blob: 4e6cdb0ddc70c86472649dc6e1beee3af93ddcae [file] [log] [blame]
/*
* Performance events x86 architecture header
*
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
* Copyright (C) 2009 Jaswinder Singh Rajput
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
* Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
* Copyright (C) 2009 Google, Inc., Stephane Eranian
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_event.h>
#if 0
#undef wrmsrl
#define wrmsrl(msr, val) \
do { \
unsigned int _msr = (msr); \
u64 _val = (val); \
trace_printk("wrmsrl(%x, %Lx)\n", (unsigned int)(_msr), \
(unsigned long long)(_val)); \
native_write_msr((_msr), (u32)(_val), (u32)(_val >> 32)); \
} while (0)
#endif
/*
* | NHM/WSM | SNB |
* register -------------------------------
* | HT | no HT | HT | no HT |
*-----------------------------------------
* offcore | core | core | cpu | core |
* lbr_sel | core | core | cpu | core |
* ld_lat | cpu | core | cpu | core |
*-----------------------------------------
*
* Given that there is a small number of shared regs,
* we can pre-allocate their slot in the per-cpu
* per-core reg tables.
*/
enum extra_reg_type {
EXTRA_REG_NONE = -1, /* not used */
EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */
EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */
EXTRA_REG_LBR = 2, /* lbr_select */
EXTRA_REG_LDLAT = 3, /* ld_lat_threshold */
EXTRA_REG_MAX /* number of entries needed */
};
struct event_constraint {
union {
unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
u64 idxmsk64;
};
u64 code;
u64 cmask;
int weight;
int overlap;
int flags;
};
/*
* struct hw_perf_event.flags flags
*/
#define PERF_X86_EVENT_PEBS_LDLAT 0x1 /* ld+ldlat data address sampling */
#define PERF_X86_EVENT_PEBS_ST 0x2 /* st data address sampling */
#define PERF_X86_EVENT_PEBS_ST_HSW 0x4 /* haswell style datala, store */
#define PERF_X86_EVENT_COMMITTED 0x8 /* event passed commit_txn */
#define PERF_X86_EVENT_PEBS_LD_HSW 0x10 /* haswell style datala, load */
#define PERF_X86_EVENT_PEBS_NA_HSW 0x20 /* haswell style datala, unknown */
struct amd_nb {
int nb_id; /* NorthBridge id */
int refcnt; /* reference count */
struct perf_event *owners[X86_PMC_IDX_MAX];
struct event_constraint event_constraints[X86_PMC_IDX_MAX];
};
/* The maximal number of PEBS events: */
#define MAX_PEBS_EVENTS 8
/*
* A debug store configuration.
*
* We only support architectures that use 64bit fields.
*/
struct debug_store {
u64 bts_buffer_base;
u64 bts_index;
u64 bts_absolute_maximum;
u64 bts_interrupt_threshold;
u64 pebs_buffer_base;
u64 pebs_index;
u64 pebs_absolute_maximum;
u64 pebs_interrupt_threshold;
u64 pebs_event_reset[MAX_PEBS_EVENTS];
};
/*
* Per register state.
*/
struct er_account {
raw_spinlock_t lock; /* per-core: protect structure */
u64 config; /* extra MSR config */
u64 reg; /* extra MSR number */
atomic_t ref; /* reference count */
};
/*
* Per core/cpu state
*
* Used to coordinate shared registers between HT threads or
* among events on a single PMU.
*/
struct intel_shared_regs {
struct er_account regs[EXTRA_REG_MAX];
int refcnt; /* per-core: #HT threads */
unsigned core_id; /* per-core: core id */
};
#define MAX_LBR_ENTRIES 16
struct cpu_hw_events {
/*
* Generic x86 PMC bits
*/
struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
int enabled;
int n_events; /* the # of events in the below arrays */
int n_added; /* the # last events in the below arrays;
they've never been enabled yet */
int n_txn; /* the # last events in the below arrays;
added in the current transaction */
int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
u64 tags[X86_PMC_IDX_MAX];
struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
unsigned int group_flag;
int is_fake;
/*
* Intel DebugStore bits
*/
struct debug_store *ds;
u64 pebs_enabled;
/*
* Intel LBR bits
*/
int lbr_users;
void *lbr_context;
struct perf_branch_stack lbr_stack;
struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
struct er_account *lbr_sel;
u64 br_sel;
/*
* Intel host/guest exclude bits
*/
u64 intel_ctrl_guest_mask;
u64 intel_ctrl_host_mask;
struct perf_guest_switch_msr guest_switch_msrs[X86_PMC_IDX_MAX];
/*
* Intel checkpoint mask
*/
u64 intel_cp_status;
/*
* manage shared (per-core, per-cpu) registers
* used on Intel NHM/WSM/SNB
*/
struct intel_shared_regs *shared_regs;
/*
* AMD specific bits
*/
struct amd_nb *amd_nb;
/* Inverted mask of bits to clear in the perf_ctr ctrl registers */
u64 perf_ctr_virt_mask;
void *kfree_on_online;
};
#define __EVENT_CONSTRAINT(c, n, m, w, o, f) {\
{ .idxmsk64 = (n) }, \
.code = (c), \
.cmask = (m), \
.weight = (w), \
.overlap = (o), \
.flags = f, \
}
#define EVENT_CONSTRAINT(c, n, m) \
__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0)
/*
* The overlap flag marks event constraints with overlapping counter
* masks. This is the case if the counter mask of such an event is not
* a subset of any other counter mask of a constraint with an equal or
* higher weight, e.g.:
*
* c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
* c_another1 = EVENT_CONSTRAINT(0, 0x07, 0);
* c_another2 = EVENT_CONSTRAINT(0, 0x38, 0);
*
* The event scheduler may not select the correct counter in the first
* cycle because it needs to know which subsequent events will be
* scheduled. It may fail to schedule the events then. So we set the
* overlap flag for such constraints to give the scheduler a hint which
* events to select for counter rescheduling.
