment 2
dscl_prog_data->easf_v_bf3_pwl_in_set3 =
0x0740; // FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
0x1878; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_v_bf3_pwl_in_set4 =
0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
dscl_prog_data->easf_v_bf3_pwl_base_set4 = -60; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_in_set5 =
0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
dscl_prog_data->easf_v_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
}
} else
dscl_prog_data->easf_v_en = false;
if (enable_easf_h) {
dscl_prog_data->easf_h_en = true;
dscl_prog_data->easf_h_ring = 0;
dscl_prog_data->easf_h_sharp_factor = 1;
dscl_prog_data->easf_h_bf1_en =
1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable
dscl_prog_data->easf_h_bf2_mode =
0xF; // 4-bit, BF2 calculation mode
dscl_prog_data->easf_h_bf3_mode =
2; // 2-bit, BF3 chroma mode correction calculation mode
dscl_prog_data->easf_h_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_h_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_h_bf2_roc_gain = 4; // U2.2, Rate Of Change control
dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
0x4000; // FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4]
dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
0x4100; // FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6]
dscl_prog_data->easf_h_ringest_eventap_gain1 =
0xB058; // FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024
dscl_prog_data->easf_h_ringest_eventap_gain2 =
0xA640; // FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024
dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
dscl_prog_data->easf_h_bf_mina = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
dscl_prog_data->easf_h_bf_minb = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
dscl_prog_data->easf_h_bf1_pwl_in_seg0 = -512; // S0.10, BF1 PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_in_seg1 = -20; // S0.10, BF1 PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = -56; // S7.3, BF1 Slope PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = -48; // S7.3, BF1 Slope PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = -240; // S7.3, BF1 Slope PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = -160; // S7.3, BF1 Slope PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7
dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_in_set1 =
0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62; // S0.6, BF3 Base PWL Segment 1
dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x13B8; // FP1.6.6, BF3 Slope PWL Segment 1
dscl_prog_data->easf_h_bf3_pwl_in_set2 =
0x0BB7; // FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1356; // FP1.6.6, BF3 Slope PWL Segment 2
dscl_prog_data->easf_h_bf3_pwl_in_set3 =
0x0BF7; // FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x136B; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_h_bf3_pwl_in_set4 =
0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set4 = -50; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_in_set5 =
0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
} else {
dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_in_set1 =
0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63; // S0.6, BF3 Base PWL Segment 1
dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896; // FP1.6.6, BF3 Slope PWL Segment 1
dscl_prog_data->easf_h_bf3_pwl_in_set2 =
0x0700; // FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20; // S0.6, BF3 Base PWL Segment 2
dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810; // FP1.6.6, BF3 Slope PWL Segment 2
dscl_prog_data->easf_h_bf3_pwl_in_set3 =
0x0740; // FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0; // S0.6, BF3 Base PWL Segment 3
dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_h_bf3_pwl_in_set4 =
0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
dscl_prog_data->easf_h_bf3_pwl_base_set4 = -60; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_in_set5 =
0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
dscl_prog_data->easf_h_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
} // if (lls_pref == LLS_PREF_YES)
} else
dscl_prog_data->easf_h_en = false;
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_ltonl_en = 1; // Linear input
dscl_prog_data->easf_matrix_c0 =
0x504E; // fp1.5.10, C0 coefficient (LN_BT2020: 0.2627 * (2^14)/125 = 34.43750000)
dscl_prog_data->easf_matrix_c1 =
0x558E; // fp1.5.10, C1 coefficient (LN_BT2020: 0.6780 * (2^14)/125 = 88.87500000)
dscl_prog_data->easf_matrix_c2 =
0x47C6; // fp1.5.10, C2 coefficient (LN_BT2020: 0.0593 * (2^14)/125 = 7.77343750)
