| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * tools/testing/selftests/kvm/include/x86_64/processor.h |
| * |
| * Copyright (C) 2018, Google LLC. |
| */ |
| |
| #ifndef SELFTEST_KVM_PROCESSOR_H |
| #define SELFTEST_KVM_PROCESSOR_H |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <syscall.h> |
| |
| #include <asm/msr-index.h> |
| #include <asm/prctl.h> |
| |
| #include <linux/kvm_para.h> |
| #include <linux/stringify.h> |
| |
| #include "../kvm_util.h" |
| |
| extern bool host_cpu_is_intel; |
| extern bool host_cpu_is_amd; |
| |
| #define NMI_VECTOR 0x02 |
| |
| #define X86_EFLAGS_FIXED (1u << 1) |
| |
| #define X86_CR4_VME (1ul << 0) |
| #define X86_CR4_PVI (1ul << 1) |
| #define X86_CR4_TSD (1ul << 2) |
| #define X86_CR4_DE (1ul << 3) |
| #define X86_CR4_PSE (1ul << 4) |
| #define X86_CR4_PAE (1ul << 5) |
| #define X86_CR4_MCE (1ul << 6) |
| #define X86_CR4_PGE (1ul << 7) |
| #define X86_CR4_PCE (1ul << 8) |
| #define X86_CR4_OSFXSR (1ul << 9) |
| #define X86_CR4_OSXMMEXCPT (1ul << 10) |
| #define X86_CR4_UMIP (1ul << 11) |
| #define X86_CR4_LA57 (1ul << 12) |
| #define X86_CR4_VMXE (1ul << 13) |
| #define X86_CR4_SMXE (1ul << 14) |
| #define X86_CR4_FSGSBASE (1ul << 16) |
| #define X86_CR4_PCIDE (1ul << 17) |
| #define X86_CR4_OSXSAVE (1ul << 18) |
| #define X86_CR4_SMEP (1ul << 20) |
| #define X86_CR4_SMAP (1ul << 21) |
| #define X86_CR4_PKE (1ul << 22) |
| |
| struct xstate_header { |
| u64 xstate_bv; |
| u64 xcomp_bv; |
| u64 reserved[6]; |
| } __attribute__((packed)); |
| |
| struct xstate { |
| u8 i387[512]; |
| struct xstate_header header; |
| u8 extended_state_area[0]; |
| } __attribute__ ((packed, aligned (64))); |
| |
| #define XFEATURE_MASK_FP BIT_ULL(0) |
| #define XFEATURE_MASK_SSE BIT_ULL(1) |
| #define XFEATURE_MASK_YMM BIT_ULL(2) |
| #define XFEATURE_MASK_BNDREGS BIT_ULL(3) |
| #define XFEATURE_MASK_BNDCSR BIT_ULL(4) |
| #define XFEATURE_MASK_OPMASK BIT_ULL(5) |
| #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) |
| #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) |
| #define XFEATURE_MASK_PT BIT_ULL(8) |
| #define XFEATURE_MASK_PKRU BIT_ULL(9) |
| #define XFEATURE_MASK_PASID BIT_ULL(10) |
| #define XFEATURE_MASK_CET_USER BIT_ULL(11) |
| #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) |
| #define XFEATURE_MASK_LBR BIT_ULL(15) |
| #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) |
| #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) |
| |
| #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ |
| XFEATURE_MASK_ZMM_Hi256 | \ |
| XFEATURE_MASK_Hi16_ZMM) |
| #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ |
| XFEATURE_MASK_XTILE_CFG) |
| |
| /* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ |
| enum cpuid_output_regs { |
| KVM_CPUID_EAX, |
| KVM_CPUID_EBX, |
| KVM_CPUID_ECX, |
| KVM_CPUID_EDX |
| }; |
| |
| /* |
| * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be |
| * passed by value with no overhead. |
| */ |
| struct kvm_x86_cpu_feature { |
| u32 function; |
| u16 index; |
| u8 reg; |
| u8 bit; |
| }; |
| #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ |
| ({ \ |
| struct kvm_x86_cpu_feature feature = { \ |
| .function = fn, \ |
| .index = idx, \ |
| .reg = KVM_CPUID_##gpr, \ |
| .bit = __bit, \ |
| }; \ |
| \ |
| kvm_static_assert((fn & 0xc0000000) == 0 || \ |
| (fn & 0xc0000000) == 0x40000000 || \ |
| (fn & 0xc0000000) == 0x80000000 || \ |
| (fn & 0xc0000000) == 0xc0000000); \ |
| kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ |
| feature; \ |
| }) |
| |
| /* |
| * Basic Leafs, a.k.a. Intel defined |
| */ |
| #define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) |
| #define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) |
| #define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) |
| #define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) |
| #define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) |
| #define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) |
| #define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) |
| #define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) |
| #define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) |
| #define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) |
| #define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) |
| #define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) |
| #define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) |
| #define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) |
| #define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) |
| #define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) |
| #define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) |
| #define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) |
| #define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) |
| #define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) |
| #define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) |
