blob: 19e450a5bd314ff67676843a767ec1c5c2bd84d4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2018 Intel Corporation. */
/* 82562G 10/100 Network Connection
* 82562G-2 10/100 Network Connection
* 82562GT 10/100 Network Connection
* 82562GT-2 10/100 Network Connection
* 82562V 10/100 Network Connection
* 82562V-2 10/100 Network Connection
* 82566DC-2 Gigabit Network Connection
* 82566DC Gigabit Network Connection
* 82566DM-2 Gigabit Network Connection
* 82566DM Gigabit Network Connection
* 82566MC Gigabit Network Connection
* 82566MM Gigabit Network Connection
* 82567LM Gigabit Network Connection
* 82567LF Gigabit Network Connection
* 82567V Gigabit Network Connection
* 82567LM-2 Gigabit Network Connection
* 82567LF-2 Gigabit Network Connection
* 82567V-2 Gigabit Network Connection
* 82567LF-3 Gigabit Network Connection
* 82567LM-3 Gigabit Network Connection
* 82567LM-4 Gigabit Network Connection
* 82577LM Gigabit Network Connection
* 82577LC Gigabit Network Connection
* 82578DM Gigabit Network Connection
* 82578DC Gigabit Network Connection
* 82579LM Gigabit Network Connection
* 82579V Gigabit Network Connection
* Ethernet Connection I217-LM
* Ethernet Connection I217-V
* Ethernet Connection I218-V
* Ethernet Connection I218-LM
* Ethernet Connection (2) I218-LM
* Ethernet Connection (2) I218-V
* Ethernet Connection (3) I218-LM
* Ethernet Connection (3) I218-V
*/
#include "e1000.h"
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
struct ich8_hsfsts {
u16 flcdone:1; /* bit 0 Flash Cycle Done */
u16 flcerr:1; /* bit 1 Flash Cycle Error */
u16 dael:1; /* bit 2 Direct Access error Log */
u16 berasesz:2; /* bit 4:3 Sector Erase Size */
u16 flcinprog:1; /* bit 5 flash cycle in Progress */
u16 reserved1:2; /* bit 13:6 Reserved */
u16 reserved2:6; /* bit 13:6 Reserved */
u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
} hsf_status;
u16 regval;
};
/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
struct ich8_hsflctl {
u16 flcgo:1; /* 0 Flash Cycle Go */
u16 flcycle:2; /* 2:1 Flash Cycle */
u16 reserved:5; /* 7:3 Reserved */
u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
u16 flockdn:6; /* 15:10 Reserved */
} hsf_ctrl;
u16 regval;
};
/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
struct ich8_flracc {
u32 grra:8; /* 0:7 GbE region Read Access */
u32 grwa:8; /* 8:15 GbE region Write Access */
u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
} hsf_flregacc;
u16 regval;
};
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
struct ich8_pr {
u32 base:13; /* 0:12 Protected Range Base */
u32 reserved1:2; /* 13:14 Reserved */
u32 rpe:1; /* 15 Read Protection Enable */
u32 limit:13; /* 16:28 Protected Range Limit */
u32 reserved2:2; /* 29:30 Reserved */
u32 wpe:1; /* 31 Write Protection Enable */
} range;
u32 regval;
};
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 *data);
static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
u32 *data);
static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
u32 offset, u32 *data);
static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
u32 offset, u32 data);
static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
u32 offset, u32 dword);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
return readw(hw->flash_address + reg);
}
static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
return readl(hw->flash_address + reg);
}
static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
writew(val, hw->flash_address + reg);
}
static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
writel(val, hw->flash_address + reg);
}
#define er16flash(reg) __er16flash(hw, (reg))
#define er32flash(reg) __er32flash(hw, (reg))
#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
/**
* e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
* @hw: pointer to the HW structure
*
* Test access to the PHY registers by reading the PHY ID registers. If
* the PHY ID is already known (e.g. resume path) compare it with known ID,
* otherwise assume the read PHY ID is correct if it is valid.
*
* Assumes the sw/fw/hw semaphore is already acquired.
**/
static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
{
u16 phy_reg = 0;
u32 phy_id = 0;
s32 ret_val = 0;
u16 retry_count;
u32 mac_reg = 0;
for (retry_count = 0; retry_count < 2; retry_count++) {
ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
if (ret_val || (phy_reg == 0xFFFF))
continue;
phy_id = (u32)(phy_reg << 16);
ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
if (ret_val || (phy_reg == 0xFFFF)) {
phy_id = 0;
continue;
}
phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
break;
}
if (hw->phy.id) {
if (hw->phy.id == phy_id)
goto out;
} else if (phy_id) {
hw->phy.id = phy_id;
hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
goto out;
}
/* In case the PHY needs to be in mdio slow mode,
* set slow mode and try to get the PHY id again.
*/
if (hw->mac.type < e1000_pch_lpt) {
hw->phy.ops.release(hw);
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (!ret_val)
ret_val = e1000e_get_phy_id(hw);
hw->phy.ops.acquire(hw);
}
if (ret_val)
return false;
out:
if (hw->mac.type >= e1000_pch_lpt) {
/* Only unforce SMBus if ME is not active */
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
/* Unforce SMBus mode in PHY */
e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
/* Unforce SMBus mode in MAC */
mac_reg = er32(CTRL_EXT);
mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
ew32(CTRL_EXT, mac_reg);
}
}
return true;
}
/**
* e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
* @hw: pointer to the HW structure
*
* Toggling the LANPHYPC pin value fully power-cycles the PHY and is
* used to reset the PHY to a quiescent state when necessary.
**/
static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
{
u32 mac_reg;
/* Set Phy Config Counter to 50msec */
mac_reg = er32(FEXTNVM3);
mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
ew32(FEXTNVM3, mac_reg);
/* Toggle LANPHYPC Value bit */
mac_reg = er32(CTRL);
mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
ew32(CTRL, mac_reg);
e1e_flush();
usleep_range(10, 20);
mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
ew32(CTRL, mac_reg);
e1e_flush();
if (hw->mac.type < e1000_pch_lpt) {
msleep(50);
} else {
u16 count = 20;
do {
usleep_range(5000, 6000);
} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
msleep(30);
}
}
/**
* e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
* @hw: pointer to the HW structure
*
* Workarounds/flow necessary for PHY initialization during driver load
* and resume paths.
**/
static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->adapter;
u32 mac_reg, fwsm = er32(FWSM);
s32 ret_val;
/* Gate automatic PHY configuration by hardware on managed and
* non-managed 82579 and newer adapters.
*/
e1000_gate_hw_phy_config_ich8lan(hw, true);
/* It is not possible to be certain of the current state of ULP
* so forcibly disable it.
*/
hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
ret_val = e1000_disable_ulp_lpt_lp(hw, true);
if (ret_val)
e_warn("Failed to disable ULP\n");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_dbg("Failed to initialize PHY flow\n");
goto out;
}
/* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
* inaccessible and resetting the PHY is not blocked, toggle the
* LANPHYPC Value bit to force the interconnect to PCIe mode.
*/
switch (hw->mac.type) {
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
if (e1000_phy_is_accessible_pchlan(hw))
break;
/* Before toggling LANPHYPC, see if PHY is accessible by
* forcing MAC to SMBus mode first.
*/
mac_reg = er32(CTRL_EXT);
mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
ew32(CTRL_EXT, mac_reg);
/* Wait 50 milliseconds for MAC to finish any retries
* that it might be trying to perform from previous
* attempts to acknowledge any phy read requests.
*/
msleep(50);
fallthrough;
case e1000_pch2lan:
if (e1000_phy_is_accessible_pchlan(hw))
break;
fallthrough;
case e1000_pchlan:
if ((hw->mac.type == e1000_pchlan) &&
(fwsm & E1000_ICH_FWSM_FW_VALID))
break;
if (hw->phy.ops.check_reset_block(hw)) {
e_dbg("Required LANPHYPC toggle blocked by ME\n");
ret_val = -E1000_ERR_PHY;
break;
}
/* Toggle LANPHYPC Value bit */
e1000_toggle_lanphypc_pch_lpt(hw);
if (hw->mac.type >= e1000_pch_lpt) {
if (e1000_phy_is_accessible_pchlan(hw))
break;
/* Toggling LANPHYPC brings the PHY out of SMBus mode
* so ensure that the MAC is also out of SMBus mode
*/
mac_reg = er32(CTRL_EXT);
mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
ew32(CTRL_EXT, mac_reg);
if (e1000_phy_is_accessible_pchlan(hw))
break;
ret_val = -E1000_ERR_PHY;
}
break;
default:
break;
}
hw->phy.ops.release(hw);
if (!ret_val) {
/* Check to see if able to reset PHY. Print error if not */
if (hw->phy.ops.check_reset_block(hw)) {
e_err("Reset blocked by ME\n");
goto out;
}
/* Reset the PHY before any access to it. Doing so, ensures
* that the PHY is in a known good state before we read/write
* PHY registers. The generic reset is sufficient here,
* because we haven't determined the PHY type yet.
*/
ret_val = e1000e_phy_hw_reset_generic(hw);
if (ret_val)
goto out;
/* On a successful reset, possibly need to wait for the PHY
* to quiesce to an accessible state before returning control
* to the calling function. If the PHY does not quiesce, then
* return E1000E_BLK_PHY_RESET, as this is the condition that
* the PHY is in.
*/
ret_val = hw->phy.ops.check_reset_block(hw);
if (ret_val)
e_err("ME blocked access to PHY after reset\n");
}
out:
/* Ungate automatic PHY configuration on non-managed 82579 */
if ((hw->mac.type == e1000_pch2lan) &&
!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
usleep_range(10000, 11000);
e1000_gate_hw_phy_config_ich8lan(hw, false);
}
return ret_val;
}
/**
* e1000_init_phy_params_pchlan - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific PHY parameters and function pointers.
**/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
phy->addr = 1;
phy->reset_delay_us = 100;
phy->ops.set_page = e1000_set_page_igp;
phy->ops.read_reg = e1000_read_phy_reg_hv;
phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
phy->ops.write_reg = e1000_write_phy_reg_hv;
phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->id = e1000_phy_unknown;
ret_val = e1000_init_phy_workarounds_pchlan(hw);
if (ret_val)
return ret_val;
if (phy->id == e1000_phy_unknown)
switch (hw->mac.type) {
default:
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
return ret_val;
if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
break;
fallthrough;
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
/* In case the PHY needs to be in mdio slow mode,
* set slow mode and try to get the PHY id again.
*/
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
return ret_val;
break;
}
phy->type = e1000e_get_phy_type_from_id(phy->id);
switch (phy->type) {
case e1000_phy_82577:
case e1000_phy_82579:
case e1000_phy_i217:
phy->ops.check_polarity = e1000_check_polarity_82577;
phy->ops.force_speed_duplex =
e1000_phy_force_speed_duplex_82577;
phy->ops.get_cable_length = e1000_get_cable_length_82577;
phy->ops.get_info = e1000_get_phy_info_82577;
phy->ops.commit = e1000e_phy_sw_reset;
break;
case e1000_phy_82578:
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
phy->ops.get_cable_length = e1000e_get_cable_length_m88;
phy->ops.get_info = e1000e_get_phy_info_m88;
break;
default:
ret_val = -E1000_ERR_PHY;
break;
}
return ret_val;
}
/**
* e1000_init_phy_params_ich8lan - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific PHY parameters and function pointers.
**/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 i = 0;
phy->addr = 1;
phy->reset_delay_us = 100;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
/* We may need to do this twice - once for IGP and if that fails,
* we'll set BM func pointers and try again
*/
ret_val = e1000e_determine_phy_address(hw);
if (ret_val) {
phy->ops.write_reg = e1000e_write_phy_reg_bm;
phy->ops.read_reg = e1000e_read_phy_reg_bm;
ret_val = e1000e_determine_phy_address(hw);
if (ret_val) {
e_dbg("Cannot determine PHY addr. Erroring out\n");
return ret_val;
}
}
phy->id = 0;
while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
(i++ < 100)) {
usleep_range(1000, 1100);
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
return ret_val;
}
/* Verify phy id */
switch (phy->id) {
case IGP03E1000_E_PHY_ID:
phy->type = e1000_phy_igp_3;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
phy->ops.get_info = e1000e_get_phy_info_igp;
phy->ops.check_polarity = e1000_check_polarity_igp;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
phy->type = e1000_phy_ife;
phy->autoneg_mask = E1000_ALL_NOT_GIG;
phy->ops.get_info = e1000_get_phy_info_ife;
phy->ops.check_polarity = e1000_check_polarity_ife;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
break;
case BME1000_E_PHY_ID:
phy->type = e1000_phy_bm;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->ops.read_reg = e1000e_read_phy_reg_bm;
phy->ops.write_reg = e1000e_write_phy_reg_bm;
phy->ops.commit = e1000e_phy_sw_reset;
phy->ops.get_info = e1000e_get_phy_info_m88;
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
break;
default:
return -E1000_ERR_PHY;
}
return 0;
}
/**
* e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific NVM parameters and function
* pointers.
**/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 gfpreg, sector_base_addr, sector_end_addr;
u16 i;
u32 nvm_size;
nvm->type = e1000_nvm_flash_sw;
if (hw->mac.type >= e1000_pch_spt) {
/* in SPT, gfpreg doesn't exist. NVM size is taken from the
* STRAP register. This is because in SPT the GbE Flash region
* is no longer accessed through the flash registers. Instead,
* the mechanism has changed, and the Flash region access
* registers are now implemented in GbE memory space.