dscl_prog_data->easf_matrix_c3 =
0x0; // fp1.5.10, C3 coefficient
} else {
dscl_prog_data->easf_ltonl_en = 0; // Non-Linear input
dscl_prog_data->easf_matrix_c0 =
0x3434; // fp1.5.10, C0 coefficient (LN_BT2020: 0.262695312500000)
dscl_prog_data->easf_matrix_c1 =
0x396D; // fp1.5.10, C1 coefficient (LN_BT2020: 0.678222656250000)
dscl_prog_data->easf_matrix_c2 =
0x2B97; // fp1.5.10, C2 coefficient (LN_BT2020: 0.059295654296875)
dscl_prog_data->easf_matrix_c3 =
0x0; // fp1.5.10, C3 coefficient
}
}
/*Set isharp noise detection */
static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data)
{
// ISHARP_NOISEDET_MODE
// 0: 3x5 as VxH
// 1: 4x5 as VxH
// 2:
// 3: 5x5 as VxH
if (dscl_prog_data->taps.v_taps == 6)
dscl_prog_data->isharp_noise_det.mode = 3; // ISHARP_NOISEDET_MODE
else if (dscl_prog_data->taps.h_taps == 4)
dscl_prog_data->isharp_noise_det.mode = 1; // ISHARP_NOISEDET_MODE
else if (dscl_prog_data->taps.h_taps == 3)
dscl_prog_data->isharp_noise_det.mode = 0; // ISHARP_NOISEDET_MODE
};
/* Set Sharpener data */
static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
struct adaptive_sharpness adp_sharpness, bool enable_isharp,
enum linear_light_scaling lls_pref, enum spl_pixel_format format,
const struct spl_scaler_data *data)
{
/* Turn off sharpener if not required */
if (!enable_isharp) {
dscl_prog_data->isharp_en = 0;
return;
}
dscl_prog_data->isharp_en = 1; // ISHARP_EN
dscl_prog_data->isharp_noise_det.enable = 1; // ISHARP_NOISEDET_EN
// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
if (dscl_prog_data->taps.h_taps == 6)
spl_set_isharp_noise_det_mode(dscl_prog_data); // ISHARP_NOISEDET_MODE
// Program noise detection threshold
dscl_prog_data->isharp_noise_det.uthreshold = 24; // ISHARP_NOISEDET_UTHRE
dscl_prog_data->isharp_noise_det.dthreshold = 4; // ISHARP_NOISEDET_DTHRE
// Program noise detection gain
dscl_prog_data->isharp_noise_det.pwl_start_in = 3; // ISHARP_NOISEDET_PWL_START_IN
dscl_prog_data->isharp_noise_det.pwl_end_in = 13; // ISHARP_NOISEDET_PWL_END_IN
dscl_prog_data->isharp_noise_det.pwl_slope = 1623; // ISHARP_NOISEDET_PWL_SLOPE
if ((lls_pref == LLS_PREF_NO) && !spl_is_yuv420(format)) /* ISHARP_FMT_MODE */
dscl_prog_data->isharp_fmt.mode = 1;
else
dscl_prog_data->isharp_fmt.mode = 0;
dscl_prog_data->isharp_fmt.norm = 0x3C00; // ISHARP_FMT_NORM
dscl_prog_data->isharp_lba.mode = 0; // ISHARP_LBA_MODE
// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[0] = 32; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
dscl_prog_data->isharp_lba.in_seg[1] = 256; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
dscl_prog_data->isharp_lba.in_seg[2] = 614; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[2] = -20; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
switch (adp_sharpness.sharpness) {
case SHARPNESS_LOW:
dscl_prog_data->isharp_delta = spl_get_filter_isharp_1D_lut_0p5x();
break;
case SHARPNESS_MID:
dscl_prog_data->isharp_delta = spl_get_filter_isharp_1D_lut_1p0x();
break;
case SHARPNESS_HIGH:
dscl_prog_data->isharp_delta = spl_get_filter_isharp_1D_lut_2p0x();
break;
default:
BREAK_TO_DEBUGGER();
}
// Program the nldelta soft clip values
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->isharp_nldelta_sclip.enable_p = 0; /* ISHARP_NLDELTA_SCLIP_EN_P */
dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0; /* ISHARP_NLDELTA_SCLIP_PIVOT_P */
dscl_prog_data->isharp_nldelta_sclip.slope_p = 0; /* ISHARP_NLDELTA_SCLIP_SLOPE_P */
dscl_prog_data->isharp_nldelta_sclip.enable_n = 1; /* ISHARP_NLDELTA_SCLIP_EN_N */
dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71; /* ISHARP_NLDELTA_SCLIP_PIVOT_N */
dscl_prog_data->isharp_nldelta_sclip.slope_n = 16; /* ISHARP_NLDELTA_SCLIP_SLOPE_N */
} else {
dscl_prog_data->isharp_nldelta_sclip.enable_p = 1; /* ISHARP_NLDELTA_SCLIP_EN_P */
dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70; /* ISHARP_NLDELTA_SCLIP_PIVOT_P */
dscl_prog_data->isharp_nldelta_sclip.slope_p = 24; /* ISHARP_NLDELTA_SCLIP_SLOPE_P */
dscl_prog_data->isharp_nldelta_sclip.enable_n = 1; /* ISHARP_NLDELTA_SCLIP_EN_N */
dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70; /* ISHARP_NLDELTA_SCLIP_PIVOT_N */
dscl_prog_data->isharp_nldelta_sclip.slope_n = 24; /* ISHARP_NLDELTA_SCLIP_SLOPE_N */
}
// Set the values as per lookup table
spl_set_blur_scale_data(dscl_prog_data, data);
}
static bool spl_get_isharp_en(struct adaptive_sharpness adp_sharpness,
int vscale_ratio, int hscale_ratio, struct spl_taps taps,
enum spl_pixel_format format)
{
bool enable_isharp = false;
if (adp_sharpness.enable == false)
return enable_isharp; // Return if adaptive sharpness is disabled
// Is downscaling ?