| #define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) |
| #define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) |
| #define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) |
| #define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) |
| #define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) |
| #define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) |
| #define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) |
| #define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) |
| #define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) |
| #define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) |
| #define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) |
| #define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) |
| #define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) |
| #define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) |
| #define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) |
| #define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) |
| #define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) |
| #define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) |
| #define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) |
| #define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) |
| #define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) |
| #define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) |
| #define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) |
| #define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) |
| #define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) |
| #define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) |
| |
| /* |
| * Extended Leafs, a.k.a. AMD defined |
| */ |
| #define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) |
| #define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) |
| #define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) |
| #define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) |
| #define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) |
| #define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) |
| #define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) |
| #define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) |
| #define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) |
| #define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) |
| #define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) |
| #define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) |
| #define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) |
| #define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) |
| #define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) |
| #define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) |
| #define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) |
| |
| /* |
| * KVM defined paravirt features. |
| */ |
| #define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) |
| #define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) |
| #define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) |
| #define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) |
| #define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) |
| #define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) |
| #define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) |
| #define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) |
| /* Bit 8 apparently isn't used?!?! */ |
| #define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) |
| #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) |
| #define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) |
| #define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) |
| #define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) |
| #define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) |
| #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) |
| #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) |
| #define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) |
| |
| /* |
| * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit |
| * value/property as opposed to a single-bit feature. Again, pack the info |
| * into a 64-bit value to pass by value with no overhead. |
| */ |
| struct kvm_x86_cpu_property { |
| u32 function; |
| u8 index; |
| u8 reg; |
| u8 lo_bit; |
| u8 hi_bit; |
| }; |
| #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ |
| ({ \ |
| struct kvm_x86_cpu_property property = { \ |
| .function = fn, \ |
| .index = idx, \ |
| .reg = KVM_CPUID_##gpr, \ |
| .lo_bit = low_bit, \ |
| .hi_bit = high_bit, \ |
| }; \ |
| \ |
| kvm_static_assert(low_bit < high_bit); \ |
| kvm_static_assert((fn & 0xc0000000) == 0 || \ |
| (fn & 0xc0000000) == 0x40000000 || \ |
| (fn & 0xc0000000) == 0x80000000 || \ |
| (fn & 0xc0000000) == 0xc0000000); \ |
| kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ |
| property; \ |
| }) |
| |
| #define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) |
| #define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) |
| #define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) |
| #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) |
| #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) |
| #define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) |
| #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) |
| #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) |
| #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) |
| |
| #define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) |
| #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) |
| #define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) |
| #define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) |
| |
| #define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) |
| #define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) |
| #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) |
| #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) |
| #define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) |
| #define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) |
| #define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) |
| #define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) |
| |
| #define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) |
| |
| #define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) |
| #define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) |
| #define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) |
| #define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) |
| |
| #define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) |
| |
| /* |
| * Intel's architectural PMU events are bizarre. They have a "feature" bit |
| * that indicates the feature is _not_ supported, and a property that states |
| * the length of the bit mask of unsupported features. A feature is supported |
| * if the size of the bit mask is larger than the "unavailable" bit, and said |
| * bit is not set. |
| * |
| * Wrap the "unavailable" feature to simplify checking whether or not a given |
| * architectural event is supported. |
| */ |
| struct kvm_x86_pmu_feature { |
| struct kvm_x86_cpu_feature anti_feature; |
| }; |
| #define KVM_X86_PMU_FEATURE(name, __bit) \ |
| ({ \ |
| struct kvm_x86_pmu_feature feature = { \ |
| .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit), \ |
| }; \ |
| \ |
| feature; \ |
| }) |
| |
| #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5) |
| |
| static inline unsigned int x86_family(unsigned int eax) |
| { |
| unsigned int x86; |
| |
| x86 = (eax >> 8) & 0xf; |
| |
| if (x86 == 0xf) |
| x86 += (eax >> 20) & 0xff; |
| |
| return x86; |
| } |
| |
| static inline unsigned int x86_model(unsigned int eax) |
| { |
| return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); |
| } |
| |
| /* Page table bitfield declarations */ |
| #define PTE_PRESENT_MASK BIT_ULL(0) |
| #define PTE_WRITABLE_MASK BIT_ULL(1) |
| #define PTE_USER_MASK BIT_ULL(2) |
| #define PTE_ACCESSED_MASK BIT_ULL(5) |
| #define PTE_DIRTY_MASK BIT_ULL(6) |
| #define PTE_LARGE_MASK BIT_ULL(7) |
| #define PTE_GLOBAL_MASK BIT_ULL(8) |
| #define PTE_NX_MASK BIT_ULL(63) |
| |
| #define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) |
| |
| #define PAGE_SHIFT 12 |
| #define PAGE_SIZE (1ULL << PAGE_SHIFT) |
| #define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) |
| |
| #define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) |
| #define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) |
| #define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) |
| |
| #define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) |
| #define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) |
| |
| /* General Registers in 64-Bit Mode */ |
| struct gpr64_regs { |
| u64 rax; |
| u64 rcx; |
| u64 rdx; |
| u64 rbx; |
| u64 rsp; |
| u64 rbp; |
| u64 rsi; |
| u64 rdi; |
| u64 r8; |
| u64 r9; |
| u64 r10; |
| u64 r11; |
| u64 r12; |
| u64 r13; |
| u64 r14; |
| u64 r15; |
| }; |
| |
| struct desc64 { |
| uint16_t limit0; |
| uint16_t base0; |
| unsigned base1:8, type:4, s:1, dpl:2, p:1; |
| unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; |
| uint32_t base3; |
| uint32_t zero1; |
| } __attribute__((packed)); |
| |
| struct desc_ptr { |
| uint16_t size; |
| uint64_t address; |
| } __attribute__((packed)); |
| |
| struct kvm_x86_state { |
| struct kvm_xsave *xsave; |
| struct kvm_vcpu_events events; |
| struct kvm_mp_state mp_state; |
| struct kvm_regs regs; |
| struct kvm_xcrs xcrs; |
| struct kvm_sregs sregs; |
| struct kvm_debugregs debugregs; |
| union { |
| struct kvm_nested_state nested; |
| char nested_[16384]; |
| }; |
| struct kvm_msrs msrs; |
| }; |
| |