*/
nvm->flash_base_addr = 0;
nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
* NVM_SIZE_MULTIPLIER;
nvm->flash_bank_size = nvm_size / 2;
/* Adjust to word count */
nvm->flash_bank_size /= sizeof(u16);
/* Set the base address for flash register access */
hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
} else {
/* Can't read flash registers if register set isn't mapped. */
if (!hw->flash_address) {
e_dbg("ERROR: Flash registers not mapped\n");
return -E1000_ERR_CONFIG;
}
gfpreg = er32flash(ICH_FLASH_GFPREG);
/* sector_X_addr is a "sector"-aligned address (4096 bytes)
* Add 1 to sector_end_addr since this sector is included in
* the overall size.
*/
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
/* flash_base_addr is byte-aligned */
nvm->flash_base_addr = sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT;
/* find total size of the NVM, then cut in half since the total
* size represents two separate NVM banks.
*/
nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
<< FLASH_SECTOR_ADDR_SHIFT);
nvm->flash_bank_size /= 2;
/* Adjust to word count */
nvm->flash_bank_size /= sizeof(u16);
}
nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
/* Clear shadow ram */
for (i = 0; i < nvm->word_size; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
return 0;
}
/**
* e1000_init_mac_params_ich8lan - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific MAC parameters and function
* pointers.
**/
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
/* Set media type function pointer */
hw->phy.media_type = e1000_media_type_copper;
/* Set mta register count */
mac->mta_reg_count = 32;
/* Set rar entry count */
mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
if (mac->type == e1000_ich8lan)
mac->rar_entry_count--;
/* FWSM register */
mac->has_fwsm = true;
/* ARC subsystem not supported */
mac->arc_subsystem_valid = false;
/* Adaptive IFS supported */
mac->adaptive_ifs = true;
/* LED and other operations */
switch (mac->type) {
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
/* ID LED init */
mac->ops.id_led_init = e1000e_id_led_init_generic;
/* blink LED */
mac->ops.blink_led = e1000e_blink_led_generic;
/* setup LED */
mac->ops.setup_led = e1000e_setup_led_generic;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_ich8lan;
mac->ops.led_off = e1000_led_off_ich8lan;
break;
case e1000_pch2lan:
mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
mac->ops.rar_set = e1000_rar_set_pch2lan;
fallthrough;
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
case e1000_pchlan:
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
/* ID LED init */
mac->ops.id_led_init = e1000_id_led_init_pchlan;
/* setup LED */
mac->ops.setup_led = e1000_setup_led_pchlan;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_pchlan;
mac->ops.led_off = e1000_led_off_pchlan;
break;
default:
break;
}
if (mac->type >= e1000_pch_lpt) {
mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
mac->ops.rar_set = e1000_rar_set_pch_lpt;
mac->ops.setup_physical_interface =
e1000_setup_copper_link_pch_lpt;
mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
}
/* Enable PCS Lock-loss workaround for ICH8 */
if (mac->type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
return 0;
}
/**
* __e1000_access_emi_reg_locked - Read/write EMI register
* @hw: pointer to the HW structure
* @address: EMI address to program
* @data: pointer to value to read/write from/to the EMI address
* @read: boolean flag to indicate read or write
*
* This helper function assumes the SW/FW/HW Semaphore is already acquired.
**/
static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
u16 *data, bool read)
{
s32 ret_val;
ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
if (ret_val)
return ret_val;
if (read)
ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
else
ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
return ret_val;
}
/**
* e1000_read_emi_reg_locked - Read Extended Management Interface register
* @hw: pointer to the HW structure
* @addr: EMI address to program
* @data: value to be read from the EMI address
*
* Assumes the SW/FW/HW Semaphore is already acquired.
**/
s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
{
return __e1000_access_emi_reg_locked(hw, addr, data, true);
}
/**
* e1000_write_emi_reg_locked - Write Extended Management Interface register
* @hw: pointer to the HW structure
* @addr: EMI address to program
* @data: value to be written to the EMI address
*
* Assumes the SW/FW/HW Semaphore is already acquired.
**/
s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
{
return __e1000_access_emi_reg_locked(hw, addr, &data, false);
}
/**
* e1000_set_eee_pchlan - Enable/disable EEE support
* @hw: pointer to the HW structure
*
* Enable/disable EEE based on setting in dev_spec structure, the duplex of
* the link and the EEE capabilities of the link partner. The LPI Control
* register bits will remain set only if/when link is up.
*
* EEE LPI must not be asserted earlier than one second after link is up.
* On 82579, EEE LPI should not be enabled until such time otherwise there
* can be link issues with some switches. Other devices can have EEE LPI
* enabled immediately upon link up since they have a timer in hardware which
* prevents LPI from being asserted too early.
**/
s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
s32 ret_val;
u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
switch (hw->phy.type) {
case e1000_phy_82579:
lpa = I82579_EEE_LP_ABILITY;
pcs_status = I82579_EEE_PCS_STATUS;
adv_addr = I82579_EEE_ADVERTISEMENT;
break;
case e1000_phy_i217:
lpa = I217_EEE_LP_ABILITY;
pcs_status = I217_EEE_PCS_STATUS;
adv_addr = I217_EEE_ADVERTISEMENT;
break;
default:
return 0;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
if (ret_val)
goto release;
/* Clear bits that enable EEE in various speeds */
lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
/* Enable EEE if not disabled by user */
if (!dev_spec->eee_disable) {
/* Save off link partner's EEE ability */
ret_val = e1000_read_emi_reg_locked(hw, lpa,
&dev_spec->eee_lp_ability);
if (ret_val)
goto release;
/* Read EEE advertisement */
ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
if (ret_val)
goto release;
/* Enable EEE only for speeds in which the link partner is
* EEE capable and for which we advertise EEE.
*/
if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
e1e_rphy_locked(hw, MII_LPA, &data);
if (data & LPA_100FULL)
lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
else
/* EEE is not supported in 100Half, so ignore
* partner's EEE in 100 ability if full-duplex
* is not advertised.
*/
dev_spec->eee_lp_ability &=
~I82579_EEE_100_SUPPORTED;
}
}
if (hw->phy.type == e1000_phy_82579) {
ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
&data);
if (ret_val)
goto release;
data &= ~I82579_LPI_100_PLL_SHUT;
ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
data);
}
/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
if (ret_val)
goto release;
ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
* @hw: pointer to the HW structure
* @link: link up bool flag
*
* When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
* preventing further DMA write requests. Workaround the issue by disabling
* the de-assertion of the clock request when in 1Gpbs mode.
* Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
* speeds in order to avoid Tx hangs.
**/
static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
{
u32 fextnvm6 = er32(FEXTNVM6);
u32 status = er32(STATUS);
s32 ret_val = 0;
u16 reg;
if (link && (status & E1000_STATUS_SPEED_1000)) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val =
e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
&reg);
if (ret_val)
goto release;
ret_val =
e1000e_write_kmrn_reg_locked(hw,
E1000_KMRNCTRLSTA_K1_CONFIG,
reg &
~E1000_KMRNCTRLSTA_K1_ENABLE);
if (ret_val)
goto release;
usleep_range(10, 20);
ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
ret_val =
e1000e_write_kmrn_reg_locked(hw,
E1000_KMRNCTRLSTA_K1_CONFIG,
reg);
release:
hw->phy.ops.release(hw);
} else {
/* clear FEXTNVM6 bit 8 on link down or 10/100 */
fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
if ((hw->phy.revision > 5) || !link ||
((status & E1000_STATUS_SPEED_100) &&
(status & E1000_STATUS_FD)))
goto update_fextnvm6;
ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
if (ret_val)
return ret_val;
/* Clear link status transmit timeout */
reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
if (status & E1000_STATUS_SPEED_100) {
/* Set inband Tx timeout to 5x10us for 100Half */
reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
/* Do not extend the K1 entry latency for 100Half */
fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
} else {
/* Set inband Tx timeout to 50x10us for 10Full/Half */
reg |= 50 <<
I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
/* Extend the K1 entry latency for 10 Mbps */
fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
}
ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
if (ret_val)
return ret_val;
update_fextnvm6:
ew32(FEXTNVM6, fextnvm6);
}
return ret_val;
}
/**
* e1000_platform_pm_pch_lpt - Set platform power management values
* @hw: pointer to the HW structure
* @link: bool indicating link status
*
* Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
* GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
* when link is up (which must not exceed the maximum latency supported
* by the platform), otherwise specify there is no LTR requirement.
* Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
* latencies in the LTR Extended Capability Structure in the PCIe Extended
* Capability register set, on this device LTR is set by writing the
* equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
* set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
* message to the PMC.
**/
static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
{
u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
u32 lat_enc_d = 0; /* latency decoded */
u16 lat_enc = 0; /* latency encoded */
if (link) {
u16 speed, duplex, scale = 0;
u16 max_snoop, max_nosnoop;
u16 max_ltr_enc; /* max LTR latency encoded */
u64 value;
u32 rxa;
if (!hw->adapter->max_frame_size) {
e_dbg("max_frame_size not set.\n");
return -E1000_ERR_CONFIG;
}
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
if (!speed) {
e_dbg("Speed not set.\n");
return -E1000_ERR_CONFIG;
}
/* Rx Packet Buffer Allocation size (KB) */
rxa = er32(PBA) & E1000_PBA_RXA_MASK;
/* Determine the maximum latency tolerated by the device.
*
* Per the PCIe spec, the tolerated latencies are encoded as
* a 3-bit encoded scale (only 0-5 are valid) multiplied by
* a 10-bit value (0-1023) to provide a range from 1 ns to
* 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
* 1=2^5ns, 2=2^10ns,...5=2^25ns.
*/
rxa *= 512;
value = (rxa > hw->adapter->max_frame_size) ?
(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
0;
while (value > PCI_LTR_VALUE_MASK) {
scale++;
value = DIV_ROUND_UP(value, BIT(5));
}
if (scale > E1000_LTRV_SCALE_MAX) {
e_dbg("Invalid LTR latency scale %d\n", scale);
return -E1000_ERR_CONFIG;
}
lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
/* Determine the maximum latency tolerated by the platform */
pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
&max_snoop);
pci_read_config_word(hw->adapter->pdev,
E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
(1U << (E1000_LTRV_SCALE_FACTOR *
FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
(1U << (E1000_LTRV_SCALE_FACTOR *
FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
if (lat_enc_d > max_ltr_enc_d)
lat_enc = max_ltr_enc;
}
/* Set Snoop and No-Snoop latencies the same */
reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
ew32(LTRV, reg);
return 0;
}
/**
* e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
* @hw: pointer to the HW structure
* @to_sx: boolean indicating a system power state transition to Sx
*
* When link is down, configure ULP mode to significantly reduce the power
* to the PHY. If on a Manageability Engine (ME) enabled system, tell the
* ME firmware to start the ULP configuration. If not on an ME enabled
* system, configure the ULP mode by software.
*/
s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
{
u32 mac_reg;
s32 ret_val = 0;
u16 phy_reg;
u16 oem_reg = 0;
if ((hw->mac.type < e1000_pch_lpt) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
(hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
return 0;
if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
/* Request ME configure ULP mode in the PHY */
mac_reg = er32(H2ME);
mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
ew32(H2ME, mac_reg);
goto out;
}
if (!to_sx) {
int i = 0;
/* Poll up to 5 seconds for Cable Disconnected indication */
while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
/* Bail if link is re-acquired */
if (er32(STATUS) & E1000_STATUS_LU)
return -E1000_ERR_PHY;
if (i++ == 100)
break;
msleep(50);
}
e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
(er32(FEXT) &
E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
/* Force SMBus mode in PHY */
ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
if (ret_val)
goto release;
phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
/* Force SMBus mode in MAC */
mac_reg = er32(CTRL_EXT);
mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
ew32(CTRL_EXT, mac_reg);
/* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
* LPLU and disable Gig speed when entering ULP
*/
if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
&oem_reg);
if (ret_val)
goto release;
phy_reg = oem_reg;
phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
phy_reg);
if (ret_val)
goto release;
}
/* Set Inband ULP Exit, Reset to SMBus mode and
* Disable SMBus Release on PERST# in PHY
*/
ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
if (ret_val)
goto release;
phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
I218_ULP_CONFIG1_DISABLE_SMB_PERST);
if (to_sx) {
if (er32(WUFC) & E1000_WUFC_LNKC)
phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
else
phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
} else {
phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
}
e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
/* Set Disable SMBus Release on PERST# in MAC */
mac_reg = er32(FEXTNVM7);
mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
ew32(FEXTNVM7, mac_reg);
/* Commit ULP changes in PHY by starting auto ULP configuration */
phy_reg |= I218_ULP_CONFIG1_START;
e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
oem_reg);
if (ret_val)
goto release;
}
release:
hw->phy.ops.release(hw);
out:
if (ret_val)
e_dbg("Error in ULP enable flow: %d\n", ret_val);
else
hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
return ret_val;
}
/**
* e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
* @hw: pointer to the HW structure
* @force: boolean indicating whether or not to force disabling ULP
*
* Un-configure ULP mode when link is up, the system is transitioned from
* Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
* system, poll for an indication from ME that ULP has been un-configured.
* If not on an ME enabled system, un-configure the ULP mode by software.
*
* During nominal operation, this function is called when link is acquired
* to disable ULP mode (force=false); otherwise, for example when unloading
* the driver or during Sx->S0 transitions, this is called with force=true
* to forcibly disable ULP.