*
* Care must be taken as the rescheduling algorithm is O(n!) which
* will increase scheduling cycles for an over-commited system
* dramatically. The number of such EVENT_CONSTRAINT_OVERLAP() macros
* and its counter masks must be kept at a minimum.
*/
#define EVENT_CONSTRAINT_OVERLAP(c, n, m) \
__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0)
/*
* Constraint on the Event code.
*/
#define INTEL_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
/*
* Constraint on the Event code + UMask + fixed-mask
*
* filter mask to validate fixed counter events.
* the following filters disqualify for fixed counters:
* - inv
* - edge
* - cnt-mask
* - in_tx
* - in_tx_checkpointed
* The other filters are supported by fixed counters.
* The any-thread option is supported starting with v3.
*/
#define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)
#define FIXED_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS)
/*
* Constraint on the Event code + UMask
*/
#define INTEL_UEVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
/* Like UEVENT_CONSTRAINT, but match flags too */
#define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
#define INTEL_PLD_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT)
#define INTEL_PST_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST)
/* Event constraint, but match on all event flags too. */
#define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
/* Check only flags, but allow all event/umask */
#define INTEL_ALL_EVENT_CONSTRAINT(code, n) \
EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS)
/* Check flags and event code, and set the HSW store flag */
#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \
__EVENT_CONSTRAINT(code, n, \
ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
/* Check flags and event code, and set the HSW load flag */
#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \
__EVENT_CONSTRAINT(code, n, \
ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
/* Check flags and event code/umask, and set the HSW store flag */
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
/* Check flags and event code/umask, and set the HSW load flag */
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
/* Check flags and event code/umask, and set the HSW N/A flag */
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|INTEL_ARCH_EVENT_MASK, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW)
/*
* We define the end marker as having a weight of -1
* to enable blacklisting of events using a counter bitmask
* of zero and thus a weight of zero.
* The end marker has a weight that cannot possibly be
* obtained from counting the bits in the bitmask.
*/
#define EVENT_CONSTRAINT_END { .weight = -1 }
/*
* Check for end marker with weight == -1
*/
#define for_each_event_constraint(e, c) \
for ((e) = (c); (e)->weight != -1; (e)++)
/*
* Extra registers for specific events.
*
* Some events need large masks and require external MSRs.
* Those extra MSRs end up being shared for all events on
* a PMU and sometimes between PMU of sibling HT threads.
* In either case, the kernel needs to handle conflicting
* accesses to those extra, shared, regs. The data structure
* to manage those registers is stored in cpu_hw_event.
*/
struct extra_reg {
unsigned int event;
unsigned int msr;
u64 config_mask;
u64 valid_mask;
int idx; /* per_xxx->regs[] reg index */
bool extra_msr_access;
};
#define EVENT_EXTRA_REG(e, ms, m, vm, i) { \
.event = (e), \
.msr = (ms), \
.config_mask = (m), \
.valid_mask = (vm), \
.idx = EXTRA_REG_##i, \
.extra_msr_access = true, \
}
#define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \
EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
#define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \
EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \
ARCH_PERFMON_EVENTSEL_UMASK, vm, idx)
#define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \
INTEL_UEVENT_EXTRA_REG(c, \
MSR_PEBS_LD_LAT_THRESHOLD, \
0xffff, \
LDLAT)
#define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
union perf_capabilities {
struct {
u64 lbr_format:6;
u64 pebs_trap:1;
u64 pebs_arch_reg:1;
u64 pebs_format:4;
u64 smm_freeze:1;
/*
* PMU supports separate counter range for writing
* values > 32bit.