| static inline uint64_t get_desc64_base(const struct desc64 *desc) |
| { |
| return ((uint64_t)desc->base3 << 32) | |
| (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); |
| } |
| |
| static inline uint64_t rdtsc(void) |
| { |
| uint32_t eax, edx; |
| uint64_t tsc_val; |
| /* |
| * The lfence is to wait (on Intel CPUs) until all previous |
| * instructions have been executed. If software requires RDTSC to be |
| * executed prior to execution of any subsequent instruction, it can |
| * execute LFENCE immediately after RDTSC |
| */ |
| __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); |
| tsc_val = ((uint64_t)edx) << 32 | eax; |
| return tsc_val; |
| } |
| |
| static inline uint64_t rdtscp(uint32_t *aux) |
| { |
| uint32_t eax, edx; |
| |
| __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); |
| return ((uint64_t)edx) << 32 | eax; |
| } |
| |
| static inline uint64_t rdmsr(uint32_t msr) |
| { |
| uint32_t a, d; |
| |
| __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); |
| |
| return a | ((uint64_t) d << 32); |
| } |
| |
| static inline void wrmsr(uint32_t msr, uint64_t value) |
| { |
| uint32_t a = value; |
| uint32_t d = value >> 32; |
| |
| __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); |
| } |
| |
| |
| static inline uint16_t inw(uint16_t port) |
| { |
| uint16_t tmp; |
| |
| __asm__ __volatile__("in %%dx, %%ax" |
| : /* output */ "=a" (tmp) |
| : /* input */ "d" (port)); |
| |
| return tmp; |
| } |
| |
| static inline uint16_t get_es(void) |
| { |
| uint16_t es; |
| |
| __asm__ __volatile__("mov %%es, %[es]" |
| : /* output */ [es]"=rm"(es)); |
| return es; |
| } |
| |
| static inline uint16_t get_cs(void) |
| { |
| uint16_t cs; |
| |
| __asm__ __volatile__("mov %%cs, %[cs]" |
| : /* output */ [cs]"=rm"(cs)); |
| return cs; |
| } |
| |
| static inline uint16_t get_ss(void) |
| { |
| uint16_t ss; |
| |
| __asm__ __volatile__("mov %%ss, %[ss]" |
| : /* output */ [ss]"=rm"(ss)); |
| return ss; |
| } |
| |
| static inline uint16_t get_ds(void) |
| { |
| uint16_t ds; |
| |
| __asm__ __volatile__("mov %%ds, %[ds]" |
| : /* output */ [ds]"=rm"(ds)); |
| return ds; |
| } |
| |
| static inline uint16_t get_fs(void) |
| { |
| uint16_t fs; |
| |
| __asm__ __volatile__("mov %%fs, %[fs]" |
| : /* output */ [fs]"=rm"(fs)); |
| return fs; |
| } |
| |
| static inline uint16_t get_gs(void) |
| { |
| uint16_t gs; |
| |
| __asm__ __volatile__("mov %%gs, %[gs]" |
| : /* output */ [gs]"=rm"(gs)); |
| return gs; |
| } |
| |
| static inline uint16_t get_tr(void) |
| { |
| uint16_t tr; |
| |
| __asm__ __volatile__("str %[tr]" |
| : /* output */ [tr]"=rm"(tr)); |
| return tr; |
| } |
| |
| static inline uint64_t get_cr0(void) |
| { |
| uint64_t cr0; |
| |
| __asm__ __volatile__("mov %%cr0, %[cr0]" |
| : /* output */ [cr0]"=r"(cr0)); |
| return cr0; |
| } |
| |
| static inline uint64_t get_cr3(void) |
| { |
| uint64_t cr3; |
| |
| __asm__ __volatile__("mov %%cr3, %[cr3]" |
| : /* output */ [cr3]"=r"(cr3)); |
| return cr3; |
| } |
| |
| static inline uint64_t get_cr4(void) |
| { |
| uint64_t cr4; |
| |
| __asm__ __volatile__("mov %%cr4, %[cr4]" |
| : /* output */ [cr4]"=r"(cr4)); |
| return cr4; |
| } |
| |
| static inline void set_cr4(uint64_t val) |
| { |
| __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); |
| } |
| |
| static inline u64 xgetbv(u32 index) |
| { |
| u32 eax, edx; |
| |
| __asm__ __volatile__("xgetbv;" |
| : "=a" (eax), "=d" (edx) |
| : "c" (index)); |
| return eax | ((u64)edx << 32); |
| } |
| |
| static inline void xsetbv(u32 index, u64 value) |
| { |
| u32 eax = value; |
| u32 edx = value >> 32; |
| |
| __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); |
| } |
| |
| static inline void wrpkru(u32 pkru) |
| { |
| /* Note, ECX and EDX are architecturally required to be '0'. */ |
| asm volatile(".byte 0x0f,0x01,0xef\n\t" |
| : : "a" (pkru), "c"(0), "d"(0)); |
| } |
| |
| static inline struct desc_ptr get_gdt(void) |
| { |
| struct desc_ptr gdt; |
| __asm__ __volatile__("sgdt %[gdt]" |
| : /* output */ [gdt]"=m"(gdt)); |
| return gdt; |
| } |
| |
| static inline struct desc_ptr get_idt(void) |
| { |
| struct desc_ptr idt; |
| __asm__ __volatile__("sidt %[idt]" |
| : /* output */ [idt]"=m"(idt)); |
| return idt; |
| } |
| |
| static inline void outl(uint16_t port, uint32_t value) |
| { |
| __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); |
| } |
| |
| static inline void __cpuid(uint32_t function, uint32_t index, |
| uint32_t *eax, uint32_t *ebx, |
| uint32_t *ecx, uint32_t *edx) |
| { |
| *eax = function; |
| *ecx = index; |
| |
| asm volatile("cpuid" |
| : "=a" (*eax), |
| "=b" (*ebx), |
| "=c" (*ecx), |
| "=d" (*edx) |
| : "0" (*eax), "2" (*ecx) |
| : "memory"); |
| } |
| |
| static inline void cpuid(uint32_t function, |
| uint32_t *eax, uint32_t *ebx, |
| uint32_t *ecx, uint32_t *edx) |
| { |
| return __cpuid(function, 0, eax, ebx, ecx, edx); |
| } |
| |
| static inline uint32_t this_cpu_fms(void) |