*/
static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
{
s32 ret_val = 0;
u32 mac_reg;
u16 phy_reg;
int i = 0;
if ((hw->mac.type < e1000_pch_lpt) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
(hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
return 0;
if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
struct e1000_adapter *adapter = hw->adapter;
bool firmware_bug = false;
if (force) {
/* Request ME un-configure ULP mode in the PHY */
mac_reg = er32(H2ME);
mac_reg &= ~E1000_H2ME_ULP;
mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
ew32(H2ME, mac_reg);
}
/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
* If this takes more than 1 second, show a warning indicating a
* firmware bug
*/
while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
if (i++ == 250) {
ret_val = -E1000_ERR_PHY;
goto out;
}
if (i > 100 && !firmware_bug)
firmware_bug = true;
usleep_range(10000, 11000);
}
if (firmware_bug)
e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
i * 10);
else
e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
i * 10);
if (force) {
mac_reg = er32(H2ME);
mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
ew32(H2ME, mac_reg);
} else {
/* Clear H2ME.ULP after ME ULP configuration */
mac_reg = er32(H2ME);
mac_reg &= ~E1000_H2ME_ULP;
ew32(H2ME, mac_reg);
}
goto out;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
if (force)
/* Toggle LANPHYPC Value bit */
e1000_toggle_lanphypc_pch_lpt(hw);
/* Unforce SMBus mode in PHY */
ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
if (ret_val) {
/* The MAC might be in PCIe mode, so temporarily force to
* SMBus mode in order to access the PHY.
*/
mac_reg = er32(CTRL_EXT);
mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
ew32(CTRL_EXT, mac_reg);
msleep(50);
ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
&phy_reg);
if (ret_val)
goto release;
}
phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
/* Unforce SMBus mode in MAC */
mac_reg = er32(CTRL_EXT);
mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
ew32(CTRL_EXT, mac_reg);
/* When ULP mode was previously entered, K1 was disabled by the
* hardware. Re-Enable K1 in the PHY when exiting ULP.
*/
ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
if (ret_val)
goto release;
phy_reg |= HV_PM_CTRL_K1_ENABLE;
e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
/* Clear ULP enabled configuration */
ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
if (ret_val)
goto release;
phy_reg &= ~(I218_ULP_CONFIG1_IND |
I218_ULP_CONFIG1_STICKY_ULP |
I218_ULP_CONFIG1_RESET_TO_SMBUS |
I218_ULP_CONFIG1_WOL_HOST |
I218_ULP_CONFIG1_INBAND_EXIT |
I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
I218_ULP_CONFIG1_DISABLE_SMB_PERST);
e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
/* Commit ULP changes by starting auto ULP configuration */
phy_reg |= I218_ULP_CONFIG1_START;
e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
/* Clear Disable SMBus Release on PERST# in MAC */
mac_reg = er32(FEXTNVM7);
mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
ew32(FEXTNVM7, mac_reg);
release:
hw->phy.ops.release(hw);
if (force) {
e1000_phy_hw_reset(hw);
msleep(50);
}
out:
if (ret_val)
e_dbg("Error in ULP disable flow: %d\n", ret_val);
else
hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
return ret_val;
}
/**
* e1000_check_for_copper_link_ich8lan - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val, tipg_reg = 0;
u16 emi_addr, emi_val = 0;
bool link;
u16 phy_reg;
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return 0;
mac->get_link_status = false;
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (hw->mac.type == e1000_pchlan) {
ret_val = e1000_k1_gig_workaround_hv(hw, link);
if (ret_val)
goto out;
}
/* When connected at 10Mbps half-duplex, some parts are excessively
* aggressive resulting in many collisions. To avoid this, increase
* the IPG and reduce Rx latency in the PHY.
*/
if ((hw->mac.type >= e1000_pch2lan) && link) {
u16 speed, duplex;
e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
tipg_reg = er32(TIPG);
tipg_reg &= ~E1000_TIPG_IPGT_MASK;
if (duplex == HALF_DUPLEX && speed == SPEED_10) {
tipg_reg |= 0xFF;
/* Reduce Rx latency in analog PHY */
emi_val = 0;
} else if (hw->mac.type >= e1000_pch_spt &&
duplex == FULL_DUPLEX && speed != SPEED_1000) {
tipg_reg |= 0xC;
emi_val = 1;
} else {
/* Roll back the default values */
tipg_reg |= 0x08;
emi_val = 1;
}
ew32(TIPG, tipg_reg);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
if (hw->mac.type == e1000_pch2lan)
emi_addr = I82579_RX_CONFIG;
else
emi_addr = I217_RX_CONFIG;
ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
if (hw->mac.type >= e1000_pch_lpt) {
u16 phy_reg;
e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
if (speed == SPEED_100 || speed == SPEED_10)
phy_reg |= 0x3E8;
else
phy_reg |= 0xFA;
e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
if (speed == SPEED_1000) {
hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
&phy_reg);
phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
phy_reg);
}
}
hw->phy.ops.release(hw);
if (ret_val)
goto out;
if (hw->mac.type >= e1000_pch_spt) {
u16 data;
u16 ptr_gap;
if (speed == SPEED_1000) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = e1e_rphy_locked(hw,
PHY_REG(776, 20),
&data);
if (ret_val) {
hw->phy.ops.release(hw);
goto out;
}
ptr_gap = (data & (0x3FF << 2)) >> 2;
if (ptr_gap < 0x18) {
data &= ~(0x3FF << 2);
data |= (0x18 << 2);
ret_val =
e1e_wphy_locked(hw,
PHY_REG(776, 20),
data);
}
hw->phy.ops.release(hw);
if (ret_val)
goto out;
} else {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = e1e_wphy_locked(hw,
PHY_REG(776, 20),
0xC023);
hw->phy.ops.release(hw);
if (ret_val)
goto out;
}
}
}
/* I217 Packet Loss issue:
* ensure that FEXTNVM4 Beacon Duration is set correctly
* on power up.
* Set the Beacon Duration for I217 to 8 usec
*/
if (hw->mac.type >= e1000_pch_lpt) {
u32 mac_reg;
mac_reg = er32(FEXTNVM4);
mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
ew32(FEXTNVM4, mac_reg);
}
/* Work-around I218 hang issue */
if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
(hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
ret_val = e1000_k1_workaround_lpt_lp(hw, link);
if (ret_val)
goto out;
}
if (hw->mac.type >= e1000_pch_lpt) {
/* Set platform power management values for
* Latency Tolerance Reporting (LTR)
*/
ret_val = e1000_platform_pm_pch_lpt(hw, link);
if (ret_val)
goto out;
}
/* Clear link partner's EEE ability */
hw->dev_spec.ich8lan.eee_lp_ability = 0;
if (hw->mac.type >= e1000_pch_lpt) {
u32 fextnvm6 = er32(FEXTNVM6);
if (hw->mac.type == e1000_pch_spt) {
/* FEXTNVM6 K1-off workaround - for SPT only */
u32 pcieanacfg = er32(PCIEANACFG);
if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
else
fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
}
ew32(FEXTNVM6, fextnvm6);
}
if (!link)
goto out;
switch (hw->mac.type) {
case e1000_pch2lan:
ret_val = e1000_k1_workaround_lv(hw);
if (ret_val)
return ret_val;
fallthrough;
case e1000_pchlan:
if (hw->phy.type == e1000_phy_82578) {
ret_val = e1000_link_stall_workaround_hv(hw);
if (ret_val)
return ret_val;
}
/* Workaround for PCHx parts in half-duplex:
* Set the number of preambles removed from the packet
* when it is passed from the PHY to the MAC to prevent
* the MAC from misinterpreting the packet type.
*/
e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
break;
default:
break;
}
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
/* Enable/Disable EEE after link up */
if (hw->phy.type > e1000_phy_82579) {
ret_val = e1000_set_eee_pchlan(hw);
if (ret_val)
return ret_val;
}
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg)
return -E1000_ERR_CONFIG;
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
e_dbg("Error configuring flow control\n");
return ret_val;
out:
mac->get_link_status = true;
return ret_val;
}
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 rc;
rc = e1000_init_mac_params_ich8lan(hw);
if (rc)
return rc;
rc = e1000_init_nvm_params_ich8lan(hw);
if (rc)
return rc;
switch (hw->mac.type) {
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
rc = e1000_init_phy_params_ich8lan(hw);
break;
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
rc = e1000_init_phy_params_pchlan(hw);
break;
default:
break;
}
if (rc)
return rc;
/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
* on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
*/
if ((adapter->hw.phy.type == e1000_phy_ife) ||
((adapter->hw.mac.type >= e1000_pch2lan) &&
(!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
hw->mac.ops.blink_led = NULL;
}
if ((adapter->hw.mac.type == e1000_ich8lan) &&
(adapter->hw.phy.type != e1000_phy_ife))
adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
/* Enable workaround for 82579 w/ ME enabled */
if ((adapter->hw.mac.type == e1000_pch2lan) &&
(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
return 0;
}
static DEFINE_MUTEX(nvm_mutex);
/**
* e1000_acquire_nvm_ich8lan - Acquire NVM mutex
* @hw: pointer to the HW structure
*
* Acquires the mutex for performing NVM operations.
**/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
{
mutex_lock(&nvm_mutex);
return 0;
}
/**
* e1000_release_nvm_ich8lan - Release NVM mutex
* @hw: pointer to the HW structure
*
* Releases the mutex used while performing NVM operations.
**/
static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
{
mutex_unlock(&nvm_mutex);
}
/**
* e1000_acquire_swflag_ich8lan - Acquire software control flag
* @hw: pointer to the HW structure
*
* Acquires the software control flag for performing PHY and select
* MAC CSR accesses.
**/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
s32 ret_val = 0;
if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
&hw->adapter->state)) {
e_dbg("contention for Phy access\n");
return -E1000_ERR_PHY;
}
while (timeout) {
extcnf_ctrl = er32(EXTCNF_CTRL);
if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
break;
mdelay(1);
timeout--;
}
if (!timeout) {
e_dbg("SW has already locked the resource.\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
timeout = SW_FLAG_TIMEOUT;
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
while (timeout) {
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
break;
mdelay(1);
timeout--;
}
if (!timeout) {
e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
er32(FWSM), extcnf_ctrl);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
ret_val = -E1000_ERR_CONFIG;
goto out;
}
out:
if (ret_val)
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
return ret_val;
}
/**
* e1000_release_swflag_ich8lan - Release software control flag
* @hw: pointer to the HW structure
*
* Releases the software control flag for performing PHY and select
* MAC CSR accesses.
**/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
} else {
e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
}
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
}
/**
* e1000_check_mng_mode_ich8lan - Checks management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has any manageability enabled.
* This is a function pointer entry point only called by read/write
* routines for the PHY and NVM parts.
**/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
/**
* e1000_check_mng_mode_pchlan - Checks management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has iAMT enabled.
* This is a function pointer entry point only called by read/write
* routines for the PHY and NVM parts.
**/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
(fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
/**
* e1000_rar_set_pch2lan - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr. For 82579, RAR[0] is the base address register that is to
* contain the MAC address but RAR[1-6] are reserved for manageability (ME).
* Use SHRA[0-3] in place of those reserved for ME.
**/
static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] |
((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
if (index == 0) {
ew32(RAL(index), rar_low);
e1e_flush();
ew32(RAH(index), rar_high);
e1e_flush();
return 0;
}
/* RAR[1-6] are owned by manageability. Skip those and program the
* next address into the SHRA register array.
*/
if (index < (u32)(hw->mac.rar_entry_count)) {
s32 ret_val;
ret_val = e1000_acquire_swflag_ich8lan(hw);
if (ret_val)
goto out;
ew32(SHRAL(index - 1), rar_low);
e1e_flush();
ew32(SHRAH(index - 1), rar_high);
e1e_flush();
e1000_release_swflag_ich8lan(hw);
/* verify the register updates */
if ((er32(SHRAL(index - 1)) == rar_low) &&
(er32(SHRAH(index - 1)) == rar_high))
return 0;
e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
(index - 1), er32(FWSM));
}
out:
e_dbg("Failed to write receive address at index %d\n", index);
return -E1000_ERR_CONFIG;
}
/**
* e1000_rar_get_count_pch_lpt - Get the number of available SHRA
* @hw: pointer to the HW structure
*
* Get the number of available receive registers that the Host can
* program. SHRA[0-10] are the shared receive address registers
* that are shared between the Host and manageability engine (ME).
* ME can reserve any number of addresses and the host needs to be
* able to tell how many available registers it has access to.
**/
static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
{
u32 wlock_mac;
u32 num_entries;
wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
switch (wlock_mac) {
case 0:
/* All SHRA[0..10] and RAR[0] available */
num_entries = hw->mac.rar_entry_count;
break;
case 1:
/* Only RAR[0] available */
num_entries = 1;
break;
default:
/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
num_entries = wlock_mac + 1;
break;
}
return num_entries;
}
/**
* e1000_rar_set_pch_lpt - Set receive address registers
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address register array at index to the address passed
* in by addr. For LPT, RAR[0] is the base address register that is to
* contain the MAC address. SHRA[0-10] are the shared receive address
* registers that are shared between the Host and manageability engine (ME).
**/
static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
u32 wlock_mac;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
if (index == 0) {
ew32(RAL(index), rar_low);
e1e_flush();
ew32(RAH(index), rar_high);
e1e_flush();
return 0;
}
/* The manageability engine (ME) can lock certain SHRAR registers that
* it is using - those registers are unavailable for use.
