| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| * |
| */ |
| |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "intel_de.h" |
| #include "intel_display_types.h" |
| #include "intel_vrr.h" |
| #include "intel_dp.h" |
| |
| bool intel_vrr_is_capable(struct intel_connector *connector) |
| { |
| const struct drm_display_info *info = &connector->base.display_info; |
| struct drm_i915_private *i915 = to_i915(connector->base.dev); |
| struct intel_dp *intel_dp; |
| |
| /* |
| * DP Sink is capable of VRR video timings if |
| * Ignore MSA bit is set in DPCD. |
| * EDID monitor range also should be atleast 10 for reasonable |
| * Adaptive Sync or Variable Refresh Rate end user experience. |
| */ |
| switch (connector->base.connector_type) { |
| case DRM_MODE_CONNECTOR_eDP: |
| if (!connector->panel.vbt.vrr) |
| return false; |
| fallthrough; |
| case DRM_MODE_CONNECTOR_DisplayPort: |
| intel_dp = intel_attached_dp(connector); |
| |
| if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd)) |
| return false; |
| |
| break; |
| default: |
| return false; |
| } |
| |
| return HAS_VRR(i915) && |
| info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10; |
| } |
| |
| bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh) |
| { |
| const struct drm_display_info *info = &connector->base.display_info; |
| |
| return intel_vrr_is_capable(connector) && |
| vrefresh >= info->monitor_range.min_vfreq && |
| vrefresh <= info->monitor_range.max_vfreq; |
| } |
| |
| void |
| intel_vrr_check_modeset(struct intel_atomic_state *state) |
| { |
| int i; |
| struct intel_crtc_state *old_crtc_state, *new_crtc_state; |
| struct intel_crtc *crtc; |
| |
| for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, |
| new_crtc_state, i) { |
| if (new_crtc_state->uapi.vrr_enabled != |
| old_crtc_state->uapi.vrr_enabled) |
| new_crtc_state->uapi.mode_changed = true; |
| } |
| } |
| |
| /* |
| * Without VRR registers get latched at: |
| * vblank_start |
| * |
| * With VRR the earliest registers can get latched is: |
| * intel_vrr_vmin_vblank_start(), which if we want to maintain |
| * the correct min vtotal is >=vblank_start+1 |
| * |
| * The latest point registers can get latched is the vmax decision boundary: |
| * intel_vrr_vmax_vblank_start() |
| * |
| * Between those two points the vblank exit starts (and hence registers get |
| * latched) ASAP after a push is sent. |
| * |
| * framestart_delay is programmable 1-4. |
| */ |
| static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| |
| if (DISPLAY_VER(i915) >= 13) |
| return crtc_state->vrr.guardband; |
| else |
| /* The hw imposes the extra scanline before frame start */ |
| return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1; |
| } |
| |
| int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state) |
| { |
| /* Min vblank actually determined by flipline that is always >=vmin+1 */ |
| return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state); |
| } |
| |
| int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state); |
| } |
| |
| void |
| intel_vrr_compute_config(struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| struct intel_connector *connector = |
| to_intel_connector(conn_state->connector); |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| const struct drm_display_info *info = &connector->base.display_info; |
| int vmin, vmax; |
| |
| /* |
| * FIXME all joined pipes share the same transcoder. |
| * Need to account for that during VRR toggle/push/etc. |
| */ |
| if (crtc_state->bigjoiner_pipes) |
| return; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) |
| return; |
| |
| crtc_state->vrr.in_range = |
| intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode)); |
| if (!crtc_state->vrr.in_range) |
| return; |
| |
| if (HAS_LRR(i915)) |
| crtc_state->update_lrr = true; |
| |
| vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000, |
| adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq); |
| vmax = adjusted_mode->crtc_clock * 1000 / |
| (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq); |
| |
| vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal); |
| vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal); |
| |
| if (vmin >= vmax) |
| return; |
| |
| /* |
| * flipline determines the min vblank length the hardware will |
| * generate, and flipline>=vmin+1, hence we reduce vmin by one |
| * to make sure we can get the actual min vblank length. |
| */ |
| crtc_state->vrr.vmin = vmin - 1; |
| crtc_state->vrr.vmax = vmax; |
| |
| crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1; |
| |
| /* |
| * For XE_LPD+, we use guardband and pipeline override |