if (vscale_ratio > 1 || hscale_ratio > 1) {
// END - No iSHARP support for downscaling
return enable_isharp;
}
// Scaling is up to 1:1 (no scaling) or upscaling
/* Only apply sharpness to NV12 and not P010 */
if (format != SPL_PIXEL_FORMAT_420BPP8)
return enable_isharp;
// LB support horizontal taps 4,6 or vertical taps 3, 4, 6
if (taps.h_taps == 4 || taps.h_taps == 6 ||
taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6) {
// END - iSHARP supported
enable_isharp = true;
}
return enable_isharp;
}
static bool spl_choose_lls_policy(enum spl_pixel_format format,
enum spl_transfer_func_type tf_type,
enum spl_transfer_func_predefined tf_predefined_type,
enum linear_light_scaling *lls_pref)
{
if (spl_is_yuv420(format)) {
*lls_pref = LLS_PREF_NO;
if ((tf_type == SPL_TF_TYPE_PREDEFINED) || (tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
return true;
} else { /* RGB or YUV444 */
if (tf_type == SPL_TF_TYPE_PREDEFINED) {
if ((tf_predefined_type == SPL_TRANSFER_FUNCTION_HLG) ||
(tf_predefined_type == SPL_TRANSFER_FUNCTION_HLG12))
*lls_pref = LLS_PREF_NO;
else
*lls_pref = LLS_PREF_YES;
return true;
} else if (tf_type == SPL_TF_TYPE_BYPASS) {
*lls_pref = LLS_PREF_YES;
return true;
}
}
*lls_pref = LLS_PREF_NO;
return false;
}
/* Calculate scaler parameters */
bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
{
bool res = false;
bool enable_easf_v = false;
bool enable_easf_h = false;
bool lls_enable_easf = true;
const struct spl_scaler_data *data = &spl_out->scl_data;
// All SPL calls
/* recout calculation */
/* depends on h_active */
spl_calculate_recout(spl_in, spl_out);
/* depends on pixel format */
spl_calculate_scaling_ratios(spl_in, spl_out);
/* depends on scaling ratios and recout, does not calculate offset yet */
spl_calculate_viewport_size(spl_in, spl_out);
res = spl_get_optimal_number_of_taps(
spl_in->basic_out.max_downscale_src_width, spl_in,
spl_out, &spl_in->scaling_quality);
/*
* Depends on recout, scaling ratios, h_active and taps
* May need to re-check lb size after this in some obscure scenario
*/
if (res)
spl_calculate_inits_and_viewports(spl_in, spl_out);
// Handle 3d recout
spl_handle_3d_recout(spl_in, &spl_out->scl_data.recout);
// Clamp
spl_clamp_viewport(&spl_out->scl_data.viewport);
if (!res)
return res;
/*
* If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
* function to determine whether to use LINEAR or NONLINEAR scaling
*/
if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
&spl_in->lls_pref);
// Save all calculated parameters in dscl_prog_data structure to program hw registers
spl_set_dscl_prog_data(spl_in, spl_out);
int vratio = dc_fixpt_ceil(spl_out->scl_data.ratios.vert);
int hratio = dc_fixpt_ceil(spl_out->scl_data.ratios.horz);
if (!lls_enable_easf || spl_in->disable_easf) {
enable_easf_v = false;
enable_easf_h = false;
} else {
/* Enable EASF on vertical? */
enable_easf_v = enable_easf(vratio, spl_out->scl_data.taps.v_taps, spl_in->lls_pref, spl_in->prefer_easf);
/* Enable EASF on horizontal? */
enable_easf_h = enable_easf(hratio, spl_out->scl_data.taps.h_taps, spl_in->lls_pref, spl_in->prefer_easf);
}
// Set EASF
spl_set_easf_data(spl_out->dscl_prog_data, enable_easf_v, enable_easf_h, spl_in->lls_pref,
spl_in->basic_in.format);
// Set iSHARP
bool enable_isharp = spl_get_isharp_en(spl_in->adaptive_sharpness, vratio, hratio,
spl_out->scl_data.taps, spl_in->basic_in.format);
spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
spl_in->lls_pref, spl_in->basic_in.format, data);
return res;
}