*/
if (index < hw->mac.rar_entry_count) {
wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
/* Check if all SHRAR registers are locked */
if (wlock_mac == 1)
goto out;
if ((wlock_mac == 0) || (index <= wlock_mac)) {
s32 ret_val;
ret_val = e1000_acquire_swflag_ich8lan(hw);
if (ret_val)
goto out;
ew32(SHRAL_PCH_LPT(index - 1), rar_low);
e1e_flush();
ew32(SHRAH_PCH_LPT(index - 1), rar_high);
e1e_flush();
e1000_release_swflag_ich8lan(hw);
/* verify the register updates */
if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
(er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
return 0;
}
}
out:
e_dbg("Failed to write receive address at index %d\n", index);
return -E1000_ERR_CONFIG;
}
/**
* e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Checks if firmware is blocking the reset of the PHY.
* This is a function pointer entry point only called by
* reset routines.
**/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
bool blocked = false;
int i = 0;
while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
(i++ < 30))
usleep_range(10000, 11000);
return blocked ? E1000_BLK_PHY_RESET : 0;
}
/**
* e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
* @hw: pointer to the HW structure
*
* Assumes semaphore already acquired.
*
**/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
u16 phy_data;
u32 strap = er32(STRAP);
u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
s32 ret_val;
strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~HV_SMB_ADDR_MASK;
phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
if (hw->phy.type == e1000_phy_i217) {
/* Restore SMBus frequency */
if (freq--) {
phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
phy_data |= (freq & BIT(0)) <<
HV_SMB_ADDR_FREQ_LOW_SHIFT;
phy_data |= (freq & BIT(1)) <<
(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
} else {
e_dbg("Unsupported SMB frequency in PHY\n");
}
}
return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
}
/**
* e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
* @hw: pointer to the HW structure
*
* SW should configure the LCD from the NVM extended configuration region
* as a workaround for certain parts.
**/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
s32 ret_val = 0;
u16 word_addr, reg_data, reg_addr, phy_page = 0;
/* Initialize the PHY from the NVM on ICH platforms. This
* is needed due to an issue where the NVM configuration is
* not properly autoloaded after power transitions.
* Therefore, after each PHY reset, we will load the
* configuration data out of the NVM manually.
*/
switch (hw->mac.type) {
case e1000_ich8lan:
if (phy->type != e1000_phy_igp_3)
return ret_val;
if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
(hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
break;
}
fallthrough;
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
break;
default:
return ret_val;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
data = er32(FEXTNVM);
if (!(data & sw_cfg_mask))
goto release;
/* Make sure HW does not configure LCD from PHY
* extended configuration before SW configuration
*/
data = er32(EXTCNF_CTRL);
if ((hw->mac.type < e1000_pch2lan) &&
(data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
goto release;
cnf_size = er32(EXTCNF_SIZE);
cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
if (!cnf_size)
goto release;
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
if (((hw->mac.type == e1000_pchlan) &&
!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
(hw->mac.type > e1000_pchlan)) {
/* HW configures the SMBus address and LEDs when the
* OEM and LCD Write Enable bits are set in the NVM.
* When both NVM bits are cleared, SW will configure
* them instead.
*/
ret_val = e1000_write_smbus_addr(hw);
if (ret_val)
goto release;
data = er32(LEDCTL);
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
(u16)data);
if (ret_val)
goto release;
}
/* Configure LCD from extended configuration region. */
/* cnf_base_addr is in DWORD */
word_addr = (u16)(cnf_base_addr << 1);
for (i = 0; i < cnf_size; i++) {
ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
if (ret_val)
goto release;
ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1, &reg_addr);
if (ret_val)
goto release;
/* Save off the PHY page for future writes. */
if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
phy_page = reg_data;
continue;
}
reg_addr &= PHY_REG_MASK;
reg_addr |= phy_page;
ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
if (ret_val)
goto release;
}
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_k1_gig_workaround_hv - K1 Si workaround
* @hw: pointer to the HW structure
* @link: link up bool flag
*
* If K1 is enabled for 1Gbps, the MAC might stall when transitioning
* from a lower speed. This workaround disables K1 whenever link is at 1Gig
* If link is down, the function will restore the default K1 setting located
* in the NVM.
**/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
s32 ret_val = 0;
u16 status_reg = 0;
bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
if (hw->mac.type != e1000_pchlan)
return 0;
/* Wrap the whole flow with the sw flag */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
if (link) {
if (hw->phy.type == e1000_phy_82578) {
ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
&status_reg);
if (ret_val)
goto release;
status_reg &= (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_MASK);
if (status_reg == (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
k1_enable = false;
}
if (hw->phy.type == e1000_phy_82577) {
ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
if (ret_val)
goto release;
status_reg &= (HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
HV_M_STATUS_SPEED_MASK);
if (status_reg == (HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
HV_M_STATUS_SPEED_1000))
k1_enable = false;
}
/* Link stall fix for link up */
ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
if (ret_val)
goto release;
} else {
/* Link stall fix for link down */
ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
if (ret_val)
goto release;
}
ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_configure_k1_ich8lan - Configure K1 power state
* @hw: pointer to the HW structure
* @k1_enable: K1 state to configure
*
* Configure the K1 power state based on the provided parameter.
* Assumes semaphore already acquired.
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
**/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
s32 ret_val;
u32 ctrl_reg = 0;
u32 ctrl_ext = 0;
u32 reg = 0;
u16 kmrn_reg = 0;
ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
&kmrn_reg);
if (ret_val)
return ret_val;
if (k1_enable)
kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
else
kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
kmrn_reg);
if (ret_val)
return ret_val;
usleep_range(20, 40);
ctrl_ext = er32(CTRL_EXT);
ctrl_reg = er32(CTRL);
reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
reg |= E1000_CTRL_FRCSPD;
ew32(CTRL, reg);
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
e1e_flush();
usleep_range(20, 40);
ew32(CTRL, ctrl_reg);
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
usleep_range(20, 40);
return 0;
}
/**
* e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
* @hw: pointer to the HW structure
* @d0_state: boolean if entering d0 or d3 device state
*
* SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
* collectively called OEM bits. The OEM Write Enable bit and SW Config bit
* in NVM determines whether HW should configure LPLU and Gbe Disable.
**/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
s32 ret_val = 0;
u32 mac_reg;
u16 oem_reg;
if (hw->mac.type < e1000_pchlan)
return ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
if (hw->mac.type == e1000_pchlan) {
mac_reg = er32(EXTCNF_CTRL);
if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
goto release;
}
mac_reg = er32(FEXTNVM);
if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
goto release;
mac_reg = er32(PHY_CTRL);
ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
goto release;
oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
if (d0_state) {
if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
oem_reg |= HV_OEM_BITS_GBE_DIS;
if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
oem_reg |= HV_OEM_BITS_LPLU;
} else {
if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
oem_reg |= HV_OEM_BITS_GBE_DIS;
if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
E1000_PHY_CTRL_NOND0A_LPLU))
oem_reg |= HV_OEM_BITS_LPLU;
}
/* Set Restart auto-neg to activate the bits */
if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
!hw->phy.ops.check_reset_block(hw))
oem_reg |= HV_OEM_BITS_RESTART_AN;
ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
* @hw: pointer to the HW structure
**/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
if (ret_val)
return ret_val;
data |= HV_KMRN_MDIO_SLOW;
ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
return ret_val;
}
/**
* e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
* @hw: pointer to the HW structure
*
* A series of PHY workarounds to be done after every PHY reset.
**/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 phy_data;
if (hw->mac.type != e1000_pchlan)
return 0;
/* Set MDIO slow mode before any other MDIO access */
if (hw->phy.type == e1000_phy_82577) {
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
return ret_val;
}
if (((hw->phy.type == e1000_phy_82577) &&
((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
/* Disable generation of early preamble */
ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
if (ret_val)
return ret_val;
/* Preamble tuning for SSC */
ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
if (ret_val)
return ret_val;
}
if (hw->phy.type == e1000_phy_82578) {
/* Return registers to default by doing a soft reset then
* writing 0x3140 to the control register.
*/
if (hw->phy.revision < 2) {
e1000e_phy_sw_reset(hw);
ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
if (ret_val)
return ret_val;
}
}
/* Select page 0 */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
hw->phy.addr = 1;
ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
hw->phy.ops.release(hw);
if (ret_val)
return ret_val;
/* Configure the K1 Si workaround during phy reset assuming there is
* link so that it disables K1 if link is in 1Gbps.
*/
ret_val = e1000_k1_gig_workaround_hv(hw, true);
if (ret_val)
return ret_val;
/* Workaround for link disconnects on a busy hub in half duplex */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
if (ret_val)
goto release;
ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
if (ret_val)
goto release;
/* set MSE higher to enable link to stay up when noise is high */
ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
* @hw: pointer to the HW structure
**/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
u32 mac_reg;
u16 i, phy_reg = 0;
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
if (ret_val)
goto release;
/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
for (i = 0; i < (hw->mac.rar_entry_count); i++) {
mac_reg = er32(RAL(i));
hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
(u16)((mac_reg >> 16) & 0xFFFF));
mac_reg = er32(RAH(i));
hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
(u16)((mac_reg & E1000_RAH_AV) >> 16));
}
e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
release:
hw->phy.ops.release(hw);
}
/**
* e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
* with 82579 PHY
* @hw: pointer to the HW structure
* @enable: flag to enable/disable workaround when enabling/disabling jumbos
**/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
s32 ret_val = 0;
u16 phy_reg, data;
u32 mac_reg;
u16 i;
if (hw->mac.type < e1000_pch2lan)
return 0;
/* disable Rx path while enabling/disabling workaround */
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
if (ret_val)
return ret_val;
if (enable) {
/* Write Rx addresses (rar_entry_count for RAL/H, and
* SHRAL/H) and initial CRC values to the MAC
*/
for (i = 0; i < hw->mac.rar_entry_count; i++) {
u8 mac_addr[ETH_ALEN] = { 0 };
u32 addr_high, addr_low;
addr_high = er32(RAH(i));
if (!(addr_high & E1000_RAH_AV))
continue;
addr_low = er32(RAL(i));
mac_addr[0] = (addr_low & 0xFF);
mac_addr[1] = ((addr_low >> 8) & 0xFF);
mac_addr[2] = ((addr_low >> 16) & 0xFF);
mac_addr[3] = ((addr_low >> 24) & 0xFF);
mac_addr[4] = (addr_high & 0xFF);
mac_addr[5] = ((addr_high >> 8) & 0xFF);
ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
}
/* Write Rx addresses to the PHY */
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
/* Enable jumbo frame workaround in the MAC */
mac_reg = er32(FFLT_DBG);
mac_reg &= ~BIT(14);
mac_reg |= (7 << 15);
ew32(FFLT_DBG, mac_reg);
mac_reg = er32(RCTL);
mac_reg |= E1000_RCTL_SECRC;
ew32(RCTL, mac_reg);
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
return ret_val;
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data | BIT(0));
if (ret_val)
return ret_val;
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
return ret_val;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
return ret_val;
/* Enable jumbo frame workaround in the PHY */
e1e_rphy(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
data |= (0x37 << 5);
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
if (ret_val)
return ret_val;
e1e_rphy(hw, PHY_REG(769, 16), &data);
data &= ~BIT(13);
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
if (ret_val)
return ret_val;
e1e_rphy(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (E1000_TX_PTR_GAP << 2);
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
if (ret_val)
return ret_val;
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
if (ret_val)
return ret_val;
e1e_rphy(hw, HV_PM_CTRL, &data);
ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
if (ret_val)
return ret_val;
} else {
/* Write MAC register values back to h/w defaults */
mac_reg = er32(FFLT_DBG);
mac_reg &= ~(0xF << 14);
ew32(FFLT_DBG, mac_reg);
mac_reg = er32(RCTL);
mac_reg &= ~E1000_RCTL_SECRC;
ew32(RCTL, mac_reg);
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
return ret_val;
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data & ~BIT(0));
if (ret_val)
return ret_val;
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
return ret_val;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
return ret_val;
/* Write PHY register values back to h/w defaults */
e1e_rphy(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
if (ret_val)
return ret_val;
e1e_rphy(hw, PHY_REG(769, 16), &data);
data |= BIT(13);
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
if (ret_val)
return ret_val;
e1e_rphy(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x8 << 2);
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
if (ret_val)
return ret_val;
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
if (ret_val)
return ret_val;
e1e_rphy(hw, HV_PM_CTRL, &data);
ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
if (ret_val)
return ret_val;
}
/* re-enable Rx path after enabling/disabling workaround */
return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
}
/**
* e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
* @hw: pointer to the HW structure
*
* A series of PHY workarounds to be done after every PHY reset.
**/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
if (hw->mac.type != e1000_pch2lan)
return 0;
/* Set MDIO slow mode before any other MDIO access */
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* set MSE higher to enable link to stay up when noise is high */
ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
if (ret_val)
goto release;
/* drop link after 5 times MSE threshold was reached */
ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_k1_workaround_lv - K1 Si workaround
* @hw: pointer to the HW structure
*
* Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
* Disable K1 in 1000Mbps and 100Mbps
**/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 status_reg = 0;
if (hw->mac.type != e1000_pch2lan)
return 0;
/* Set K1 beacon duration based on 10Mbs speed */
ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
if (ret_val)
return ret_val;
if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
== (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
if (status_reg &
(HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
u16 pm_phy_reg;
/* LV 1G/100 Packet drop issue wa */
ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
if (ret_val)
return ret_val;
pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
if (ret_val)
return ret_val;
} else {
u32 mac_reg;
mac_reg = er32(FEXTNVM4);
mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
ew32(FEXTNVM4, mac_reg);
}
}
return ret_val;
}
/**
* e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
* @hw: pointer to the HW structure
* @gate: boolean set to true to gate, false to ungate
*
* Gate/ungate the automatic PHY configuration via hardware; perform
* the configuration via software instead.
