| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012 Regents of the University of California |
| */ |
| |
| #ifndef _ASM_RISCV_BITOPS_H |
| #define _ASM_RISCV_BITOPS_H |
| |
| #ifndef _LINUX_BITOPS_H |
| #error "Only <linux/bitops.h> can be included directly" |
| #endif /* _LINUX_BITOPS_H */ |
| |
| #include <linux/compiler.h> |
| #include <linux/irqflags.h> |
| #include <asm/barrier.h> |
| #include <asm/bitsperlong.h> |
| |
| #if !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) |
| #include <asm-generic/bitops/__ffs.h> |
| #include <asm-generic/bitops/__fls.h> |
| #include <asm-generic/bitops/ffs.h> |
| #include <asm-generic/bitops/fls.h> |
| |
| #else |
| #include <asm/alternative-macros.h> |
| #include <asm/hwcap.h> |
| |
| #if (BITS_PER_LONG == 64) |
| #define CTZW "ctzw " |
| #define CLZW "clzw " |
| #elif (BITS_PER_LONG == 32) |
| #define CTZW "ctz " |
| #define CLZW "clz " |
| #else |
| #error "Unexpected BITS_PER_LONG" |
| #endif |
| |
| static __always_inline unsigned long variable__ffs(unsigned long word) |
| { |
| int num; |
| |
| asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : : : : legacy); |
| |
| asm volatile (".option push\n" |
| ".option arch,+zbb\n" |
| "ctz %0, %1\n" |
| ".option pop\n" |
| : "=r" (word) : "r" (word) :); |
| |
| return word; |
| |
| legacy: |
| num = 0; |
| #if BITS_PER_LONG == 64 |
| if ((word & 0xffffffff) == 0) { |
| num += 32; |
| word >>= 32; |
| } |
| #endif |
| if ((word & 0xffff) == 0) { |
| num += 16; |
| word >>= 16; |
| } |
| if ((word & 0xff) == 0) { |
| num += 8; |
| word >>= 8; |
| } |
| if ((word & 0xf) == 0) { |
| num += 4; |
| word >>= 4; |
| } |
| if ((word & 0x3) == 0) { |
| num += 2; |
| word >>= 2; |
| } |
| if ((word & 0x1) == 0) |
| num += 1; |
| return num; |
| } |
| |
| /** |
| * __ffs - find first set bit in a long word |
| * @word: The word to search |
| * |
| * Undefined if no set bit exists, so code should check against 0 first. |
| */ |
| #define __ffs(word) \ |
| (__builtin_constant_p(word) ? \ |
| (unsigned long)__builtin_ctzl(word) : \ |
| variable__ffs(word)) |
| |
| static __always_inline unsigned long variable__fls(unsigned long word) |
| { |
| int num; |
| |
| asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : : : : legacy); |
| |
| asm volatile (".option push\n" |
| ".option arch,+zbb\n" |
| "clz %0, %1\n" |
| ".option pop\n" |
| : "=r" (word) : "r" (word) :); |
| |
| return BITS_PER_LONG - 1 - word; |
| |
| legacy: |
| num = BITS_PER_LONG - 1; |
| #if BITS_PER_LONG == 64 |
| if (!(word & (~0ul << 32))) { |
| num -= 32; |
| word <<= 32; |
| } |
| #endif |
| if (!(word & (~0ul << (BITS_PER_LONG - 16)))) { |
| num -= 16; |
| word <<= 16; |
| } |
| if (!(word & (~0ul << (BITS_PER_LONG - 8)))) { |
| num -= 8; |
| word <<= 8; |
| } |
| if (!(word & (~0ul << (BITS_PER_LONG - 4)))) { |
| num -= 4; |
| word <<= 4; |
| } |
| if (!(word & (~0ul << (BITS_PER_LONG - 2)))) { |
| num -= 2; |
| word <<= 2; |
| } |
| if (!(word & (~0ul << (BITS_PER_LONG - 1)))) |
| num -= 1; |
| return num; |
| } |
| |
| /** |
| * __fls - find last set bit in a long word |
| * @word: the word to search |
| * |
| * Undefined if no set bit exists, so code should check against 0 first. |
| */ |
| #define __fls(word) \ |
| (__builtin_constant_p(word) ? \ |
| (unsigned long)(BITS_PER_LONG - 1 - __builtin_clzl(word)) : \ |
| variable__fls(word)) |
| |
| static __always_inline int variable_ffs(int x) |
| { |
| int r; |
| |
| if (!x) |
| return 0; |
| |
| asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : : : : legacy); |
| |
| asm volatile (".option push\n" |
| ".option arch,+zbb\n" |
| CTZW "%0, %1\n" |
| ".option pop\n" |
| : "=r" (r) : "r" (x) :); |
| |
| return r + 1; |
