| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2020, Google LLC. |
| */ |
| #define _GNU_SOURCE |
| |
| #include <inttypes.h> |
| #include <linux/bitmap.h> |
| |
| #include "kvm_util.h" |
| #include "memstress.h" |
| #include "processor.h" |
| |
| struct memstress_args memstress_args; |
| |
| /* |
| * Guest virtual memory offset of the testing memory slot. |
| * Must not conflict with identity mapped test code. |
| */ |
| static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; |
| |
| struct vcpu_thread { |
| /* The index of the vCPU. */ |
| int vcpu_idx; |
| |
| /* The pthread backing the vCPU. */ |
| pthread_t thread; |
| |
| /* Set to true once the vCPU thread is up and running. */ |
| bool running; |
| }; |
| |
| /* The vCPU threads involved in this test. */ |
| static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS]; |
| |
| /* The function run by each vCPU thread, as provided by the test. */ |
| static void (*vcpu_thread_fn)(struct memstress_vcpu_args *); |
| |
| /* Set to true once all vCPU threads are up and running. */ |
| static bool all_vcpu_threads_running; |
| |
| static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; |
| |
| /* |
| * Continuously write to the first 8 bytes of each page in the |
| * specified region. |
| */ |
| void memstress_guest_code(uint32_t vcpu_idx) |
| { |
| struct memstress_args *args = &memstress_args; |
| struct memstress_vcpu_args *vcpu_args = &args->vcpu_args[vcpu_idx]; |
| struct guest_random_state rand_state; |
| uint64_t gva; |
| uint64_t pages; |
| uint64_t addr; |
| uint64_t page; |
| int i; |
| |
| rand_state = new_guest_random_state(args->random_seed + vcpu_idx); |
| |
| gva = vcpu_args->gva; |
| pages = vcpu_args->pages; |
| |
| /* Make sure vCPU args data structure is not corrupt. */ |
| GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx); |
| |
| while (true) { |
| for (i = 0; i < sizeof(memstress_args); i += args->guest_page_size) |
| (void) *((volatile char *)args + i); |
| |
| for (i = 0; i < pages; i++) { |
| if (args->random_access) |
| page = guest_random_u32(&rand_state) % pages; |
| else |
| page = i; |
| |
| addr = gva + (page * args->guest_page_size); |
| |
| if (guest_random_u32(&rand_state) % 100 < args->write_percent) |
| *(uint64_t *)addr = 0x0123456789ABCDEF; |
| else |
| READ_ONCE(*(uint64_t *)addr); |
| } |
| |
| GUEST_SYNC(1); |
| } |
| } |
| |
| void memstress_setup_vcpus(struct kvm_vm *vm, int nr_vcpus, |
| struct kvm_vcpu *vcpus[], |
| uint64_t vcpu_memory_bytes, |
| bool partition_vcpu_memory_access) |
| { |
| struct memstress_args *args = &memstress_args; |
| struct memstress_vcpu_args *vcpu_args; |
| int i; |
| |
| for (i = 0; i < nr_vcpus; i++) { |
| vcpu_args = &args->vcpu_args[i]; |
| |
| vcpu_args->vcpu = vcpus[i]; |
| vcpu_args->vcpu_idx = i; |
| |
| if (partition_vcpu_memory_access) { |
| vcpu_args->gva = guest_test_virt_mem + |
| (i * vcpu_memory_bytes); |
| vcpu_args->pages = vcpu_memory_bytes / |
| args->guest_page_size; |
| vcpu_args->gpa = args->gpa + (i * vcpu_memory_bytes); |
| } else { |
| vcpu_args->gva = guest_test_virt_mem; |
| vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) / |
| args->guest_page_size; |
| vcpu_args->gpa = args->gpa; |
| } |
| |
| vcpu_args_set(vcpus[i], 1, i); |
| |
| pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n", |
| i, vcpu_args->gpa, vcpu_args->gpa + |
| (vcpu_args->pages * args->guest_page_size)); |
| } |
| } |
| |
| struct kvm_vm *memstress_create_vm(enum vm_guest_mode mode, int nr_vcpus, |
| uint64_t vcpu_memory_bytes, int slots, |
| enum vm_mem_backing_src_type backing_src, |
| bool partition_vcpu_memory_access) |
| { |
| struct memstress_args *args = &memstress_args; |
| struct kvm_vm *vm; |
| uint64_t guest_num_pages, slot0_pages = 0; |
| uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src); |
| uint64_t region_end_gfn; |
| int i; |
| |
| pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); |
| |
| /* By default vCPUs will write to memory. */ |
| args->write_percent = 100; |
| |
| /* |
| * Snapshot the non-huge page size. This is used by the guest code to |
| * access/dirty pages at the logging granularity. |
| */ |
| args->guest_page_size = vm_guest_mode_params[mode].page_size; |
| |
| guest_num_pages = vm_adjust_num_guest_pages(mode, |
| (nr_vcpus * vcpu_memory_bytes) / args->guest_page_size); |
| |
| TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0, |
| "Guest memory size is not host page size aligned."); |
| TEST_ASSERT(vcpu_memory_bytes % args->guest_page_size == 0, |
| "Guest memory size is not guest page size aligned."); |
| TEST_ASSERT(guest_num_pages % slots == 0, |
| "Guest memory cannot be evenly divided into %d slots.", |
| slots); |
| |
| /* |
| * If using nested, allocate extra pages for the nested page tables and |
| * in-memory data structures. |
| */ |
| if (args->nested) |
| slot0_pages += memstress_nested_pages(nr_vcpus); |
| |
| /* |
| * Pass guest_num_pages to populate the page tables for test memory. |
| * The memory is also added to memslot 0, but that's a benign side |
| * effect as KVM allows aliasing HVAs in meslots. |
| */ |
| vm = __vm_create_with_vcpus(VM_SHAPE(mode), nr_vcpus, |
| slot0_pages + guest_num_pages, |
| memstress_guest_code, vcpus); |
| |
| args->vm = vm; |
| |
| /* Put the test region at the top guest physical memory. */ |
| region_end_gfn = vm->max_gfn + 1; |
| |
| #ifdef __x86_64__ |
| /* |
| * When running vCPUs in L2, restrict the test region to 48 bits to |
| * avoid needing 5-level page tables to identity map L2. |
| */ |
| if (args->nested) |
| region_end_gfn = min(region_end_gfn, (1UL << 48) / args->guest_page_size); |
| #endif |
| /* |
| * If there should be more memory in the guest test region than there |
| * can be pages in the guest, it will definitely cause problems. |
| */ |
| TEST_ASSERT(guest_num_pages < region_end_gfn, |
| "Requested more guest memory than address space allows.\n" |
| " guest pages: %" PRIx64 " max gfn: %" PRIx64 |
| " nr_vcpus: %d wss: %" PRIx64 "]", |
| guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes); |
| |
| args->gpa = (region_end_gfn - guest_num_pages - 1) * args->guest_page_size; |
| args->gpa = align_down(args->gpa, backing_src_pagesz); |
| #ifdef __s390x__ |
| /* Align to 1M (segment size) */ |
| args->gpa = align_down(args->gpa, 1 << 20); |
| #endif |
| args->size = guest_num_pages * args->guest_page_size; |
| pr_info("guest physical test memory: [0x%lx, 0x%lx)\n", |
| args->gpa, args->gpa + args->size); |
| |
| /* Add extra memory slots for testing */ |
| for (i = 0; i < slots; i++) { |
| uint64_t region_pages = guest_num_pages / slots; |
| vm_paddr_t region_start = args->gpa + region_pages * args->guest_page_size * i; |
| |
| vm_userspace_mem_region_add(vm, backing_src, region_start, |
| MEMSTRESS_MEM_SLOT_INDEX + i, |
| region_pages, 0); |
| } |
| |
| /* Do mapping for the demand paging memory slot */ |
| virt_map(vm, guest_test_virt_mem, args->gpa, guest_num_pages); |
| |
| memstress_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes, |
| partition_vcpu_memory_access); |
| |
| if (args->nested) { |
| pr_info("Configuring vCPUs to run in L2 (nested).\n"); |
| memstress_setup_nested(vm, nr_vcpus, vcpus); |
| } |
| |
| /* Export the shared variables to the guest. */ |
| sync_global_to_guest(vm, memstress_args); |
| |
| return vm; |
| } |
| |
| void memstress_destroy_vm(struct kvm_vm *vm) |
| { |
| kvm_vm_free(vm); |
| } |
| |
| void memstress_set_write_percent(struct kvm_vm *vm, uint32_t write_percent) |
| { |
| memstress_args.write_percent = write_percent; |
| sync_global_to_guest(vm, memstress_args.write_percent); |
| } |
| |
| void memstress_set_random_seed(struct kvm_vm *vm, uint32_t random_seed) |
| { |