**/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
u32 extcnf_ctrl;
if (hw->mac.type < e1000_pch2lan)
return;
extcnf_ctrl = er32(EXTCNF_CTRL);
if (gate)
extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
else
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
}
/**
* e1000_lan_init_done_ich8lan - Check for PHY config completion
* @hw: pointer to the HW structure
*
* Check the appropriate indication the MAC has finished configuring the
* PHY after a software reset.
**/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
/* Wait for basic configuration completes before proceeding */
do {
data = er32(STATUS);
data &= E1000_STATUS_LAN_INIT_DONE;
usleep_range(100, 200);
} while ((!data) && --loop);
/* If basic configuration is incomplete before the above loop
* count reaches 0, loading the configuration from NVM will
* leave the PHY in a bad state possibly resulting in no link.
*/
if (loop == 0)
e_dbg("LAN_INIT_DONE not set, increase timeout\n");
/* Clear the Init Done bit for the next init event */
data = er32(STATUS);
data &= ~E1000_STATUS_LAN_INIT_DONE;
ew32(STATUS, data);
}
/**
* e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
* @hw: pointer to the HW structure
**/
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 reg;
if (hw->phy.ops.check_reset_block(hw))
return 0;
/* Allow time for h/w to get to quiescent state after reset */
usleep_range(10000, 11000);
/* Perform any necessary post-reset workarounds */
switch (hw->mac.type) {
case e1000_pchlan:
ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
if (ret_val)
return ret_val;
break;
case e1000_pch2lan:
ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
if (ret_val)
return ret_val;
break;
default:
break;
}
/* Clear the host wakeup bit after lcd reset */
if (hw->mac.type >= e1000_pchlan) {
e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
reg &= ~BM_WUC_HOST_WU_BIT;
e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
}
/* Configure the LCD with the extended configuration region in NVM */
ret_val = e1000_sw_lcd_config_ich8lan(hw);
if (ret_val)
return ret_val;
/* Configure the LCD with the OEM bits in NVM */
ret_val = e1000_oem_bits_config_ich8lan(hw, true);
if (hw->mac.type == e1000_pch2lan) {
/* Ungate automatic PHY configuration on non-managed 82579 */
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
usleep_range(10000, 11000);
e1000_gate_hw_phy_config_ich8lan(hw, false);
}
/* Set EEE LPI Update Timer to 200usec */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000_write_emi_reg_locked(hw,
I82579_LPI_UPDATE_TIMER,
0x1387);
hw->phy.ops.release(hw);
}
return ret_val;
}
/**
* e1000_phy_hw_reset_ich8lan - Performs a PHY reset
* @hw: pointer to the HW structure
*
* Resets the PHY
* This is a function pointer entry point called by drivers
* or other shared routines.
**/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* Gate automatic PHY configuration by hardware on non-managed 82579 */
if ((hw->mac.type == e1000_pch2lan) &&
!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
ret_val = e1000e_phy_hw_reset_generic(hw);
if (ret_val)
return ret_val;
return e1000_post_phy_reset_ich8lan(hw);
}
/**
* e1000_set_lplu_state_pchlan - Set Low Power Link Up state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU state according to the active flag. For PCH, if OEM write
* bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
* the phy speed. This function will manually set the LPLU bit and restart
* auto-neg as hw would do. D3 and D0 LPLU will call the same function
* since it configures the same bit.
**/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
s32 ret_val;
u16 oem_reg;
ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
return ret_val;
if (active)
oem_reg |= HV_OEM_BITS_LPLU;
else
oem_reg &= ~HV_OEM_BITS_LPLU;
if (!hw->phy.ops.check_reset_block(hw))
oem_reg |= HV_OEM_BITS_RESTART_AN;
return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
}
/**
* e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u32 phy_ctrl;
s32 ret_val = 0;
u16 data;
if (phy->type == e1000_phy_ife)
return 0;
phy_ctrl = er32(PHY_CTRL);
if (active) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
return ret_val;
} else {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
}
return 0;
}
/**
* e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D3 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u32 phy_ctrl;
s32 ret_val = 0;
u16 data;
phy_ctrl = er32(PHY_CTRL);
if (!active) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
}
return ret_val;
}
/**
* e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
* @hw: pointer to the HW structure
* @bank: pointer to the variable that returns the active bank
*
* Reads signature byte from the NVM using the flash access registers.
* Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
**/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
u32 eecd;
struct e1000_nvm_info *nvm = &hw->nvm;
u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
u32 nvm_dword = 0;
u8 sig_byte = 0;
s32 ret_val;
switch (hw->mac.type) {
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
bank1_offset = nvm->flash_bank_size;
act_offset = E1000_ICH_NVM_SIG_WORD;
/* set bank to 0 in case flash read fails */
*bank = 0;
/* Check bank 0 */
ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
&nvm_dword);
if (ret_val)
return ret_val;
sig_byte = FIELD_GET(0xFF00, nvm_dword);
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 0;
return 0;
}
/* Check bank 1 */
ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
bank1_offset,
&nvm_dword);
if (ret_val)
return ret_val;
sig_byte = FIELD_GET(0xFF00, nvm_dword);
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 1;
return 0;
}
e_dbg("ERROR: No valid NVM bank present\n");
return -E1000_ERR_NVM;
case e1000_ich8lan:
case e1000_ich9lan:
eecd = er32(EECD);
if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
E1000_EECD_SEC1VAL_VALID_MASK) {
if (eecd & E1000_EECD_SEC1VAL)
*bank = 1;
else
*bank = 0;
return 0;
}
e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
fallthrough;
default:
/* set bank to 0 in case flash read fails */
*bank = 0;
/* Check bank 0 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
&sig_byte);
if (ret_val)
return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 0;
return 0;
}
/* Check bank 1 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
bank1_offset,
&sig_byte);
if (ret_val)
return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 1;
return 0;
}
e_dbg("ERROR: No valid NVM bank present\n");
return -E1000_ERR_NVM;
}
}
/**
* e1000_read_nvm_spt - NVM access for SPT
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to read.
* @words: Size of data to read in words.
* @data: pointer to the word(s) to read at offset.
*
* Reads a word(s) from the NVM
**/
static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 act_offset;
s32 ret_val = 0;
u32 bank = 0;
u32 dword = 0;
u16 offset_to_read;
u16 i;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
nvm->ops.acquire(hw);
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
act_offset = (bank) ? nvm->flash_bank_size : 0;
act_offset += offset;
ret_val = 0;
for (i = 0; i < words; i += 2) {
if (words - i == 1) {
if (dev_spec->shadow_ram[offset + i].modified) {
data[i] =
dev_spec->shadow_ram[offset + i].value;
} else {
offset_to_read = act_offset + i -
((act_offset + i) % 2);
ret_val =
e1000_read_flash_dword_ich8lan(hw,
offset_to_read,
&dword);
if (ret_val)
break;
if ((act_offset + i) % 2 == 0)
data[i] = (u16)(dword & 0xFFFF);
else
data[i] = (u16)((dword >> 16) & 0xFFFF);
}
} else {
offset_to_read = act_offset + i;
if (!(dev_spec->shadow_ram[offset + i].modified) ||
!(dev_spec->shadow_ram[offset + i + 1].modified)) {
ret_val =
e1000_read_flash_dword_ich8lan(hw,
offset_to_read,
&dword);
if (ret_val)
break;
}
if (dev_spec->shadow_ram[offset + i].modified)
data[i] =
dev_spec->shadow_ram[offset + i].value;
else
data[i] = (u16)(dword & 0xFFFF);
if (dev_spec->shadow_ram[offset + i].modified)
data[i + 1] =
dev_spec->shadow_ram[offset + i + 1].value;
else
data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
}
}
nvm->ops.release(hw);
out:
if (ret_val)
e_dbg("NVM read error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_read_nvm_ich8lan - Read word(s) from the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to read.
* @words: Size of data to read in words
* @data: Pointer to the word(s) to read at offset.
*
* Reads a word(s) from the NVM using the flash access registers.
**/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 act_offset;
s32 ret_val = 0;
u32 bank = 0;
u16 i, word;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
nvm->ops.acquire(hw);
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
act_offset = (bank) ? nvm->flash_bank_size : 0;
act_offset += offset;
ret_val = 0;
for (i = 0; i < words; i++) {
if (dev_spec->shadow_ram[offset + i].modified) {
data[i] = dev_spec->shadow_ram[offset + i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw,
act_offset + i,
&word);
if (ret_val)
break;
data[i] = word;
}
}
nvm->ops.release(hw);
out:
if (ret_val)
e_dbg("NVM read error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_flash_cycle_init_ich8lan - Initialize flash
* @hw: pointer to the HW structure
*
* This function does initial flash setup so that a new read/write/erase cycle
* can be started.
**/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
union ich8_hws_flash_status hsfsts;
s32 ret_val = -E1000_ERR_NVM;
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/* Check if the flash descriptor is valid */
if (!hsfsts.hsf_status.fldesvalid) {
e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
return -E1000_ERR_NVM;
}
/* Clear FCERR and DAEL in hw status by writing 1 */
hsfsts.hsf_status.flcerr = 1;
hsfsts.hsf_status.dael = 1;
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
else
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
/* Either we should have a hardware SPI cycle in progress
* bit to check against, in order to start a new cycle or
* FDONE bit should be changed in the hardware so that it
* is 1 after hardware reset, which can then be used as an
* indication whether a cycle is in progress or has been
* completed.
*/
if (!hsfsts.hsf_status.flcinprog) {
/* There is no cycle running at present,
* so we can start a cycle.
* Begin by setting Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
else
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
ret_val = 0;
} else {
s32 i;
/* Otherwise poll for sometime so the current
* cycle has a chance to end before giving up.
*/
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (!hsfsts.hsf_status.flcinprog) {
ret_val = 0;
break;
}
udelay(1);
}
if (!ret_val) {
/* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS,
hsfsts.regval & 0xFFFF);
else
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
} else {
e_dbg("Flash controller busy, cannot get access\n");
}
}
return ret_val;
}
/**
* e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
* @hw: pointer to the HW structure
* @timeout: maximum time to wait for completion
*
* This function starts a flash cycle and waits for its completion.
**/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
union ich8_hws_flash_ctrl hsflctl;
union ich8_hws_flash_status hsfsts;
u32 i = 0;
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
if (hw->mac.type >= e1000_pch_spt)
hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
else
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcgo = 1;
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
else
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/* wait till FDONE bit is set to 1 */
do {
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcdone)
break;
udelay(1);
} while (i++ < timeout);
if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
return 0;
return -E1000_ERR_NVM;
}
/**
* e1000_read_flash_dword_ich8lan - Read dword from flash
* @hw: pointer to the HW structure
* @offset: offset to data location
* @data: pointer to the location for storing the data
*
* Reads the flash dword at offset into data. Offset is converted
* to bytes before read.
**/
static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
u32 *data)
{
/* Must convert word offset into bytes. */
offset <<= 1;
return e1000_read_flash_data32_ich8lan(hw, offset, data);
}
/**
* e1000_read_flash_word_ich8lan - Read word from flash
* @hw: pointer to the HW structure
* @offset: offset to data location
* @data: pointer to the location for storing the data
*
* Reads the flash word at offset into data. Offset is converted
* to bytes before read.
**/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
u16 *data)
{
/* Must convert offset into bytes. */
offset <<= 1;
return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}
/**
* e1000_read_flash_byte_ich8lan - Read byte from flash
* @hw: pointer to the HW structure
* @offset: The offset of the byte to read.
* @data: Pointer to a byte to store the value read.
*
* Reads a single byte from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 *data)
{
s32 ret_val;
u16 word = 0;
/* In SPT, only 32 bits access is supported,
* so this function should not be called.
*/
if (hw->mac.type >= e1000_pch_spt)
return -E1000_ERR_NVM;
else
ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
if (ret_val)
return ret_val;
*data = (u8)word;
return 0;
}
/**
* e1000_read_flash_data_ich8lan - Read byte or word from NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the byte or word to read.
* @size: Size of data to read, 1=byte 2=word
* @data: Pointer to the word to store the value read.
*
* Reads a byte or word from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 *data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
s32 ret_val = -E1000_ERR_NVM;
u8 count = 0;
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr);
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
break;
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val =
e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_READ_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else
* read in (shift in) the Flash Data0, the order is
* least significant byte first msb to lsb
*/
if (!ret_val) {
flash_data = er32flash(ICH_FLASH_FDATA0);
if (size == 1)
*data = (u8)(flash_data & 0x000000FF);
else if (size == 2)
*data = (u16)(flash_data & 0x0000FFFF);
break;
} else {
/* If we've gotten here, then things are probably
* completely hosed, but if the error condition is
* detected, it won't hurt to give it another try...
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr) {
/* Repeat for some time before giving up. */
continue;
} else if (!hsfsts.hsf_status.flcdone) {
e_dbg("Timeout error - flash cycle did not complete.\n");
break;
}
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_read_flash_data32_ich8lan - Read dword from NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the dword to read.
* @data: Pointer to the dword to store the value read.
*
* Reads a byte or word from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
u32 *data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
s32 ret_val = -E1000_ERR_NVM;
u8 count = 0;
if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
return -E1000_ERR_NVM;
flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr);
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
break;
/* In SPT, This register is in Lan memory space, not flash.
* Therefore, only 32 bit access is supported
*/
hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
/* In SPT, This register is in Lan memory space, not flash.
* Therefore, only 32 bit access is supported
*/
ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val =
e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_READ_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else
* read in (shift in) the Flash Data0, the order is
* least significant byte first msb to lsb
*/
if (!ret_val) {
*data = er32flash(ICH_FLASH_FDATA0);
break;
} else {
/* If we've gotten here, then things are probably
* completely hosed, but if the error condition is
* detected, it won't hurt to give it another try...