| |
| legacy: |
| r = 1; |
| if (!(x & 0xffff)) { |
| x >>= 16; |
| r += 16; |
| } |
| if (!(x & 0xff)) { |
| x >>= 8; |
| r += 8; |
| } |
| if (!(x & 0xf)) { |
| x >>= 4; |
| r += 4; |
| } |
| if (!(x & 3)) { |
| x >>= 2; |
| r += 2; |
| } |
| if (!(x & 1)) { |
| x >>= 1; |
| r += 1; |
| } |
| return r; |
| } |
| |
| /** |
| * ffs - find first set bit in a word |
| * @x: the word to search |
| * |
| * This is defined the same way as the libc and compiler builtin ffs routines. |
| * |
| * ffs(value) returns 0 if value is 0 or the position of the first set bit if |
| * value is nonzero. The first (least significant) bit is at position 1. |
| */ |
| #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x)) |
| |
| static __always_inline int variable_fls(unsigned int x) |
| { |
| int r; |
| |
| if (!x) |
| return 0; |
| |
| asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, |
| RISCV_ISA_EXT_ZBB, 1) |
| : : : : legacy); |
| |
| asm volatile (".option push\n" |
| ".option arch,+zbb\n" |
| CLZW "%0, %1\n" |
| ".option pop\n" |
| : "=r" (r) : "r" (x) :); |
| |
| return 32 - r; |
| |
| legacy: |
| r = 32; |
| if (!(x & 0xffff0000u)) { |
| x <<= 16; |
| r -= 16; |
| } |
| if (!(x & 0xff000000u)) { |
| x <<= 8; |
| r -= 8; |
| } |
| if (!(x & 0xf0000000u)) { |
| x <<= 4; |
| r -= 4; |
| } |
| if (!(x & 0xc0000000u)) { |
| x <<= 2; |
| r -= 2; |
| } |
| if (!(x & 0x80000000u)) { |
| x <<= 1; |
| r -= 1; |
| } |
| return r; |
| } |
| |
| /** |
| * fls - find last set bit in a word |
| * @x: the word to search |
| * |
| * This is defined in a similar way as ffs, but returns the position of the most |
| * significant set bit. |
| * |
| * fls(value) returns 0 if value is 0 or the position of the last set bit if |
| * value is nonzero. The last (most significant) bit is at position 32. |
| */ |
| #define fls(x) \ |
| ({ \ |
| typeof(x) x_ = (x); \ |
| __builtin_constant_p(x_) ? \ |
| (int)((x_ != 0) ? (32 - __builtin_clz(x_)) : 0) \ |
| : \ |
| variable_fls(x_); \ |
| }) |
| |
| #endif /* !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) */ |
| |
| #include <asm-generic/bitops/ffz.h> |
| #include <asm-generic/bitops/fls64.h> |
| #include <asm-generic/bitops/sched.h> |
| |
| #include <asm/arch_hweight.h> |
| |
| #include <asm-generic/bitops/const_hweight.h> |
| |
| #if (BITS_PER_LONG == 64) |
| #define __AMO(op) "amo" #op ".d" |
| #elif (BITS_PER_LONG == 32) |
| #define __AMO(op) "amo" #op ".w" |
| #else |
| #error "Unexpected BITS_PER_LONG" |
| #endif |
| |
| #define __test_and_op_bit_ord(op, mod, nr, addr, ord) \ |
| ({ \ |
| unsigned long __res, __mask; \ |
| __mask = BIT_MASK(nr); \ |
| __asm__ __volatile__ ( \ |
| __AMO(op) #ord " %0, %2, %1" \ |
| : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \ |
| : "r" (mod(__mask)) \ |
| : "memory"); \ |
| ((__res & __mask) != 0); \ |
| }) |
| |
| #define __op_bit_ord(op, mod, nr, addr, ord) \ |
| __asm__ __volatile__ ( \ |
| __AMO(op) #ord " zero, %1, %0" \ |
| : "+A" (addr[BIT_WORD(nr)]) \ |
| : "r" (mod(BIT_MASK(nr))) \ |
| : "memory"); |
| |
| #define __test_and_op_bit(op, mod, nr, addr) \ |
| __test_and_op_bit_ord(op, mod, nr, addr, .aqrl) |
| #define __op_bit(op, mod, nr, addr) \ |
| __op_bit_ord(op, mod, nr, addr, ) |
| |
| /* Bitmask modifiers */ |
| #define __NOP(x) (x) |
| #define __NOT(x) (~(x)) |
| |
| /** |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation may be reordered on other architectures than x86. |
| */ |
| static inline int test_and_set_bit(int nr, volatile unsigned long *addr) |
| { |
| return __test_and_op_bit(or, __NOP, nr, addr); |
| } |
| |
| /** |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation can be reordered on other architectures other than x86. |
