blob: 1c3e4ea76bd2578e47397d0ddbcfa96a8f705574 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* PCI EPF driver for MHI Endpoint devices
*
* Copyright (C) 2023 Linaro Ltd.
* Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
*/
#include <linux/dmaengine.h>
#include <linux/mhi_ep.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#define MHI_VERSION_1_0 0x01000000
#define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
/* Platform specific flags */
#define MHI_EPF_USE_DMA BIT(0)
struct pci_epf_mhi_dma_transfer {
struct pci_epf_mhi *epf_mhi;
struct mhi_ep_buf_info buf_info;
struct list_head node;
dma_addr_t paddr;
enum dma_data_direction dir;
size_t size;
};
struct pci_epf_mhi_ep_info {
const struct mhi_ep_cntrl_config *config;
struct pci_epf_header *epf_header;
enum pci_barno bar_num;
u32 epf_flags;
u32 msi_count;
u32 mru;
u32 flags;
};
#define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction) \
{ \
.num = ch_num, \
.name = ch_name, \
.dir = direction, \
}
#define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name) \
MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
#define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name) \
MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
static const struct mhi_ep_channel_config mhi_v1_channels[] = {
MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
};
static const struct mhi_ep_cntrl_config mhi_v1_config = {
.max_channels = 128,
.num_channels = ARRAY_SIZE(mhi_v1_channels),
.ch_cfg = mhi_v1_channels,
.mhi_version = MHI_VERSION_1_0,
};
static struct pci_epf_header sdx55_header = {
.vendorid = PCI_VENDOR_ID_QCOM,
.deviceid = 0x0306,
.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
.interrupt_pin = PCI_INTERRUPT_INTA,
};
static const struct pci_epf_mhi_ep_info sdx55_info = {
.config = &mhi_v1_config,
.epf_header = &sdx55_header,
.bar_num = BAR_0,
.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
.msi_count = 32,
.mru = 0x8000,
};
static struct pci_epf_header sm8450_header = {
.vendorid = PCI_VENDOR_ID_QCOM,
.deviceid = 0x0306,
.baseclass_code = PCI_CLASS_OTHERS,
.interrupt_pin = PCI_INTERRUPT_INTA,
};
static const struct pci_epf_mhi_ep_info sm8450_info = {
.config = &mhi_v1_config,
.epf_header = &sm8450_header,
.bar_num = BAR_0,
.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
.msi_count = 32,
.mru = 0x8000,
.flags = MHI_EPF_USE_DMA,
};
struct pci_epf_mhi {
const struct pci_epc_features *epc_features;
const struct pci_epf_mhi_ep_info *info;
struct mhi_ep_cntrl mhi_cntrl;
struct pci_epf *epf;
struct mutex lock;
void __iomem *mmio;
resource_size_t mmio_phys;
struct dma_chan *dma_chan_tx;
struct dma_chan *dma_chan_rx;
struct workqueue_struct *dma_wq;
struct work_struct dma_work;
struct list_head dma_list;
spinlock_t list_lock;
u32 mmio_size;
int irq;
};
static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
{
return addr & (epf_mhi->epc_features->align -1);
}
static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
phys_addr_t *paddr, void __iomem **vaddr,
size_t offset, size_t size)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct pci_epf *epf = epf_mhi->epf;
struct pci_epc *epc = epf->epc;
int ret;
*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
if (!*vaddr)
return -ENOMEM;
ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
pci_addr - offset, size + offset);
if (ret) {
pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
return ret;
}
*paddr = *paddr + offset;
*vaddr = *vaddr + offset;
return 0;
}
static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
phys_addr_t *paddr, void __iomem **vaddr,
size_t size)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
size_t offset = get_align_offset(epf_mhi, pci_addr);
return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
offset, size);
}
static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
u64 pci_addr, phys_addr_t paddr,
void __iomem *vaddr, size_t offset,
size_t size)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct pci_epf *epf = epf_mhi->epf;
struct pci_epc *epc = epf->epc;
pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
size + offset);
}
static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
phys_addr_t paddr, void __iomem *vaddr,
size_t size)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
size_t offset = get_align_offset(epf_mhi, pci_addr);
__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
size);
}
static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct pci_epf *epf = epf_mhi->epf;
struct pci_epc *epc = epf->epc;
/*
* MHI supplies 0 based MSI vectors but the API expects the vector
* number to start from 1, so we need to increment the vector by 1.