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr) {
/* Repeat for some time before giving up. */
continue;
} else if (!hsfsts.hsf_status.flcdone) {
e_dbg("Timeout error - flash cycle did not complete.\n");
break;
}
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_nvm_ich8lan - Write word(s) to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to write.
* @words: Size of data to write in words
* @data: Pointer to the word(s) to write at offset.
*
* Writes a byte or word to the NVM using the flash access registers.
**/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u16 i;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
nvm->ops.acquire(hw);
for (i = 0; i < words; i++) {
dev_spec->shadow_ram[offset + i].modified = true;
dev_spec->shadow_ram[offset + i].value = data[i];
}
nvm->ops.release(hw);
return 0;
}
/**
* e1000_update_nvm_checksum_spt - Update the checksum for NVM
* @hw: pointer to the HW structure
*
* The NVM checksum is updated by calling the generic update_nvm_checksum,
* which writes the checksum to the shadow ram. The changes in the shadow
* ram are then committed to the EEPROM by processing each bank at a time
* checking for the modified bit and writing only the pending changes.
* After a successful commit, the shadow ram is cleared and is ready for
* future writes.
**/
static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
s32 ret_val;
u32 dword = 0;
ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val)
goto out;
if (nvm->type != e1000_nvm_flash_sw)
goto out;
nvm->ops.acquire(hw);
/* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that
* is going to be written
*/
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
if (bank == 0) {
new_bank_offset = nvm->flash_bank_size;
old_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
if (ret_val)
goto release;
} else {
old_bank_offset = nvm->flash_bank_size;
new_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
if (ret_val)
goto release;
}
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
/* Determine whether to write the value stored
* in the other NVM bank or a modified value stored
* in the shadow RAM
*/
ret_val = e1000_read_flash_dword_ich8lan(hw,
i + old_bank_offset,
&dword);
if (dev_spec->shadow_ram[i].modified) {
dword &= 0xffff0000;
dword |= (dev_spec->shadow_ram[i].value & 0xffff);
}
if (dev_spec->shadow_ram[i + 1].modified) {
dword &= 0x0000ffff;
dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
<< 16);
}
if (ret_val)
break;
/* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid
* while the write is still in progress
*/
if (i == E1000_ICH_NVM_SIG_WORD - 1)
dword |= E1000_ICH_NVM_SIG_MASK << 16;
/* Convert offset to bytes. */
act_offset = (i + new_bank_offset) << 1;
usleep_range(100, 200);
/* Write the data to the new bank. Offset in words */
act_offset = i + new_bank_offset;
ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
dword);
if (ret_val)
break;
}
/* Don't bother writing the segment valid bits if sector
* programming failed.
*/
if (ret_val) {
/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
e_dbg("Flash commit failed.\n");
goto release;
}
/* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b
*/
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
/*offset in words but we read dword */
--act_offset;
ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
if (ret_val)
goto release;
dword &= 0xBFFFFFFF;
ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
if (ret_val)
goto release;
/* offset in words but we read dword */
act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
if (ret_val)
goto release;
dword &= 0x00FFFFFF;
ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
if (ret_val)
goto release;
/* Great! Everything worked, we can now clear the cached entries. */
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
release:
nvm->ops.release(hw);
/* Reload the EEPROM, or else modifications will not appear
* until after the next adapter reset.
*/
if (!ret_val) {
nvm->ops.reload(hw);
usleep_range(10000, 11000);
}
out:
if (ret_val)
e_dbg("NVM update error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
* @hw: pointer to the HW structure
*
* The NVM checksum is updated by calling the generic update_nvm_checksum,
* which writes the checksum to the shadow ram. The changes in the shadow
* ram are then committed to the EEPROM by processing each bank at a time
* checking for the modified bit and writing only the pending changes.
* After a successful commit, the shadow ram is cleared and is ready for
* future writes.
**/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
s32 ret_val;
u16 data = 0;
ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val)
goto out;
if (nvm->type != e1000_nvm_flash_sw)
goto out;
nvm->ops.acquire(hw);
/* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that
* is going to be written
*/
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
if (bank == 0) {
new_bank_offset = nvm->flash_bank_size;
old_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
if (ret_val)
goto release;
} else {
old_bank_offset = nvm->flash_bank_size;
new_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
if (ret_val)
goto release;
}
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
if (dev_spec->shadow_ram[i].modified) {
data = dev_spec->shadow_ram[i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw, i +
old_bank_offset,
&data);
if (ret_val)
break;
}
/* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid
* while the write is still in progress
*/
if (i == E1000_ICH_NVM_SIG_WORD)
data |= E1000_ICH_NVM_SIG_MASK;
/* Convert offset to bytes. */
act_offset = (i + new_bank_offset) << 1;
usleep_range(100, 200);
/* Write the bytes to the new bank. */
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset,
(u8)data);
if (ret_val)
break;
usleep_range(100, 200);
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset + 1,
(u8)(data >> 8));
if (ret_val)
break;
}
/* Don't bother writing the segment valid bits if sector
* programming failed.
*/
if (ret_val) {
/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
e_dbg("Flash commit failed.\n");
goto release;
}
/* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b
*/
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
if (ret_val)
goto release;
data &= 0xBFFF;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset * 2 + 1,
(u8)(data >> 8));
if (ret_val)
goto release;
/* And invalidate the previously valid segment by setting
* its signature word (0x13) high_byte to 0b. This can be
* done without an erase because flash erase sets all bits
* to 1's. We can write 1's to 0's without an erase
*/
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
if (ret_val)
goto release;
/* Great! Everything worked, we can now clear the cached entries. */
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
release:
nvm->ops.release(hw);
/* Reload the EEPROM, or else modifications will not appear
* until after the next adapter reset.
*/
if (!ret_val) {
nvm->ops.reload(hw);
usleep_range(10000, 11000);
}
out:
if (ret_val)
e_dbg("NVM update error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
* If the bit is 0, that the EEPROM had been modified, but the checksum was not
* calculated, in which case we need to calculate the checksum and set bit 6.
**/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 data;
u16 word;
u16 valid_csum_mask;
/* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
* the checksum needs to be fixed. This bit is an indication that
* the NVM was prepared by OEM software and did not calculate
* the checksum...a likely scenario.
*/
switch (hw->mac.type) {
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_tgp:
case e1000_pch_adp:
case e1000_pch_mtp:
case e1000_pch_lnp:
case e1000_pch_ptp:
case e1000_pch_nvp:
word = NVM_COMPAT;
valid_csum_mask = NVM_COMPAT_VALID_CSUM;
break;
default:
word = NVM_FUTURE_INIT_WORD1;
valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
break;
}
ret_val = e1000_read_nvm(hw, word, 1, &data);
if (ret_val)
return ret_val;
if (!(data & valid_csum_mask)) {
e_dbg("NVM Checksum valid bit not set\n");
if (hw->mac.type < e1000_pch_tgp) {
data |= valid_csum_mask;
ret_val = e1000_write_nvm(hw, word, 1, &data);
if (ret_val)
return ret_val;
ret_val = e1000e_update_nvm_checksum(hw);
if (ret_val)
return ret_val;
}
}
return e1000e_validate_nvm_checksum_generic(hw);
}
/**
* e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
* @hw: pointer to the HW structure
*
* To prevent malicious write/erase of the NVM, set it to be read-only
* so that the hardware ignores all write/erase cycles of the NVM via
* the flash control registers. The shadow-ram copy of the NVM will
* still be updated, however any updates to this copy will not stick
* across driver reloads.
**/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
union ich8_flash_protected_range pr0;
union ich8_hws_flash_status hsfsts;
u32 gfpreg;
nvm->ops.acquire(hw);
gfpreg = er32flash(ICH_FLASH_GFPREG);
/* Write-protect GbE Sector of NVM */
pr0.regval = er32flash(ICH_FLASH_PR0);
pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
pr0.range.wpe = true;
ew32flash(ICH_FLASH_PR0, pr0.regval);
/* Lock down a subset of GbE Flash Control Registers, e.g.
* PR0 to prevent the write-protection from being lifted.
* Once FLOCKDN is set, the registers protected by it cannot
* be written until FLOCKDN is cleared by a hardware reset.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
hsfsts.hsf_status.flockdn = true;
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
nvm->ops.release(hw);
}
/**
* e1000_write_flash_data_ich8lan - Writes bytes to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the byte/word to read.
* @size: Size of data to read, 1=byte 2=word
* @data: The byte(s) to write to the NVM.
*
* Writes one/two bytes to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
s32 ret_val;
u8 count = 0;
if (hw->mac.type >= e1000_pch_spt) {
if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
} else {
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
}
flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr);
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
break;
/* In SPT, This register is in Lan memory space, not
* flash. Therefore, only 32 bit access is supported
*/
if (hw->mac.type >= e1000_pch_spt)
hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
else
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
/* In SPT, This register is in Lan memory space,
* not flash. Therefore, only 32 bit access is
* supported
*/
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
else
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
if (size == 1)
flash_data = (u32)data & 0x00FF;
else
flash_data = (u32)data;
ew32flash(ICH_FLASH_FDATA0, flash_data);
/* check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
ret_val =
e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (!ret_val)
break;
/* If we're here, then things are most likely
* completely hosed, but if the error condition
* is detected, it won't hurt to give it another
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr)
/* Repeat for some time before giving up. */
continue;
if (!hsfsts.hsf_status.flcdone) {
e_dbg("Timeout error - flash cycle did not complete.\n");
break;
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the dwords to read.
* @data: The 4 bytes to write to the NVM.
*
* Writes one/two/four bytes to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
u32 data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
s32 ret_val;
u8 count = 0;
if (hw->mac.type >= e1000_pch_spt) {
if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
}
flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr);
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
break;
/* In SPT, This register is in Lan memory space, not
* flash. Therefore, only 32 bit access is supported
*/
if (hw->mac.type >= e1000_pch_spt)
hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
>> 16;
else
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
/* In SPT, This register is in Lan memory space,
* not flash. Therefore, only 32 bit access is
* supported
*/
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
else
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ew32flash(ICH_FLASH_FDATA0, data);
/* check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
ret_val =
e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (!ret_val)
break;
/* If we're here, then things are most likely
* completely hosed, but if the error condition
* is detected, it won't hurt to give it another
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr)
/* Repeat for some time before giving up. */
continue;
if (!hsfsts.hsf_status.flcdone) {
e_dbg("Timeout error - flash cycle did not complete.\n");
break;
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_flash_byte_ich8lan - Write a single byte to NVM
* @hw: pointer to the HW structure
* @offset: The index of the byte to read.
* @data: The byte to write to the NVM.
*
* Writes a single byte to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 data)
{
u16 word = (u16)data;
return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}
/**
* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
* @hw: pointer to the HW structure
* @offset: The offset of the word to write.
* @dword: The dword to write to the NVM.
*
* Writes a single dword to the NVM using the flash access registers.
* Goes through a retry algorithm before giving up.
**/
static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
u32 offset, u32 dword)
{
s32 ret_val;
u16 program_retries;
/* Must convert word offset into bytes. */
offset <<= 1;
ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
if (!ret_val)
return ret_val;
for (program_retries = 0; program_retries < 100; program_retries++) {
e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
usleep_range(100, 200);
ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
if (!ret_val)
break;
}
if (program_retries == 100)
return -E1000_ERR_NVM;
return 0;
}
/**
* e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
* @hw: pointer to the HW structure
* @offset: The offset of the byte to write.
* @byte: The byte to write to the NVM.
*
* Writes a single byte to the NVM using the flash access registers.
* Goes through a retry algorithm before giving up.
**/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte)
{
s32 ret_val;
u16 program_retries;
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
if (!ret_val)
return ret_val;
for (program_retries = 0; program_retries < 100; program_retries++) {
e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
usleep_range(100, 200);
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
if (!ret_val)
break;
}
if (program_retries == 100)
return -E1000_ERR_NVM;
return 0;
}
/**
* e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
* @hw: pointer to the HW structure
* @bank: 0 for first bank, 1 for second bank, etc.
*
* Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
* bank N is 4096 * N + flash_reg_addr.
**/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
struct e1000_nvm_info *nvm = &hw->nvm;
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
/* bank size is in 16bit words - adjust to bytes */
u32 flash_bank_size = nvm->flash_bank_size * 2;
s32 ret_val;
s32 count = 0;
s32 j, iteration, sector_size;
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/* Determine HW Sector size: Read BERASE bits of hw flash status
* register
* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector
* can be calculated as = bank * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
* The start index for the nth Hw sector can be calculated
* as = bank * 4096
* 10: The Hw sector is 8K bytes, nth sector = bank * 8192
* (ich9 only, otherwise error condition)
* 11: The Hw sector is 64K bytes, nth sector = bank * 65536
*/
switch (hsfsts.hsf_status.berasesz) {
case 0:
/* Hw sector size 256 */
sector_size = ICH_FLASH_SEG_SIZE_256;
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
break;
case 1:
sector_size = ICH_FLASH_SEG_SIZE_4K;
iteration = 1;
break;
case 2:
sector_size = ICH_FLASH_SEG_SIZE_8K;
iteration = 1;
break;
case 3:
sector_size = ICH_FLASH_SEG_SIZE_64K;
iteration = 1;
break;
default:
return -E1000_ERR_NVM;
}
/* Start with the base address, then add the sector offset. */
flash_linear_addr = hw->nvm.flash_base_addr;
flash_linear_addr += (bank) ? flash_bank_size : 0;
for (j = 0; j < iteration; j++) {
do {
u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
return ret_val;
/* Write a value 11 (block Erase) in Flash
* Cycle field in hw flash control
*/
if (hw->mac.type >= e1000_pch_spt)
hsflctl.regval =
er32flash(ICH_FLASH_HSFSTS) >> 16;
else
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
if (hw->mac.type >= e1000_pch_spt)
ew32flash(ICH_FLASH_HSFSTS,
hsflctl.regval << 16);
else
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of an index within the
* block into Flash Linear address field in Flash
* Address.