| memstress_args.random_seed = random_seed; |
| sync_global_to_guest(vm, memstress_args.random_seed); |
| } |
| |
| void memstress_set_random_access(struct kvm_vm *vm, bool random_access) |
| { |
| memstress_args.random_access = random_access; |
| sync_global_to_guest(vm, memstress_args.random_access); |
| } |
| |
| uint64_t __weak memstress_nested_pages(int nr_vcpus) |
| { |
| return 0; |
| } |
| |
| void __weak memstress_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus) |
| { |
| pr_info("%s() not support on this architecture, skipping.\n", __func__); |
| exit(KSFT_SKIP); |
| } |
| |
| static void *vcpu_thread_main(void *data) |
| { |
| struct vcpu_thread *vcpu = data; |
| int vcpu_idx = vcpu->vcpu_idx; |
| |
| if (memstress_args.pin_vcpus) |
| kvm_pin_this_task_to_pcpu(memstress_args.vcpu_to_pcpu[vcpu_idx]); |
| |
| WRITE_ONCE(vcpu->running, true); |
| |
| /* |
| * Wait for all vCPU threads to be up and running before calling the test- |
| * provided vCPU thread function. This prevents thread creation (which |
| * requires taking the mmap_sem in write mode) from interfering with the |
| * guest faulting in its memory. |
| */ |
| while (!READ_ONCE(all_vcpu_threads_running)) |
| ; |
| |
| vcpu_thread_fn(&memstress_args.vcpu_args[vcpu_idx]); |
| |
| return NULL; |
| } |
| |
| void memstress_start_vcpu_threads(int nr_vcpus, |
| void (*vcpu_fn)(struct memstress_vcpu_args *)) |
| { |
| int i; |
| |
| vcpu_thread_fn = vcpu_fn; |
| WRITE_ONCE(all_vcpu_threads_running, false); |
| WRITE_ONCE(memstress_args.stop_vcpus, false); |
| |
| for (i = 0; i < nr_vcpus; i++) { |
| struct vcpu_thread *vcpu = &vcpu_threads[i]; |
| |
| vcpu->vcpu_idx = i; |
| WRITE_ONCE(vcpu->running, false); |
| |
| pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu); |
| } |
| |
| for (i = 0; i < nr_vcpus; i++) { |
| while (!READ_ONCE(vcpu_threads[i].running)) |
| ; |
| } |
| |
| WRITE_ONCE(all_vcpu_threads_running, true); |
| } |
| |
| void memstress_join_vcpu_threads(int nr_vcpus) |
| { |
| int i; |
| |
| WRITE_ONCE(memstress_args.stop_vcpus, true); |
| |
| for (i = 0; i < nr_vcpus; i++) |
| pthread_join(vcpu_threads[i].thread, NULL); |
| } |
| |
| static void toggle_dirty_logging(struct kvm_vm *vm, int slots, bool enable) |
| { |
| int i; |
| |
| for (i = 0; i < slots; i++) { |
| int slot = MEMSTRESS_MEM_SLOT_INDEX + i; |
| int flags = enable ? KVM_MEM_LOG_DIRTY_PAGES : 0; |
| |
| vm_mem_region_set_flags(vm, slot, flags); |
| } |
| } |
| |
| void memstress_enable_dirty_logging(struct kvm_vm *vm, int slots) |
| { |
| toggle_dirty_logging(vm, slots, true); |
| } |
| |
| void memstress_disable_dirty_logging(struct kvm_vm *vm, int slots) |
| { |
| toggle_dirty_logging(vm, slots, false); |
| } |
| |
| void memstress_get_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], int slots) |
| { |
| int i; |
| |
| for (i = 0; i < slots; i++) { |
| int slot = MEMSTRESS_MEM_SLOT_INDEX + i; |
| |
| kvm_vm_get_dirty_log(vm, slot, bitmaps[i]); |
| } |
| } |
| |
| void memstress_clear_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], |
| int slots, uint64_t pages_per_slot) |
| { |
| int i; |
| |
| for (i = 0; i < slots; i++) { |
| int slot = MEMSTRESS_MEM_SLOT_INDEX + i; |
| |
| kvm_vm_clear_dirty_log(vm, slot, bitmaps[i], 0, pages_per_slot); |
| } |
| } |
| |
| unsigned long **memstress_alloc_bitmaps(int slots, uint64_t pages_per_slot) |
| { |
| unsigned long **bitmaps; |
| int i; |
| |
| bitmaps = malloc(slots * sizeof(bitmaps[0])); |
| TEST_ASSERT(bitmaps, "Failed to allocate bitmaps array."); |
| |
| for (i = 0; i < slots; i++) { |
| bitmaps[i] = bitmap_zalloc(pages_per_slot); |
| TEST_ASSERT(bitmaps[i], "Failed to allocate slot bitmap."); |
| } |
| |
| return bitmaps; |
| } |
| |
| void memstress_free_bitmaps(unsigned long *bitmaps[], int slots) |
| { |
| int i; |
| |
| for (i = 0; i < slots; i++) |
| free(bitmaps[i]); |
| |
| free(bitmaps); |
| } |