*/
u64 full_width_write:1;
};
u64 capabilities;
};
struct x86_pmu_quirk {
struct x86_pmu_quirk *next;
void (*func)(void);
};
union x86_pmu_config {
struct {
u64 event:8,
umask:8,
usr:1,
os:1,
edge:1,
pc:1,
interrupt:1,
__reserved1:1,
en:1,
inv:1,
cmask:8,
event2:4,
__reserved2:4,
go:1,
ho:1;
} bits;
u64 value;
};
#define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value
/*
* struct x86_pmu - generic x86 pmu
*/
struct x86_pmu {
/*
* Generic x86 PMC bits
*/
const char *name;
int version;
int (*handle_irq)(struct pt_regs *);
void (*disable_all)(void);
void (*enable_all)(int added);
void (*enable)(struct perf_event *);
void (*disable)(struct perf_event *);
int (*hw_config)(struct perf_event *event);
int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
unsigned eventsel;
unsigned perfctr;
int (*addr_offset)(int index, bool eventsel);
int (*rdpmc_index)(int index);
u64 (*event_map)(int);
int max_events;
int num_counters;
int num_counters_fixed;
int cntval_bits;
u64 cntval_mask;
union {
unsigned long events_maskl;
unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)];
};
int events_mask_len;
int apic;
u64 max_period;
struct event_constraint *
(*get_event_constraints)(struct cpu_hw_events *cpuc,
struct perf_event *event);
void (*put_event_constraints)(struct cpu_hw_events *cpuc,
struct perf_event *event);
struct event_constraint *event_constraints;
struct x86_pmu_quirk *quirks;
int perfctr_second_write;
bool late_ack;
/*
* sysfs attrs
*/
int attr_rdpmc_broken;
int attr_rdpmc;
struct attribute **format_attrs;
struct attribute **event_attrs;
ssize_t (*events_sysfs_show)(char *page, u64 config);
struct attribute **cpu_events;
/*
* CPU Hotplug hooks
*/
int (*cpu_prepare)(int cpu);
void (*cpu_starting)(int cpu);
void (*cpu_dying)(int cpu);
void (*cpu_dead)(int cpu);
void (*check_microcode)(void);
void (*flush_branch_stack)(void);
/*
* Intel Arch Perfmon v2+
*/
u64 intel_ctrl;
union perf_capabilities intel_cap;
/*
* Intel DebugStore bits
*/
unsigned int bts :1,
bts_active :1,
pebs :1,
pebs_active :1,
pebs_broken :1;
int pebs_record_size;
void (*drain_pebs)(struct pt_regs *regs);
struct event_constraint *pebs_constraints;
void (*pebs_aliases)(struct perf_event *event);
int max_pebs_events;
/*
* Intel LBR
*/
unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
int lbr_nr; /* hardware stack size */
u64 lbr_sel_mask; /* LBR_SELECT valid bits */
const int *lbr_sel_map; /* lbr_select mappings */
bool lbr_double_abort; /* duplicated lbr aborts */
/*
* Extra registers for events
*/
struct extra_reg *extra_regs;
unsigned int er_flags;
/*
* Intel host/guest support (KVM)
*/
struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr);
};
#define x86_add_quirk(func_) \
do { \
static struct x86_pmu_quirk __quirk __initdata = { \
.func = func_, \
}; \
__quirk.next = x86_pmu.quirks; \
x86_pmu.quirks = &__quirk; \
} while (0)
#define ERF_NO_HT_SHARING 1
#define ERF_HAS_RSP_1 2
#define EVENT_VAR(_id) event_attr_##_id
#define EVENT_PTR(_id) &event_attr_##_id.attr.attr
#define EVENT_ATTR(_name, _id) \
static struct perf_pmu_events_attr EVENT_VAR(_id) = { \
.attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
.id = PERF_COUNT_HW_##_id, \
.event_str = NULL, \
};
#define EVENT_ATTR_STR(_name, v, str) \
static struct perf_pmu_events_attr event_attr_##v = { \
.attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
.id = 0, \
.event_str = str, \
};
extern struct x86_pmu x86_pmu __read_mostly;
DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
int x86_perf_event_set_period(struct perf_event *event);
/*
* Generalized hw caching related hw_event table, filled
* in on a per model basis. A value of 0 means
* 'not supported', -1 means 'hw_event makes no sense on
* this CPU', any other value means the raw hw_event
* ID.