| */ |
| static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) |
| { |
| return __test_and_op_bit(and, __NOT, nr, addr); |
| } |
| |
| /** |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_change_bit(int nr, volatile unsigned long *addr) |
| { |
| return __test_and_op_bit(xor, __NOP, nr, addr); |
| } |
| |
| /** |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Note: there are no guarantees that this function will not be reordered |
| * on non x86 architectures, so if you are writing portable code, |
| * make sure not to rely on its reordering guarantees. |
| * |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static inline void set_bit(int nr, volatile unsigned long *addr) |
| { |
| __op_bit(or, __NOP, nr, addr); |
| } |
| |
| /** |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * Note: there are no guarantees that this function will not be reordered |
| * on non x86 architectures, so if you are writing portable code, |
| * make sure not to rely on its reordering guarantees. |
| */ |
| static inline void clear_bit(int nr, volatile unsigned long *addr) |
| { |
| __op_bit(and, __NOT, nr, addr); |
| } |
| |
| /** |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to change |
| * @addr: Address to start counting from |
| * |
| * change_bit() may be reordered on other architectures than x86. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static inline void change_bit(int nr, volatile unsigned long *addr) |
| { |
| __op_bit(xor, __NOP, nr, addr); |
| } |
| |
| /** |
| * test_and_set_bit_lock - Set a bit and return its old value, for lock |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and provides acquire barrier semantics. |
| * It can be used to implement bit locks. |
| */ |
| static inline int test_and_set_bit_lock( |
| unsigned long nr, volatile unsigned long *addr) |
| { |
| return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq); |
| } |
| |
| /** |
| * clear_bit_unlock - Clear a bit in memory, for unlock |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This operation is atomic and provides release barrier semantics. |
| */ |
| static inline void clear_bit_unlock( |
| unsigned long nr, volatile unsigned long *addr) |
| { |
| __op_bit_ord(and, __NOT, nr, addr, .rl); |
| } |
| |
| /** |
| * __clear_bit_unlock - Clear a bit in memory, for unlock |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This operation is like clear_bit_unlock, however it is not atomic. |
| * It does provide release barrier semantics so it can be used to unlock |
| * a bit lock, however it would only be used if no other CPU can modify |
| * any bits in the memory until the lock is released (a good example is |
| * if the bit lock itself protects access to the other bits in the word). |
| * |
| * On RISC-V systems there seems to be no benefit to taking advantage of the |
| * non-atomic property here: it's a lot more instructions and we still have to |
| * provide release semantics anyway. |
| */ |
| static inline void __clear_bit_unlock( |
| unsigned long nr, volatile unsigned long *addr) |
| { |
| clear_bit_unlock(nr, addr); |
| } |
| |
| static inline bool xor_unlock_is_negative_byte(unsigned long mask, |
| volatile unsigned long *addr) |
| { |
| unsigned long res; |
| __asm__ __volatile__ ( |
| __AMO(xor) ".rl %0, %2, %1" |
| : "=r" (res), "+A" (*addr) |
| : "r" (__NOP(mask)) |
| : "memory"); |
| return (res & BIT(7)) != 0; |
| } |
| |
| #undef __test_and_op_bit |
| #undef __op_bit |
| #undef __NOP |
| #undef __NOT |
| #undef __AMO |
| |
| #include <asm-generic/bitops/non-atomic.h> |
| #include <asm-generic/bitops/le.h> |
| #include <asm-generic/bitops/ext2-atomic.h> |
| |
| #endif /* _ASM_RISCV_BITOPS_H */ |