blob: 894ee97b3e1b0a79be169cbf02629269567d938f [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_vrr.h"
#include "intel_dp.h"
bool intel_vrr_is_capable(struct intel_connector *connector)
{
const struct drm_display_info *info = &connector->base.display_info;
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_dp *intel_dp;
/*
* DP Sink is capable of VRR video timings if
* Ignore MSA bit is set in DPCD.
* EDID monitor range also should be atleast 10 for reasonable
* Adaptive Sync or Variable Refresh Rate end user experience.
*/
switch (connector->base.connector_type) {
case DRM_MODE_CONNECTOR_eDP:
if (!connector->panel.vbt.vrr)
return false;
fallthrough;
case DRM_MODE_CONNECTOR_DisplayPort:
intel_dp = intel_attached_dp(connector);
if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
return false;
break;
default:
return false;
}
return HAS_VRR(i915) &&
info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}
bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh)
{
const struct drm_display_info *info = &connector->base.display_info;
return intel_vrr_is_capable(connector) &&
vrefresh >= info->monitor_range.min_vfreq &&
vrefresh <= info->monitor_range.max_vfreq;
}
void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
int i;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->uapi.vrr_enabled !=
old_crtc_state->uapi.vrr_enabled)
new_crtc_state->uapi.mode_changed = true;
}
}
/*
* Without VRR registers get latched at:
* vblank_start
*
* With VRR the earliest registers can get latched is:
* intel_vrr_vmin_vblank_start(), which if we want to maintain
* the correct min vtotal is >=vblank_start+1
*
* The latest point registers can get latched is the vmax decision boundary:
* intel_vrr_vmax_vblank_start()
*
* Between those two points the vblank exit starts (and hence registers get
* latched) ASAP after a push is sent.
*
* framestart_delay is programmable 1-4.
*/
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (DISPLAY_VER(i915) >= 13)
return crtc_state->vrr.guardband;
else
/* The hw imposes the extra scanline before frame start */
return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
}
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
/* Min vblank actually determined by flipline that is always >=vmin+1 */
return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
}
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
}
void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
const struct drm_display_info *info = &connector->base.display_info;
int vmin, vmax;
/*
* FIXME all joined pipes share the same transcoder.
* Need to account for that during VRR toggle/push/etc.
*/
if (crtc_state->bigjoiner_pipes)
return;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return;
crtc_state->vrr.in_range =
intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode));
if (!crtc_state->vrr.in_range)
return;
if (HAS_LRR(i915))
crtc_state->update_lrr = true;
vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
vmax = adjusted_mode->crtc_clock * 1000 /
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
if (vmin >= vmax)
return;
/*
* flipline determines the min vblank length the hardware will
* generate, and flipline>=vmin+1, hence we reduce vmin by one
* to make sure we can get the actual min vblank length.
*/
crtc_state->vrr.vmin = vmin - 1;
crtc_state->vrr.vmax = vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;
/*
* For XE_LPD+, we use guardband and pipeline override
* is deprecated.
*/
if (DISPLAY_VER(i915) >= 13) {
crtc_state->vrr.guardband =
crtc_state->vrr.vmin + 1 - adjusted_mode->crtc_vblank_start;
} else {
crtc_state->vrr.pipeline_full =
min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start -
crtc_state->framestart_delay - 1);
}
if (crtc_state->uapi.vrr_enabled) {
crtc_state->vrr.enable = true;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
if (intel_dp_as_sdp_supported(intel_dp)) {
crtc_state->vrr.vsync_start =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.vsync_start);
crtc_state->vrr.vsync_end =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.vsync_end);
}
}
}
static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
if (DISPLAY_VER(i915) >= 13)
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
VRR_CTL_PIPELINE_FULL_OVERRIDE;
}
void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
/*
* This bit seems to have two meanings depending on the platform:
* TGL: generate VRR "safe window" for DSB vblank waits
* ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR
*/
if (IS_DISPLAY_VER(dev_priv, 12, 13))
intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder),
0, PIPE_VBLANK_WITH_DELAY);
if (!crtc_state->vrr.flipline) {
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0);
return;
}
intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1);
intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1);
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl(crtc_state));
intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1);
}
void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder),
TRANS_PUSH_EN | TRANS_PUSH_SEND);
}
bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return false;
return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND;
}
void intel_vrr_enable(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN);
if (HAS_AS_SDP(dev_priv))
intel_de_write(dev_priv, TRANS_VRR_VSYNC(cpu_transcoder),
VRR_VSYNC_END(crtc_state->vrr.vsync_end) |
VRR_VSYNC_START(crtc_state->vrr.vsync_start));
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder),
VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
}
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
if (!old_crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder),
trans_vrr_ctl(old_crtc_state));
intel_de_wait_for_clear(dev_priv, TRANS_VRR_STATUS(cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000);
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0);
if (HAS_AS_SDP(dev_priv))
intel_de_write(dev_priv, TRANS_VRR_VSYNC(cpu_transcoder), 0);
}
void intel_vrr_get_config(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl, trans_vrr_vsync;
trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder));
crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
if (DISPLAY_VER(dev_priv) >= 13)
crtc_state->vrr.guardband =
REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
else
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
crtc_state->vrr.pipeline_full =
REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) {
crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1;
crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1;
crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1;
}
if (crtc_state->vrr.enable) {
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
if (HAS_AS_SDP(dev_priv)) {
trans_vrr_vsync =
intel_de_read(dev_priv, TRANS_VRR_VSYNC(cpu_transcoder));
crtc_state->vrr.vsync_start =
REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync);
crtc_state->vrr.vsync_end =
REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync);
}
}
}