| { |
| uint32_t eax, ebx, ecx, edx; |
| |
| cpuid(1, &eax, &ebx, &ecx, &edx); |
| return eax; |
| } |
| |
| static inline uint32_t this_cpu_family(void) |
| { |
| return x86_family(this_cpu_fms()); |
| } |
| |
| static inline uint32_t this_cpu_model(void) |
| { |
| return x86_model(this_cpu_fms()); |
| } |
| |
| static inline bool this_cpu_vendor_string_is(const char *vendor) |
| { |
| const uint32_t *chunk = (const uint32_t *)vendor; |
| uint32_t eax, ebx, ecx, edx; |
| |
| cpuid(0, &eax, &ebx, &ecx, &edx); |
| return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); |
| } |
| |
| static inline bool this_cpu_is_intel(void) |
| { |
| return this_cpu_vendor_string_is("GenuineIntel"); |
| } |
| |
| /* |
| * Exclude early K5 samples with a vendor string of "AMDisbetter!" |
| */ |
| static inline bool this_cpu_is_amd(void) |
| { |
| return this_cpu_vendor_string_is("AuthenticAMD"); |
| } |
| |
| static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, |
| uint8_t reg, uint8_t lo, uint8_t hi) |
| { |
| uint32_t gprs[4]; |
| |
| __cpuid(function, index, |
| &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], |
| &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); |
| |
| return (gprs[reg] & GENMASK(hi, lo)) >> lo; |
| } |
| |
| static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) |
| { |
| return __this_cpu_has(feature.function, feature.index, |
| feature.reg, feature.bit, feature.bit); |
| } |
| |
| static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) |
| { |
| return __this_cpu_has(property.function, property.index, |
| property.reg, property.lo_bit, property.hi_bit); |
| } |
| |
| static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) |
| { |
| uint32_t max_leaf; |
| |
| switch (property.function & 0xc0000000) { |
| case 0: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); |
| break; |
| case 0x40000000: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); |
| break; |
| case 0x80000000: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); |
| break; |
| case 0xc0000000: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); |
| } |
| return max_leaf >= property.function; |
| } |
| |
| static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) |
| { |
| uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); |
| |
| return nr_bits > feature.anti_feature.bit && |
| !this_cpu_has(feature.anti_feature); |
| } |
| |
| static __always_inline uint64_t this_cpu_supported_xcr0(void) |
| { |
| if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) |
| return 0; |
| |
| return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | |
| ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); |
| } |
| |
| typedef u32 __attribute__((vector_size(16))) sse128_t; |
| #define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } |
| #define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) |
| #define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) |
| |
| static inline void read_sse_reg(int reg, sse128_t *data) |
| { |
| switch (reg) { |
| case 0: |
| asm("movdqa %%xmm0, %0" : "=m"(*data)); |
| break; |
| case 1: |
| asm("movdqa %%xmm1, %0" : "=m"(*data)); |
| break; |
| case 2: |
| asm("movdqa %%xmm2, %0" : "=m"(*data)); |
| break; |
| case 3: |
| asm("movdqa %%xmm3, %0" : "=m"(*data)); |
| break; |
| case 4: |
| asm("movdqa %%xmm4, %0" : "=m"(*data)); |
| break; |
| case 5: |
| asm("movdqa %%xmm5, %0" : "=m"(*data)); |
| break; |
| case 6: |
| asm("movdqa %%xmm6, %0" : "=m"(*data)); |
| break; |
| case 7: |
| asm("movdqa %%xmm7, %0" : "=m"(*data)); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static inline void write_sse_reg(int reg, const sse128_t *data) |
| { |
| switch (reg) { |
| case 0: |
| asm("movdqa %0, %%xmm0" : : "m"(*data)); |
| break; |
| case 1: |
| asm("movdqa %0, %%xmm1" : : "m"(*data)); |
| break; |
| case 2: |
| asm("movdqa %0, %%xmm2" : : "m"(*data)); |
| break; |
| case 3: |
| asm("movdqa %0, %%xmm3" : : "m"(*data)); |
| break; |
| case 4: |
| asm("movdqa %0, %%xmm4" : : "m"(*data)); |
| break; |
| case 5: |
| asm("movdqa %0, %%xmm5" : : "m"(*data)); |
| break; |
| case 6: |
| asm("movdqa %0, %%xmm6" : : "m"(*data)); |
| break; |
| case 7: |
| asm("movdqa %0, %%xmm7" : : "m"(*data)); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static inline void cpu_relax(void) |
| { |
| asm volatile("rep; nop" ::: "memory"); |
| } |
| |
| #define ud2() \ |
| __asm__ __volatile__( \ |
| "ud2\n" \ |
| ) |
| |
| #define hlt() \ |
| __asm__ __volatile__( \ |
| "hlt\n" \ |
| ) |
| |
| struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); |
| void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); |
| void kvm_x86_state_cleanup(struct kvm_x86_state *state); |
| |
| const struct kvm_msr_list *kvm_get_msr_index_list(void); |
| const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); |
| bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); |