*/
#define C(x) PERF_COUNT_HW_CACHE_##x
extern u64 __read_mostly hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
extern u64 __read_mostly hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
u64 x86_perf_event_update(struct perf_event *event);
static inline unsigned int x86_pmu_config_addr(int index)
{
return x86_pmu.eventsel + (x86_pmu.addr_offset ?
x86_pmu.addr_offset(index, true) : index);
}
static inline unsigned int x86_pmu_event_addr(int index)
{
return x86_pmu.perfctr + (x86_pmu.addr_offset ?
x86_pmu.addr_offset(index, false) : index);
}
static inline int x86_pmu_rdpmc_index(int index)
{
return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index;
}
int x86_setup_perfctr(struct perf_event *event);
int x86_pmu_hw_config(struct perf_event *event);
void x86_pmu_disable_all(void);
static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
u64 enable_mask)
{
u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
if (hwc->extra_reg.reg)
wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask);
}
void x86_pmu_enable_all(int added);
int perf_assign_events(struct perf_event **events, int n,
int wmin, int wmax, int *assign);
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign);
void x86_pmu_stop(struct perf_event *event, int flags);
static inline void x86_pmu_disable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
wrmsrl(hwc->config_base, hwc->config);
}
void x86_pmu_enable_event(struct perf_event *event);
int x86_pmu_handle_irq(struct pt_regs *regs);
extern struct event_constraint emptyconstraint;
extern struct event_constraint unconstrained;
static inline bool kernel_ip(unsigned long ip)
{
#ifdef CONFIG_X86_32
return ip > PAGE_OFFSET;
#else
return (long)ip < 0;
#endif
}
/*
* Not all PMUs provide the right context information to place the reported IP
* into full context. Specifically segment registers are typically not
* supplied.
*
* Assuming the address is a linear address (it is for IBS), we fake the CS and
* vm86 mode using the known zero-based code segment and 'fix up' the registers
* to reflect this.
*
* Intel PEBS/LBR appear to typically provide the effective address, nothing
* much we can do about that but pray and treat it like a linear address.
*/
static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip)
{
regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS;
if (regs->flags & X86_VM_MASK)
regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK);
regs->ip = ip;
}
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event);
ssize_t intel_event_sysfs_show(char *page, u64 config);
#ifdef CONFIG_CPU_SUP_AMD
int amd_pmu_init(void);
#else /* CONFIG_CPU_SUP_AMD */
static inline int amd_pmu_init(void)
{
return 0;
}
#endif /* CONFIG_CPU_SUP_AMD */
#ifdef CONFIG_CPU_SUP_INTEL
int intel_pmu_save_and_restart(struct perf_event *event);
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event);
struct intel_shared_regs *allocate_shared_regs(int cpu);
int intel_pmu_init(void);
void init_debug_store_on_cpu(int cpu);
void fini_debug_store_on_cpu(int cpu);
void release_ds_buffers(void);
void reserve_ds_buffers(void);
extern struct event_constraint bts_constraint;
void intel_pmu_enable_bts(u64 config);
void intel_pmu_disable_bts(void);
int intel_pmu_drain_bts_buffer(void);
extern struct event_constraint intel_core2_pebs_event_constraints[];
extern struct event_constraint intel_atom_pebs_event_constraints[];
extern struct event_constraint intel_slm_pebs_event_constraints[];
extern struct event_constraint intel_nehalem_pebs_event_constraints[];
extern struct event_constraint intel_westmere_pebs_event_constraints[];
extern struct event_constraint intel_snb_pebs_event_constraints[];
extern struct event_constraint intel_ivb_pebs_event_constraints[];
extern struct event_constraint intel_hsw_pebs_event_constraints[];
struct event_constraint *intel_pebs_constraints(struct perf_event *event);
void intel_pmu_pebs_enable(struct perf_event *event);
void intel_pmu_pebs_disable(struct perf_event *event);
void intel_pmu_pebs_enable_all(void);
void intel_pmu_pebs_disable_all(void);
void intel_ds_init(void);
void intel_pmu_lbr_reset(void);
void intel_pmu_lbr_enable(struct perf_event *event);
void intel_pmu_lbr_disable(struct perf_event *event);
void intel_pmu_lbr_enable_all(void);
void intel_pmu_lbr_disable_all(void);
void intel_pmu_lbr_read(void);
void intel_pmu_lbr_init_core(void);
void intel_pmu_lbr_init_nhm(void);
void intel_pmu_lbr_init_atom(void);
void intel_pmu_lbr_init_snb(void);
int intel_pmu_setup_lbr_filter(struct perf_event *event);
int p4_pmu_init(void);
int p6_pmu_init(void);
int knc_pmu_init(void);
ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
char *page);
#else /* CONFIG_CPU_SUP_INTEL */
static inline void reserve_ds_buffers(void)
{
}
static inline void release_ds_buffers(void)
{
}
static inline int intel_pmu_init(void)
{
return 0;
}
static inline struct intel_shared_regs *allocate_shared_regs(int cpu)
{
return NULL;
}
#endif /* CONFIG_CPU_SUP_INTEL */