*/
flash_linear_addr += (j * sector_size);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
if (!ret_val)
break;
/* Check if FCERR is set to 1. If 1,
* clear it and try the whole sequence
* a few more times else Done
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr)
/* repeat for some time before giving up */
continue;
else if (!hsfsts.hsf_status.flcdone)
return ret_val;
} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
}
return 0;
}
/**
* e1000_valid_led_default_ich8lan - Set the default LED settings
* @hw: pointer to the HW structure
* @data: Pointer to the LED settings
*
* Reads the LED default settings from the NVM to data. If the NVM LED
* settings is all 0's or F's, set the LED default to a valid LED default
* setting.
**/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT_ICH8LAN;
return 0;
}
/**
* e1000_id_led_init_pchlan - store LED configurations
* @hw: pointer to the HW structure
*
* PCH does not control LEDs via the LEDCTL register, rather it uses
* the PHY LED configuration register.
*
* PCH also does not have an "always on" or "always off" mode which
* complicates the ID feature. Instead of using the "on" mode to indicate
* in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
* use "link_up" mode. The LEDs will still ID on request if there is no
* link based on logic in e1000_led_[on|off]_pchlan().
**/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
u16 data, i, temp, shift;
/* Get default ID LED modes */
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
return ret_val;
mac->ledctl_default = er32(LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
shift = (i * 5);
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode1 |= (ledctl_on << shift);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode1 |= (ledctl_off << shift);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode2 |= (ledctl_on << shift);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode2 |= (ledctl_off << shift);
break;
default:
/* Do nothing */
break;
}
}
return 0;
}
/**
* e1000_get_bus_info_ich8lan - Get/Set the bus type and width
* @hw: pointer to the HW structure
*
* ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
* register, so the bus width is hard coded.
**/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
s32 ret_val;
ret_val = e1000e_get_bus_info_pcie(hw);
/* ICH devices are "PCI Express"-ish. They have
* a configuration space, but do not contain
* PCI Express Capability registers, so bus width
* must be hardcoded.
*/
if (bus->width == e1000_bus_width_unknown)
bus->width = e1000_bus_width_pcie_x1;
return ret_val;
}
/**
* e1000_reset_hw_ich8lan - Reset the hardware
* @hw: pointer to the HW structure
*
* Does a full reset of the hardware which includes a reset of the PHY and
* MAC.
**/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u16 kum_cfg;
u32 ctrl, reg;
s32 ret_val;
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC
* with the global reset.
*/
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 11000);
/* Workaround for ICH8 bit corruption issue in FIFO memory */
if (hw->mac.type == e1000_ich8lan) {
/* Set Tx and Rx buffer allocation to 8k apiece. */
ew32(PBA, E1000_PBA_8K);
/* Set Packet Buffer Size to 16k. */
ew32(PBS, E1000_PBS_16K);
}
if (hw->mac.type == e1000_pchlan) {
/* Save the NVM K1 bit setting */
ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
if (ret_val)
return ret_val;
if (kum_cfg & E1000_NVM_K1_ENABLE)
dev_spec->nvm_k1_enabled = true;
else
dev_spec->nvm_k1_enabled = false;
}
ctrl = er32(CTRL);
if (!hw->phy.ops.check_reset_block(hw)) {
/* Full-chip reset requires MAC and PHY reset at the same
* time to make sure the interface between MAC and the
* external PHY is reset.
*/
ctrl |= E1000_CTRL_PHY_RST;
/* Gate automatic PHY configuration by hardware on
* non-managed 82579
*/
if ((hw->mac.type == e1000_pch2lan) &&
!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
}
ret_val = e1000_acquire_swflag_ich8lan(hw);
e_dbg("Issuing a global reset to ich8lan\n");
ew32(CTRL, (ctrl | E1000_CTRL_RST));
/* cannot issue a flush here because it hangs the hardware */
msleep(20);
/* Set Phy Config Counter to 50msec */
if (hw->mac.type == e1000_pch2lan) {
reg = er32(FEXTNVM3);
reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
ew32(FEXTNVM3, reg);
}
if (!ret_val)
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
if (ctrl & E1000_CTRL_PHY_RST) {
ret_val = hw->phy.ops.get_cfg_done(hw);
if (ret_val)
return ret_val;
ret_val = e1000_post_phy_reset_ich8lan(hw);
if (ret_val)
return ret_val;
}
/* For PCH, this write will make sure that any noise
* will be detected as a CRC error and be dropped rather than show up
* as a bad packet to the DMA engine.
*/
if (hw->mac.type == e1000_pchlan)
ew32(CRC_OFFSET, 0x65656565);
ew32(IMC, 0xffffffff);
er32(ICR);
reg = er32(KABGTXD);
reg |= E1000_KABGTXD_BGSQLBIAS;
ew32(KABGTXD, reg);
return 0;
}
/**
* e1000_init_hw_ich8lan - Initialize the hardware
* @hw: pointer to the HW structure
*
* Prepares the hardware for transmit and receive by doing the following:
* - initialize hardware bits
* - initialize LED identification
* - setup receive address registers
* - setup flow control
* - setup transmit descriptors
* - clear statistics
**/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl_ext, txdctl, snoop, fflt_dbg;
s32 ret_val;
u16 i;
e1000_initialize_hw_bits_ich8lan(hw);
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
/* An error is not fatal and we should not stop init due to this */
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* Setup the receive address. */
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* The 82578 Rx buffer will stall if wakeup is enabled in host and
* the ME. Disable wakeup by clearing the host wakeup bit.
* Reset the phy after disabling host wakeup to reset the Rx buffer.
*/
if (hw->phy.type == e1000_phy_82578) {
e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
i &= ~BM_WUC_HOST_WU_BIT;
e1e_wphy(hw, BM_PORT_GEN_CFG, i);
ret_val = e1000_phy_hw_reset_ich8lan(hw);
if (ret_val)
return ret_val;
}
/* Setup link and flow control */
ret_val = mac->ops.setup_link(hw);
/* Set the transmit descriptor write-back policy for both queues */
txdctl = er32(TXDCTL(0));
txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB);
txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
ew32(TXDCTL(0), txdctl);
txdctl = er32(TXDCTL(1));
txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB);
txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
ew32(TXDCTL(1), txdctl);
/* ICH8 has opposite polarity of no_snoop bits.
* By default, we should use snoop behavior.
*/
if (mac->type == e1000_ich8lan)
snoop = PCIE_ICH8_SNOOP_ALL;
else
snoop = (u32)~(PCIE_NO_SNOOP_ALL);
e1000e_set_pcie_no_snoop(hw, snoop);
/* Enable workaround for packet loss issue on TGP PCH
* Do not gate DMA clock from the modPHY block
*/
if (mac->type >= e1000_pch_tgp) {
fflt_dbg = er32(FFLT_DBG);
fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
ew32(FFLT_DBG, fflt_dbg);
}
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
ew32(CTRL_EXT, ctrl_ext);
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_ich8lan(hw);
return ret_val;
}
/**
* e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
* @hw: pointer to the HW structure
*
* Sets/Clears required hardware bits necessary for correctly setting up the
* hardware for transmit and receive.
**/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
u32 reg;
/* Extended Device Control */
reg = er32(CTRL_EXT);
reg |= BIT(22);
/* Enable PHY low-power state when MAC is at D3 w/o WoL */
if (hw->mac.type >= e1000_pchlan)
reg |= E1000_CTRL_EXT_PHYPDEN;
ew32(CTRL_EXT, reg);
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= BIT(22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= BIT(22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
if (hw->mac.type == e1000_ich8lan)
reg |= BIT(28) | BIT(29);
reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~BIT(28);
else
reg |= BIT(28);
reg |= BIT(24) | BIT(26) | BIT(30);
ew32(TARC(1), reg);
/* Device Status */
if (hw->mac.type == e1000_ich8lan) {
reg = er32(STATUS);
reg &= ~BIT(31);
ew32(STATUS, reg);
}
/* work-around descriptor data corruption issue during nfs v2 udp
* traffic, just disable the nfs filtering capability
*/
reg = er32(RFCTL);
reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
/* Disable IPv6 extension header parsing because some malformed
* IPv6 headers can hang the Rx.
*/
if (hw->mac.type == e1000_ich8lan)
reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
ew32(RFCTL, reg);
/* Enable ECC on Lynxpoint */
if (hw->mac.type >= e1000_pch_lpt) {
reg = er32(PBECCSTS);
reg |= E1000_PBECCSTS_ECC_ENABLE;
ew32(PBECCSTS, reg);
reg = er32(CTRL);
reg |= E1000_CTRL_MEHE;
ew32(CTRL, reg);
}
}
/**
* e1000_setup_link_ich8lan - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
if (hw->phy.ops.check_reset_block(hw))
return 0;
/* ICH parts do not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
/* Workaround h/w hang when Tx flow control enabled */
if (hw->mac.type == e1000_pchlan)
hw->fc.requested_mode = e1000_fc_rx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
}
/* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
/* Continue to configure the copper link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
ew32(FCTTV, hw->fc.pause_time);
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
(hw->phy.type == e1000_phy_i217) ||
(hw->phy.type == e1000_phy_82577)) {
ew32(FCRTV_PCH, hw->fc.refresh_time);
ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
hw->fc.pause_time);
if (ret_val)
return ret_val;
}
return e1000e_set_fc_watermarks(hw);
}
/**
* e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
* @hw: pointer to the HW structure
*
* Configures the kumeran interface to the PHY to wait the appropriate time
* when polling the PHY, then call the generic setup_copper_link to finish
* configuring the copper link.
**/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 reg_data;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
/* Set the mac to wait the maximum time between each iteration
* and increase the max iterations when polling the phy;
* this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
&reg_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
reg_data);
if (ret_val)
return ret_val;
switch (hw->phy.type) {
case e1000_phy_igp_3:
ret_val = e1000e_copper_link_setup_igp(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_bm:
case e1000_phy_82578:
ret_val = e1000e_copper_link_setup_m88(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_82577:
case e1000_phy_82579:
ret_val = e1000_copper_link_setup_82577(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_ife:
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
if (ret_val)
return ret_val;
reg_data &= ~IFE_PMC_AUTO_MDIX;
switch (hw->phy.mdix) {
case 1:
reg_data &= ~IFE_PMC_FORCE_MDIX;
break;
case 2:
reg_data |= IFE_PMC_FORCE_MDIX;
break;
case 0:
default:
reg_data |= IFE_PMC_AUTO_MDIX;
break;
}
ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
if (ret_val)
return ret_val;
break;
default:
break;
}
return e1000e_setup_copper_link(hw);
}
/**
* e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
* @hw: pointer to the HW structure
*
* Calls the PHY specific link setup function and then calls the
* generic setup_copper_link to finish configuring the link for
* Lynxpoint PCH devices
**/
static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
ret_val = e1000_copper_link_setup_82577(hw);
if (ret_val)
return ret_val;
return e1000e_setup_copper_link(hw);
}
/**
* e1000_get_link_up_info_ich8lan - Get current link speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to store current link speed
* @duplex: pointer to store the current link duplex
*
* Calls the generic get_speed_and_duplex to retrieve the current link
* information and then calls the Kumeran lock loss workaround for links at
* gigabit speeds.
**/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
if (ret_val)
return ret_val;
if ((hw->mac.type == e1000_ich8lan) &&
(hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
}
return ret_val;
}
/**
* e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
* @hw: pointer to the HW structure
*
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
**/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 phy_ctrl;
s32 ret_val;
u16 i, data;
bool link;
if (!dev_spec->kmrn_lock_loss_workaround_enabled)
return 0;
/* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouled up link
* stability
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (!link)
return 0;
for (i = 0; i < 10; i++) {
/* read once to clear */
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
return ret_val;
/* and again to get new status */
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
return ret_val;
/* check for PCS lock */
if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
return 0;
/* Issue PHY reset */
e1000_phy_hw_reset(hw);
mdelay(5);
}
/* Disable GigE link negotiation */
phy_ctrl = er32(PHY_CTRL);
phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, phy_ctrl);
/* Call gig speed drop workaround on Gig disable before accessing
* any PHY registers
*/
e1000e_gig_downshift_workaround_ich8lan(hw);
/* unable to acquire PCS lock */
return -E1000_ERR_PHY;
}
/**
* e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
* @hw: pointer to the HW structure
* @state: boolean value used to set the current Kumeran workaround state
*
* If ICH8, set the current Kumeran workaround state (enabled - true
* /disabled - false).