| uint64_t kvm_get_feature_msr(uint64_t msr_index); |
| |
| static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, |
| struct kvm_msrs *msrs) |
| { |
| int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); |
| |
| TEST_ASSERT(r == msrs->nmsrs, |
| "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", |
| r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); |
| } |
| static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) |
| { |
| int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); |
| |
| TEST_ASSERT(r == msrs->nmsrs, |
| "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", |
| r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); |
| } |
| static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *debugregs) |
| { |
| vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); |
| } |
| static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *debugregs) |
| { |
| vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); |
| } |
| static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *xsave) |
| { |
| vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); |
| } |
| static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *xsave) |
| { |
| vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); |
| } |
| static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *xsave) |
| { |
| vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); |
| } |
| static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *xcrs) |
| { |
| vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); |
| } |
| static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) |
| { |
| vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); |
| } |
| |
| const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, |
| uint32_t function, uint32_t index); |
| const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); |
| const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void); |
| const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu); |
| |
| static inline uint32_t kvm_cpu_fms(void) |
| { |
| return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; |
| } |
| |
| static inline uint32_t kvm_cpu_family(void) |
| { |
| return x86_family(kvm_cpu_fms()); |
| } |
| |
| static inline uint32_t kvm_cpu_model(void) |
| { |
| return x86_model(kvm_cpu_fms()); |
| } |
| |
| bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, |
| struct kvm_x86_cpu_feature feature); |
| |
| static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) |
| { |
| return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); |
| } |
| |
| uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, |
| struct kvm_x86_cpu_property property); |
| |
| static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) |
| { |
| return kvm_cpuid_property(kvm_get_supported_cpuid(), property); |
| } |
| |
| static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) |
| { |
| uint32_t max_leaf; |
| |
| switch (property.function & 0xc0000000) { |
| case 0: |
| max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); |
| break; |
| case 0x40000000: |
| max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); |
| break; |
| case 0x80000000: |
| max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); |
| break; |
| case 0xc0000000: |
| max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); |
| } |
| return max_leaf >= property.function; |
| } |
| |
| static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) |
| { |
| uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); |
| |
| return nr_bits > feature.anti_feature.bit && |
| !kvm_cpu_has(feature.anti_feature); |
| } |
| |
| static __always_inline uint64_t kvm_cpu_supported_xcr0(void) |
| { |
| if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) |
| return 0; |
| |
| return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | |
| ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); |
| } |
| |
| static inline size_t kvm_cpuid2_size(int nr_entries) |
| { |
| return sizeof(struct kvm_cpuid2) + |
| sizeof(struct kvm_cpuid_entry2) * nr_entries; |
| } |
| |
| /* |
| * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of |
| * entries sized to hold @nr_entries. The caller is responsible for freeing |
| * the struct. |
| */ |
| static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) |
| { |
| struct kvm_cpuid2 *cpuid; |
| |
| cpuid = malloc(kvm_cpuid2_size(nr_entries)); |
| TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); |
| |
| cpuid->nent = nr_entries; |
| |
| return cpuid; |
| } |
| |
| void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); |
| void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu); |
| |
| static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, |
| uint32_t function, |
| uint32_t index) |
| { |
| return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, |
| function, index); |
| } |
| |
| static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, |