*/
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI,
vector + 1);
}
static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_buf_info *buf_info)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
void __iomem *tre_buf;
phys_addr_t tre_phys;
int ret;
mutex_lock(&epf_mhi->lock);
ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
&tre_buf, offset, buf_info->size);
if (ret) {
mutex_unlock(&epf_mhi->lock);
return ret;
}
memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);
__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
tre_buf, offset, buf_info->size);
mutex_unlock(&epf_mhi->lock);
if (buf_info->cb)
buf_info->cb(buf_info);
return 0;
}
static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_buf_info *buf_info)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
void __iomem *tre_buf;
phys_addr_t tre_phys;
int ret;
mutex_lock(&epf_mhi->lock);
ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
&tre_buf, offset, buf_info->size);
if (ret) {
mutex_unlock(&epf_mhi->lock);
return ret;
}
memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);
__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
tre_buf, offset, buf_info->size);
mutex_unlock(&epf_mhi->lock);
if (buf_info->cb)
buf_info->cb(buf_info);
return 0;
}
static void pci_epf_mhi_dma_callback(void *param)
{
complete(param);
}
static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_buf_info *buf_info)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct dma_chan *chan = epf_mhi->dma_chan_rx;
struct device *dev = &epf_mhi->epf->dev;
DECLARE_COMPLETION_ONSTACK(complete);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config = {};
dma_cookie_t cookie;
dma_addr_t dst_addr;
int ret;
if (buf_info->size < SZ_4K)
return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);
mutex_lock(&epf_mhi->lock);
config.direction = DMA_DEV_TO_MEM;
config.src_addr = buf_info->host_addr;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(dev, "Failed to configure DMA channel\n");
goto err_unlock;
}
dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
DMA_FROM_DEVICE);
ret = dma_mapping_error(dma_dev, dst_addr);
if (ret) {
dev_err(dev, "Failed to map remote memory\n");
goto err_unlock;
}
desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
DMA_DEV_TO_MEM,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "Failed to prepare DMA\n");
ret = -EIO;
goto err_unmap;
}
desc->callback = pci_epf_mhi_dma_callback;
desc->callback_param = &complete;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "Failed to do DMA submit\n");
goto err_unmap;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(dev, "DMA transfer timeout\n");
dmaengine_terminate_sync(chan);
ret = -ETIMEDOUT;
}
err_unmap:
dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
err_unlock:
mutex_unlock(&epf_mhi->lock);
return ret;
}
static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_buf_info *buf_info)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct dma_chan *chan = epf_mhi->dma_chan_tx;
struct device *dev = &epf_mhi->epf->dev;
DECLARE_COMPLETION_ONSTACK(complete);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config = {};
dma_cookie_t cookie;
dma_addr_t src_addr;
int ret;
if (buf_info->size < SZ_4K)
return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);
mutex_lock(&epf_mhi->lock);
config.direction = DMA_MEM_TO_DEV;
config.dst_addr = buf_info->host_addr;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(dev, "Failed to configure DMA channel\n");
goto err_unlock;
}
src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
DMA_TO_DEVICE);
ret = dma_mapping_error(dma_dev, src_addr);
if (ret) {
dev_err(dev, "Failed to map remote memory\n");
goto err_unlock;
}
desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
DMA_MEM_TO_DEV,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "Failed to prepare DMA\n");
ret = -EIO;
goto err_unmap;
}
desc->callback = pci_epf_mhi_dma_callback;
desc->callback_param = &complete;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "Failed to do DMA submit\n");
goto err_unmap;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(dev, "DMA transfer timeout\n");
dmaengine_terminate_sync(chan);
ret = -ETIMEDOUT;
}
err_unmap:
dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
err_unlock:
mutex_unlock(&epf_mhi->lock);
return ret;
}
static void pci_epf_mhi_dma_worker(struct work_struct *work)
{
struct pci_epf_mhi *epf_mhi = container_of(work, struct pci_epf_mhi, dma_work);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct pci_epf_mhi_dma_transfer *itr, *tmp;
struct mhi_ep_buf_info *buf_info;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&epf_mhi->list_lock, flags);
list_splice_tail_init(&epf_mhi->dma_list, &head);
spin_unlock_irqrestore(&epf_mhi->list_lock, flags);
list_for_each_entry_safe(itr, tmp, &head, node) {
list_del(&itr->node);
dma_unmap_single(dma_dev, itr->paddr, itr->size, itr->dir);
buf_info = &itr->buf_info;