**/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
bool state)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
if (hw->mac.type != e1000_ich8lan) {
e_dbg("Workaround applies to ICH8 only.\n");
return;
}
dev_spec->kmrn_lock_loss_workaround_enabled = state;
}
/**
* e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
* @hw: pointer to the HW structure
*
* Workaround for 82566 power-down on D3 entry:
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* Continue if successful, else issue LCD reset and repeat
**/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
u32 reg;
u16 data;
u8 retry = 0;
if (hw->phy.type != e1000_phy_igp_3)
return;
/* Try the workaround twice (if needed) */
do {
/* Disable link */
reg = er32(PHY_CTRL);
reg |= (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, reg);
/* Call gig speed drop workaround on Gig disable before
* accessing any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* Write VR power-down enable */
e1e_rphy(hw, IGP3_VR_CTRL, &data);
data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
/* Read it back and test */
e1e_rphy(hw, IGP3_VR_CTRL, &data);
data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
break;
/* Issue PHY reset and repeat at most one more time */
reg = er32(CTRL);
ew32(CTRL, reg | E1000_CTRL_PHY_RST);
retry++;
} while (retry);
}
/**
* e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
* @hw: pointer to the HW structure
*
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
* LPLU, Gig disable, MDIC PHY reset):
* 1) Set Kumeran Near-end loopback
* 2) Clear Kumeran Near-end loopback
* Should only be called for ICH8[m] devices with any 1G Phy.
**/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 reg_data;
if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
return;
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
&reg_data);
if (ret_val)
return;
reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
reg_data);
if (ret_val)
return;
reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
}
/**
* e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
* @hw: pointer to the HW structure
*
* During S0 to Sx transition, it is possible the link remains at gig
* instead of negotiating to a lower speed. Before going to Sx, set
* 'Gig Disable' to force link speed negotiation to a lower speed based on
* the LPLU setting in the NVM or custom setting. For PCH and newer parts,
* the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
* needs to be written.
* Parts that support (and are linked to a partner which support) EEE in
* 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
* than 10Mbps w/o EEE.
**/
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 phy_ctrl;
s32 ret_val;
phy_ctrl = er32(PHY_CTRL);
phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
if (hw->phy.type == e1000_phy_i217) {
u16 phy_reg, device_id = hw->adapter->pdev->device;
if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
(device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
(device_id == E1000_DEV_ID_PCH_I218_LM3) ||
(device_id == E1000_DEV_ID_PCH_I218_V3) ||
(hw->mac.type >= e1000_pch_spt)) {
u32 fextnvm6 = er32(FEXTNVM6);
ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
if (!dev_spec->eee_disable) {
u16 eee_advert;
ret_val =
e1000_read_emi_reg_locked(hw,
I217_EEE_ADVERTISEMENT,
&eee_advert);
if (ret_val)
goto release;
/* Disable LPLU if both link partners support 100BaseT
* EEE and 100Full is advertised on both ends of the
* link, and enable Auto Enable LPI since there will
* be no driver to enable LPI while in Sx.
*/
if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
(dev_spec->eee_lp_ability &
I82579_EEE_100_SUPPORTED) &&
(hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
E1000_PHY_CTRL_NOND0A_LPLU);
/* Set Auto Enable LPI after link up */
e1e_rphy_locked(hw,
I217_LPI_GPIO_CTRL, &phy_reg);
phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
e1e_wphy_locked(hw,
I217_LPI_GPIO_CTRL, phy_reg);
}
}
/* For i217 Intel Rapid Start Technology support,
* when the system is going into Sx and no manageability engine
* is present, the driver must configure proxy to reset only on
* power good. LPI (Low Power Idle) state must also reset only
* on power good, as well as the MTA (Multicast table array).
* The SMBus release must also be disabled on LCD reset.
*/
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
/* Enable proxy to reset only on power good. */
e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
/* Set bit enable LPI (EEE) to reset only on
* power good.
*/
e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
/* Disable the SMB release on LCD reset. */
e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
}
/* Enable MTA to reset for Intel Rapid Start Technology
* Support
*/
e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
release:
hw->phy.ops.release(hw);
}
out:
ew32(PHY_CTRL, phy_ctrl);
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
if (hw->mac.type >= e1000_pchlan) {
e1000_oem_bits_config_ich8lan(hw, false);
/* Reset PHY to activate OEM bits on 82577/8 */
if (hw->mac.type == e1000_pchlan)
e1000e_phy_hw_reset_generic(hw);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
e1000_write_smbus_addr(hw);
hw->phy.ops.release(hw);
}
}
/**
* e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
* @hw: pointer to the HW structure
*
* During Sx to S0 transitions on non-managed devices or managed devices
* on which PHY resets are not blocked, if the PHY registers cannot be
* accessed properly by the s/w toggle the LANPHYPC value to power cycle
* the PHY.
* On i217, setup Intel Rapid Start Technology.
**/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
s32 ret_val;
if (hw->mac.type < e1000_pch2lan)
return;
ret_val = e1000_init_phy_workarounds_pchlan(hw);
if (ret_val) {
e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
return;
}
/* For i217 Intel Rapid Start Technology support when the system
* is transitioning from Sx and no manageability engine is present
* configure SMBus to restore on reset, disable proxy, and enable
* the reset on MTA (Multicast table array).
*/
if (hw->phy.type == e1000_phy_i217) {
u16 phy_reg;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_dbg("Failed to setup iRST\n");
return;
}
/* Clear Auto Enable LPI after link up */
e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
/* Restore clear on SMB if no manageability engine
* is present
*/
ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
if (ret_val)
goto release;
phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
/* Disable Proxy */
e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
}
/* Enable reset on MTA */
ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
if (ret_val)
goto release;
phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
release:
if (ret_val)
e_dbg("Error %d in resume workarounds\n", ret_val);
hw->phy.ops.release(hw);
}
}
/**
* e1000_cleanup_led_ich8lan - Restore the default LED operation
* @hw: pointer to the HW structure
*
* Return the LED back to the default configuration.
**/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
ew32(LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* e1000_led_on_ich8lan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LEDs.
**/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
ew32(LEDCTL, hw->mac.ledctl_mode2);
return 0;
}
/**
* e1000_led_off_ich8lan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LEDs.
**/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE |
IFE_PSCL_PROBE_LEDS_OFF));
ew32(LEDCTL, hw->mac.ledctl_mode1);
return 0;
}
/**
* e1000_setup_led_pchlan - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use.
**/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
}
/**
* e1000_cleanup_led_pchlan - Restore the default LED operation
* @hw: pointer to the HW structure
*
* Return the LED back to the default configuration.
**/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
}
/**
* e1000_led_on_pchlan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LEDs.
**/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
u16 data = (u16)hw->mac.ledctl_mode2;
u32 i, led;
/* If no link, then turn LED on by setting the invert bit
* for each LED that's mode is "link_up" in ledctl_mode2.
*/
if (!(er32(STATUS) & E1000_STATUS_LU)) {
for (i = 0; i < 3; i++) {
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
if ((led & E1000_PHY_LED0_MODE_MASK) !=
E1000_LEDCTL_MODE_LINK_UP)
continue;
if (led & E1000_PHY_LED0_IVRT)
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
else
data |= (E1000_PHY_LED0_IVRT << (i * 5));
}
}
return e1e_wphy(hw, HV_LED_CONFIG, data);
}
/**
* e1000_led_off_pchlan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LEDs.
**/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
u16 data = (u16)hw->mac.ledctl_mode1;
u32 i, led;
/* If no link, then turn LED off by clearing the invert bit
* for each LED that's mode is "link_up" in ledctl_mode1.
*/
if (!(er32(STATUS) & E1000_STATUS_LU)) {
for (i = 0; i < 3; i++) {
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
if ((led & E1000_PHY_LED0_MODE_MASK) !=
E1000_LEDCTL_MODE_LINK_UP)
continue;
if (led & E1000_PHY_LED0_IVRT)
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
else
data |= (E1000_PHY_LED0_IVRT << (i * 5));
}
}
return e1e_wphy(hw, HV_LED_CONFIG, data);
}
/**
* e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
* @hw: pointer to the HW structure
*
* Read appropriate register for the config done bit for completion status
* and configure the PHY through s/w for EEPROM-less parts.
*
* NOTE: some silicon which is EEPROM-less will fail trying to read the
* config done bit, so only an error is logged and continues. If we were
* to return with error, EEPROM-less silicon would not be able to be reset
* or change link.
**/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u32 bank = 0;
u32 status;
e1000e_get_cfg_done_generic(hw);
/* Wait for indication from h/w that it has completed basic config */
if (hw->mac.type >= e1000_ich10lan) {
e1000_lan_init_done_ich8lan(hw);
} else {
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val) {
/* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
e_dbg("Auto Read Done did not complete\n");
ret_val = 0;
}
}
/* Clear PHY Reset Asserted bit */
status = er32(STATUS);
if (status & E1000_STATUS_PHYRA)
ew32(STATUS, status & ~E1000_STATUS_PHYRA);
else
e_dbg("PHY Reset Asserted not set - needs delay\n");
/* If EEPROM is not marked present, init the IGP 3 PHY manually */
if (hw->mac.type <= e1000_ich9lan) {
if (!(er32(EECD) & E1000_EECD_PRES) &&
(hw->phy.type == e1000_phy_igp_3)) {
e1000e_phy_init_script_igp3(hw);
}
} else {
if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
/* Maybe we should do a basic PHY config */
e_dbg("EEPROM not present\n");
ret_val = -E1000_ERR_CONFIG;
}
}
return ret_val;
}
/**
* e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(hw->mac.ops.check_mng_mode(hw) ||
hw->phy.ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
* @hw: pointer to the HW structure
*
* Clears hardware counters specific to the silicon family and calls
* clear_hw_cntrs_generic to clear all general purpose counters.
**/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
u16 phy_data;
s32 ret_val;
e1000e_clear_hw_cntrs_base(hw);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
/* Clear PHY statistics registers */
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
(hw->phy.type == e1000_phy_i217) ||
(hw->phy.type == e1000_phy_82577)) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
ret_val = hw->phy.ops.set_page(hw,
HV_STATS_PAGE << IGP_PAGE_SHIFT);
if (ret_val)
goto release;
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
hw->phy.ops.release(hw);
}
}
static const struct e1000_mac_operations ich8_mac_ops = {
/* check_mng_mode dependent on mac type */
.check_for_link = e1000_check_for_copper_link_ich8lan,
/* cleanup_led dependent on mac type */
.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
.get_bus_info = e1000_get_bus_info_ich8lan,
.set_lan_id = e1000_set_lan_id_single_port,
.get_link_up_info = e1000_get_link_up_info_ich8lan,
/* led_on dependent on mac type */
/* led_off dependent on mac type */
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.reset_hw = e1000_reset_hw_ich8lan,
.init_hw = e1000_init_hw_ich8lan,
.setup_link = e1000_setup_link_ich8lan,
.setup_physical_interface = e1000_setup_copper_link_ich8lan,
/* id_led_init dependent on mac type */
.config_collision_dist = e1000e_config_collision_dist_generic,
.rar_set = e1000e_rar_set_generic,
.rar_get_count = e1000e_rar_get_count_generic,
};
static const struct e1000_phy_operations ich8_phy_ops = {
.acquire = e1000_acquire_swflag_ich8lan,
.check_reset_block = e1000_check_reset_block_ich8lan,
.commit = NULL,
.get_cfg_done = e1000_get_cfg_done_ich8lan,
.get_cable_length = e1000e_get_cable_length_igp_2,
.read_reg = e1000e_read_phy_reg_igp,
.release = e1000_release_swflag_ich8lan,
.reset = e1000_phy_hw_reset_ich8lan,
.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
.write_reg = e1000e_write_phy_reg_igp,
};
static const struct e1000_nvm_operations ich8_nvm_ops = {
.acquire = e1000_acquire_nvm_ich8lan,
.read = e1000_read_nvm_ich8lan,
.release = e1000_release_nvm_ich8lan,
.reload = e1000e_reload_nvm_generic,
.update = e1000_update_nvm_checksum_ich8lan,
.valid_led_default = e1000_valid_led_default_ich8lan,
.validate = e1000_validate_nvm_checksum_ich8lan,
.write = e1000_write_nvm_ich8lan,
};
static const struct e1000_nvm_operations spt_nvm_ops = {
.acquire = e1000_acquire_nvm_ich8lan,
.release = e1000_release_nvm_ich8lan,
.read = e1000_read_nvm_spt,
.update = e1000_update_nvm_checksum_spt,
.reload = e1000e_reload_nvm_generic,
.valid_led_default = e1000_valid_led_default_ich8lan,
.validate = e1000_validate_nvm_checksum_ich8lan,
.write = e1000_write_nvm_ich8lan,
};
const struct e1000_info e1000_ich8_info = {
.mac = e1000_ich8lan,
.flags = FLAG_HAS_WOL
| FLAG_IS_ICH
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 8,
.max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_ich9_info = {
.mac = e1000_ich9lan,
.flags = FLAG_HAS_JUMBO_FRAMES
| FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 18,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_ich10_info = {
.mac = e1000_ich10lan,
.flags = FLAG_HAS_JUMBO_FRAMES
| FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 18,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch_info = {
.mac = e1000_pchlan,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS,
.pba = 26,
.max_hw_frame_size = 4096,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch2_info = {
.mac = e1000_pch2lan,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE
| FLAG2_CHECK_SYSTIM_OVERFLOW,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch_lpt_info = {
.mac = e1000_pch_lpt,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE
| FLAG2_CHECK_SYSTIM_OVERFLOW,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch_spt_info = {
.mac = e1000_pch_spt,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &spt_nvm_ops,
};
const struct e1000_info e1000_pch_cnp_info = {
.mac = e1000_pch_cnp,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &spt_nvm_ops,
};
const struct e1000_info e1000_pch_tgp_info = {
.mac = e1000_pch_tgp,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &spt_nvm_ops,
};
const struct e1000_info e1000_pch_adp_info = {
.mac = e1000_pch_adp,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &spt_nvm_ops,
};
const struct e1000_info e1000_pch_mtp_info = {
.mac = e1000_pch_mtp,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_HW_TIMESTAMP
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = 9022,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &spt_nvm_ops,
};