| uint32_t function) |
| { |
| return __vcpu_get_cpuid_entry(vcpu, function, 0); |
| } |
| |
| static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); |
| r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); |
| if (r) |
| return r; |
| |
| /* On success, refresh the cache to pick up adjustments made by KVM. */ |
| vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); |
| return 0; |
| } |
| |
| static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); |
| vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); |
| |
| /* Refresh the cache to pick up adjustments made by KVM. */ |
| vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); |
| } |
| |
| void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); |
| |
| void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); |
| void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, |
| struct kvm_x86_cpu_feature feature, |
| bool set); |
| |
| static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, |
| struct kvm_x86_cpu_feature feature) |
| { |
| vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); |
| |
| } |
| |
| static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, |
| struct kvm_x86_cpu_feature feature) |
| { |
| vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); |
| } |
| |
| uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); |
| int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); |
| |
| /* |
| * Assert on an MSR access(es) and pretty print the MSR name when possible. |
| * Note, the caller provides the stringified name so that the name of macro is |
| * printed, not the value the macro resolves to (due to macro expansion). |
| */ |
| #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ |
| do { \ |
| if (__builtin_constant_p(msr)) { \ |
| TEST_ASSERT(cond, fmt, str, args); \ |
| } else if (!(cond)) { \ |
| char buf[16]; \ |
| \ |
| snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ |
| TEST_ASSERT(cond, fmt, buf, args); \ |
| } \ |
| } while (0) |
| |
| /* |
| * Returns true if KVM should return the last written value when reading an MSR |
| * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that |
| * is changing, etc. This is NOT an exhaustive list! The intent is to filter |
| * out MSRs that are not durable _and_ that a selftest wants to write. |
| */ |
| static inline bool is_durable_msr(uint32_t msr) |
| { |
| return msr != MSR_IA32_TSC; |
| } |
| |
| #define vcpu_set_msr(vcpu, msr, val) \ |
| do { \ |
| uint64_t r, v = val; \ |
| \ |
| TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ |
| "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ |
| if (!is_durable_msr(msr)) \ |
| break; \ |
| r = vcpu_get_msr(vcpu, msr); \ |
| TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ |
| } while (0) |
| |
| void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); |
| bool vm_is_unrestricted_guest(struct kvm_vm *vm); |
| |
| struct ex_regs { |
| uint64_t rax, rcx, rdx, rbx; |
| uint64_t rbp, rsi, rdi; |
| uint64_t r8, r9, r10, r11; |
| uint64_t r12, r13, r14, r15; |
| uint64_t vector; |
| uint64_t error_code; |
| uint64_t rip; |
| uint64_t cs; |
| uint64_t rflags; |
| }; |
| |
| struct idt_entry { |
| uint16_t offset0; |
| uint16_t selector; |
| uint16_t ist : 3; |
| uint16_t : 5; |
| uint16_t type : 4; |
| uint16_t : 1; |
| uint16_t dpl : 2; |
| uint16_t p : 1; |
| uint16_t offset1; |
| uint32_t offset2; uint32_t reserved; |
| }; |
| |
| void vm_init_descriptor_tables(struct kvm_vm *vm); |
| void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu); |
| void vm_install_exception_handler(struct kvm_vm *vm, int vector, |
| void (*handler)(struct ex_regs *)); |
| |
| /* If a toddler were to say "abracadabra". */ |
| #define KVM_EXCEPTION_MAGIC 0xabacadabaULL |
| |
| /* |
| * KVM selftest exception fixup uses registers to coordinate with the exception |
| * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory |
| * per-CPU data. Using only registers avoids having to map memory into the |
| * guest, doesn't require a valid, stable GS.base, and reduces the risk of |
| * for recursive faults when accessing memory in the handler. The downside to |
| * using registers is that it restricts what registers can be used by the actual |
| * instruction. But, selftests are 64-bit only, making register* pressure a |
| * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved |
| * by the callee, and except for r11 are not implicit parameters to any |
| * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit |
| * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V |
| * is higher priority than testing non-faulting SYSCALL/SYSRET. |
| * |
| * Note, the fixup handler deliberately does not handle #DE, i.e. the vector |
| * is guaranteed to be non-zero on fault. |
| * |
| * REGISTER INPUTS: |
| * r9 = MAGIC |
| * r10 = RIP |
| * r11 = new RIP on fault |
| * |
| * REGISTER OUTPUTS: |
| * r9 = exception vector (non-zero) |