buf_info->cb(buf_info);
kfree(itr);
}
}
static void pci_epf_mhi_dma_async_callback(void *param)
{
struct pci_epf_mhi_dma_transfer *transfer = param;
struct pci_epf_mhi *epf_mhi = transfer->epf_mhi;
spin_lock(&epf_mhi->list_lock);
list_add_tail(&transfer->node, &epf_mhi->dma_list);
spin_unlock(&epf_mhi->list_lock);
queue_work(epf_mhi->dma_wq, &epf_mhi->dma_work);
}
static int pci_epf_mhi_edma_read_async(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_buf_info *buf_info)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct pci_epf_mhi_dma_transfer *transfer = NULL;
struct dma_chan *chan = epf_mhi->dma_chan_rx;
struct device *dev = &epf_mhi->epf->dev;
DECLARE_COMPLETION_ONSTACK(complete);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config = {};
dma_cookie_t cookie;
dma_addr_t dst_addr;
int ret;
mutex_lock(&epf_mhi->lock);
config.direction = DMA_DEV_TO_MEM;
config.src_addr = buf_info->host_addr;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(dev, "Failed to configure DMA channel\n");
goto err_unlock;
}
dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
DMA_FROM_DEVICE);
ret = dma_mapping_error(dma_dev, dst_addr);
if (ret) {
dev_err(dev, "Failed to map remote memory\n");
goto err_unlock;
}
desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
DMA_DEV_TO_MEM,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "Failed to prepare DMA\n");
ret = -EIO;
goto err_unmap;
}
transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
if (!transfer) {
ret = -ENOMEM;
goto err_unmap;
}
transfer->epf_mhi = epf_mhi;
transfer->paddr = dst_addr;
transfer->size = buf_info->size;
transfer->dir = DMA_FROM_DEVICE;
memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
desc->callback = pci_epf_mhi_dma_async_callback;
desc->callback_param = transfer;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "Failed to do DMA submit\n");
goto err_free_transfer;
}
dma_async_issue_pending(chan);
goto err_unlock;
err_free_transfer:
kfree(transfer);
err_unmap:
dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
err_unlock:
mutex_unlock(&epf_mhi->lock);
return ret;
}
static int pci_epf_mhi_edma_write_async(struct mhi_ep_cntrl *mhi_cntrl,
struct mhi_ep_buf_info *buf_info)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct pci_epf_mhi_dma_transfer *transfer = NULL;
struct dma_chan *chan = epf_mhi->dma_chan_tx;
struct device *dev = &epf_mhi->epf->dev;
DECLARE_COMPLETION_ONSTACK(complete);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config = {};
dma_cookie_t cookie;
dma_addr_t src_addr;
int ret;
mutex_lock(&epf_mhi->lock);
config.direction = DMA_MEM_TO_DEV;
config.dst_addr = buf_info->host_addr;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(dev, "Failed to configure DMA channel\n");
goto err_unlock;
}
src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
DMA_TO_DEVICE);
ret = dma_mapping_error(dma_dev, src_addr);
if (ret) {
dev_err(dev, "Failed to map remote memory\n");
goto err_unlock;
}
desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
DMA_MEM_TO_DEV,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "Failed to prepare DMA\n");
ret = -EIO;
goto err_unmap;
}
transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
if (!transfer) {
ret = -ENOMEM;
goto err_unmap;
}
transfer->epf_mhi = epf_mhi;
transfer->paddr = src_addr;
transfer->size = buf_info->size;
transfer->dir = DMA_TO_DEVICE;
memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
desc->callback = pci_epf_mhi_dma_async_callback;
desc->callback_param = transfer;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "Failed to do DMA submit\n");
goto err_free_transfer;
}
dma_async_issue_pending(chan);
goto err_unlock;
err_free_transfer:
kfree(transfer);
err_unmap:
dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
err_unlock:
mutex_unlock(&epf_mhi->lock);
return ret;
}
struct epf_dma_filter {
struct device *dev;
u32 dma_mask;
};
static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
{
struct epf_dma_filter *filter = node;
struct dma_slave_caps caps;
memset(&caps, 0, sizeof(caps));
dma_get_slave_caps(chan, &caps);
return chan->device->dev == filter->dev && filter->dma_mask &
caps.directions;
}
static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
{
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct device *dev = &epf_mhi->epf->dev;
struct epf_dma_filter filter;
dma_cap_mask_t mask;
int ret;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
filter.dev = dma_dev;
filter.dma_mask = BIT(DMA_MEM_TO_DEV);
epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
&filter);
if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
dev_err(dev, "Failed to request tx channel\n");
return -ENODEV;
}
filter.dma_mask = BIT(DMA_DEV_TO_MEM);
epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
&filter);
if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
dev_err(dev, "Failed to request rx channel\n");
ret = -ENODEV;
goto err_release_tx;
}