| * is deprecated. |
| */ |
| if (DISPLAY_VER(i915) >= 13) { |
| crtc_state->vrr.guardband = |
| crtc_state->vrr.vmin + 1 - adjusted_mode->crtc_vblank_start; |
| } else { |
| crtc_state->vrr.pipeline_full = |
| min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start - |
| crtc_state->framestart_delay - 1); |
| } |
| |
| if (crtc_state->uapi.vrr_enabled) { |
| crtc_state->vrr.enable = true; |
| crtc_state->mode_flags |= I915_MODE_FLAG_VRR; |
| if (intel_dp_as_sdp_supported(intel_dp)) { |
| crtc_state->vrr.vsync_start = |
| (crtc_state->hw.adjusted_mode.crtc_vtotal - |
| crtc_state->hw.adjusted_mode.vsync_start); |
| crtc_state->vrr.vsync_end = |
| (crtc_state->hw.adjusted_mode.crtc_vtotal - |
| crtc_state->hw.adjusted_mode.vsync_end); |
| } |
| } |
| } |
| |
| static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); |
| |
| if (DISPLAY_VER(i915) >= 13) |
| return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | |
| XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); |
| else |
| return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | |
| VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) | |
| VRR_CTL_PIPELINE_FULL_OVERRIDE; |
| } |
| |
| void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| /* |
| * This bit seems to have two meanings depending on the platform: |
| * TGL: generate VRR "safe window" for DSB vblank waits |
| * ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR |
| */ |
| if (IS_DISPLAY_VER(dev_priv, 12, 13)) |
| intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), |
| 0, PIPE_VBLANK_WITH_DELAY); |
| |
| if (!crtc_state->vrr.flipline) { |
| intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0); |
| return; |
| } |
| |
| intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1); |
| intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1); |
| intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl(crtc_state)); |
| intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1); |
| } |
| |
| void intel_vrr_send_push(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->vrr.enable) |
| return; |
| |
| intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), |
| TRANS_PUSH_EN | TRANS_PUSH_SEND); |
| } |
| |
| bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->vrr.enable) |
| return false; |
| |
| return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND; |
| } |
| |
| void intel_vrr_enable(const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->vrr.enable) |
| return; |
| |
| intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN); |
| |
| if (HAS_AS_SDP(dev_priv)) |
| intel_de_write(dev_priv, TRANS_VRR_VSYNC(cpu_transcoder), |
| VRR_VSYNC_END(crtc_state->vrr.vsync_end) | |
| VRR_VSYNC_START(crtc_state->vrr.vsync_start)); |
| |
| intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), |
| VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state)); |
| } |
| |
| void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; |
| |
| if (!old_crtc_state->vrr.enable) |
| return; |
| |
| intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), |
| trans_vrr_ctl(old_crtc_state)); |
| intel_de_wait_for_clear(dev_priv, TRANS_VRR_STATUS(cpu_transcoder), |
| VRR_STATUS_VRR_EN_LIVE, 1000); |
| intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0); |
| |
| if (HAS_AS_SDP(dev_priv)) |
| intel_de_write(dev_priv, TRANS_VRR_VSYNC(cpu_transcoder), 0); |
| } |
| |
| void intel_vrr_get_config(struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 trans_vrr_ctl, trans_vrr_vsync; |
| |
| trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder)); |
| |
| crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE; |
| |
| if (DISPLAY_VER(dev_priv) >= 13) |
| crtc_state->vrr.guardband = |
| REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl); |
| else |
| if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) |
| crtc_state->vrr.pipeline_full = |
| REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl); |
| |
| if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) { |
| crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1; |
| crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1; |
| crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1; |
| } |
| |
| if (crtc_state->vrr.enable) { |
| crtc_state->mode_flags |= I915_MODE_FLAG_VRR; |
| |
| if (HAS_AS_SDP(dev_priv)) { |
| trans_vrr_vsync = |
| intel_de_read(dev_priv, TRANS_VRR_VSYNC(cpu_transcoder)); |
| crtc_state->vrr.vsync_start = |
| REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync); |
| crtc_state->vrr.vsync_end = |
| REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync); |
| } |
| } |
| } |