| * r10 = error code |
| */ |
| #define KVM_ASM_SAFE(insn) \ |
| "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ |
| "lea 1f(%%rip), %%r10\n\t" \ |
| "lea 2f(%%rip), %%r11\n\t" \ |
| "1: " insn "\n\t" \ |
| "xor %%r9, %%r9\n\t" \ |
| "2:\n\t" \ |
| "mov %%r9b, %[vector]\n\t" \ |
| "mov %%r10, %[error_code]\n\t" |
| |
| #define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) |
| #define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" |
| |
| #define kvm_asm_safe(insn, inputs...) \ |
| ({ \ |
| uint64_t ign_error_code; \ |
| uint8_t vector; \ |
| \ |
| asm volatile(KVM_ASM_SAFE(insn) \ |
| : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ |
| : inputs \ |
| : KVM_ASM_SAFE_CLOBBERS); \ |
| vector; \ |
| }) |
| |
| #define kvm_asm_safe_ec(insn, error_code, inputs...) \ |
| ({ \ |
| uint8_t vector; \ |
| \ |
| asm volatile(KVM_ASM_SAFE(insn) \ |
| : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ |
| : inputs \ |
| : KVM_ASM_SAFE_CLOBBERS); \ |
| vector; \ |
| }) |
| |
| static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val) |
| { |
| uint64_t error_code; |
| uint8_t vector; |
| uint32_t a, d; |
| |
| asm volatile(KVM_ASM_SAFE("rdmsr") |
| : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code) |
| : "c"(msr) |
| : KVM_ASM_SAFE_CLOBBERS); |
| |
| *val = (uint64_t)a | ((uint64_t)d << 32); |
| return vector; |
| } |
| |
| static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) |
| { |
| return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); |
| } |
| |
| static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) |
| { |
| u32 eax = value; |
| u32 edx = value >> 32; |
| |
| return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); |
| } |
| |
| bool kvm_is_tdp_enabled(void); |
| |
| uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, |
| int *level); |
| uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); |
| |
| uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, |
| uint64_t a3); |
| uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); |
| void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); |
| |
| static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, |
| uint64_t size, uint64_t flags) |
| { |
| return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); |
| } |
| |
| static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, |
| uint64_t flags) |
| { |
| uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); |
| |
| GUEST_ASSERT(!ret); |
| } |
| |
| void __vm_xsave_require_permission(uint64_t xfeature, const char *name); |
| |
| #define vm_xsave_require_permission(xfeature) \ |
| __vm_xsave_require_permission(xfeature, #xfeature) |
| |
| enum pg_level { |
| PG_LEVEL_NONE, |
| PG_LEVEL_4K, |
| PG_LEVEL_2M, |
| PG_LEVEL_1G, |
| PG_LEVEL_512G, |
| PG_LEVEL_NUM |
| }; |
| |
| #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) |
| #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) |
| |
| #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) |
| #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) |
| #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) |
| |
| void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); |
| void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, |
| uint64_t nr_bytes, int level); |
| |
| /* |
| * Basic CPU control in CR0 |
| */ |
| #define X86_CR0_PE (1UL<<0) /* Protection Enable */ |
| #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ |
| #define X86_CR0_EM (1UL<<2) /* Emulation */ |
| #define X86_CR0_TS (1UL<<3) /* Task Switched */ |
| #define X86_CR0_ET (1UL<<4) /* Extension Type */ |
| #define X86_CR0_NE (1UL<<5) /* Numeric Error */ |
| #define X86_CR0_WP (1UL<<16) /* Write Protect */ |
| #define X86_CR0_AM (1UL<<18) /* Alignment Mask */ |
| #define X86_CR0_NW (1UL<<29) /* Not Write-through */ |
| #define X86_CR0_CD (1UL<<30) /* Cache Disable */ |
| #define X86_CR0_PG (1UL<<31) /* Paging */ |
| |
| #define PFERR_PRESENT_BIT 0 |
| #define PFERR_WRITE_BIT 1 |
| #define PFERR_USER_BIT 2 |
| #define PFERR_RSVD_BIT 3 |
| #define PFERR_FETCH_BIT 4 |
| #define PFERR_PK_BIT 5 |
| #define PFERR_SGX_BIT 15 |
| #define PFERR_GUEST_FINAL_BIT 32 |
| #define PFERR_GUEST_PAGE_BIT 33 |
| #define PFERR_IMPLICIT_ACCESS_BIT 48 |
| |
| #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) |
| #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) |
| #define PFERR_USER_MASK BIT(PFERR_USER_BIT) |
| #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) |
| #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) |
| #define PFERR_PK_MASK BIT(PFERR_PK_BIT) |
| #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) |
| #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) |
| #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) |
| #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) |
| |
| bool sys_clocksource_is_based_on_tsc(void); |
| |
| #endif /* SELFTEST_KVM_PROCESSOR_H */ |