epf_mhi->dma_wq = alloc_workqueue("pci_epf_mhi_dma_wq", 0, 0);
if (!epf_mhi->dma_wq) {
ret = -ENOMEM;
goto err_release_rx;
}
INIT_LIST_HEAD(&epf_mhi->dma_list);
INIT_WORK(&epf_mhi->dma_work, pci_epf_mhi_dma_worker);
spin_lock_init(&epf_mhi->list_lock);
return 0;
err_release_rx:
dma_release_channel(epf_mhi->dma_chan_rx);
epf_mhi->dma_chan_rx = NULL;
err_release_tx:
dma_release_channel(epf_mhi->dma_chan_tx);
epf_mhi->dma_chan_tx = NULL;
return ret;
}
static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
{
destroy_workqueue(epf_mhi->dma_wq);
dma_release_channel(epf_mhi->dma_chan_tx);
dma_release_channel(epf_mhi->dma_chan_rx);
epf_mhi->dma_chan_tx = NULL;
epf_mhi->dma_chan_rx = NULL;
}
static int pci_epf_mhi_core_init(struct pci_epf *epf)
{
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
struct pci_epc *epc = epf->epc;
struct device *dev = &epf->dev;
int ret;
epf_bar->phys_addr = epf_mhi->mmio_phys;
epf_bar->size = epf_mhi->mmio_size;
epf_bar->barno = info->bar_num;
epf_bar->flags = info->epf_flags;
ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
if (ret) {
dev_err(dev, "Failed to set BAR: %d\n", ret);
return ret;
}
ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
order_base_2(info->msi_count));
if (ret) {
dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
return ret;
}
ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
epf->header);
if (ret) {
dev_err(dev, "Failed to set Configuration header: %d\n", ret);
return ret;
}
epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
if (!epf_mhi->epc_features)
return -ENODATA;
return 0;
}
static int pci_epf_mhi_link_up(struct pci_epf *epf)
{
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
struct pci_epc *epc = epf->epc;
struct device *dev = &epf->dev;
int ret;
if (info->flags & MHI_EPF_USE_DMA) {
ret = pci_epf_mhi_dma_init(epf_mhi);
if (ret) {
dev_err(dev, "Failed to initialize DMA: %d\n", ret);
return ret;
}
}
mhi_cntrl->mmio = epf_mhi->mmio;
mhi_cntrl->irq = epf_mhi->irq;
mhi_cntrl->mru = info->mru;
/* Assign the struct dev of PCI EP as MHI controller device */
mhi_cntrl->cntrl_dev = epc->dev.parent;
mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
mhi_cntrl->read_sync = mhi_cntrl->read_async = pci_epf_mhi_iatu_read;
mhi_cntrl->write_sync = mhi_cntrl->write_async = pci_epf_mhi_iatu_write;
if (info->flags & MHI_EPF_USE_DMA) {
mhi_cntrl->read_sync = pci_epf_mhi_edma_read;
mhi_cntrl->write_sync = pci_epf_mhi_edma_write;
mhi_cntrl->read_async = pci_epf_mhi_edma_read_async;
mhi_cntrl->write_async = pci_epf_mhi_edma_write_async;
}
/* Register the MHI EP controller */
ret = mhi_ep_register_controller(mhi_cntrl, info->config);
if (ret) {
dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
return ret;
}
return 0;
}
static int pci_epf_mhi_link_down(struct pci_epf *epf)
{
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
if (mhi_cntrl->mhi_dev) {
mhi_ep_power_down(mhi_cntrl);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
mhi_ep_unregister_controller(mhi_cntrl);
}
return 0;
}
static int pci_epf_mhi_bme(struct pci_epf *epf)
{
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
struct device *dev = &epf->dev;
int ret;
/*
* Power up the MHI EP stack if link is up and stack is in power down
* state.
*/
if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
ret = mhi_ep_power_up(mhi_cntrl);
if (ret) {
dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
mhi_ep_unregister_controller(mhi_cntrl);
}
}
return 0;
}
static int pci_epf_mhi_bind(struct pci_epf *epf)
{
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
struct pci_epc *epc = epf->epc;
struct platform_device *pdev = to_platform_device(epc->dev.parent);
struct resource *res;
int ret;
/* Get MMIO base address from Endpoint controller */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
epf_mhi->mmio_phys = res->start;
epf_mhi->mmio_size = resource_size(res);
epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
if (!epf_mhi->mmio)
return -ENOMEM;
ret = platform_get_irq_byname(pdev, "doorbell");
if (ret < 0) {
iounmap(epf_mhi->mmio);
return ret;
}
epf_mhi->irq = ret;
return 0;
}
static void pci_epf_mhi_unbind(struct pci_epf *epf)
{
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
struct pci_epc *epc = epf->epc;
/*
* Forcefully power down the MHI EP stack. Only way to bring the MHI EP
* stack back to working state after successive bind is by getting BME
* from host.
*/
if (mhi_cntrl->mhi_dev) {
mhi_ep_power_down(mhi_cntrl);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
mhi_ep_unregister_controller(mhi_cntrl);
}
iounmap(epf_mhi->mmio);
pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
}
static const struct pci_epc_event_ops pci_epf_mhi_event_ops = {
.core_init = pci_epf_mhi_core_init,
.link_up = pci_epf_mhi_link_up,
.link_down = pci_epf_mhi_link_down,
.bme = pci_epf_mhi_bme,
};
static int pci_epf_mhi_probe(struct pci_epf *epf,
const struct pci_epf_device_id *id)
{
struct pci_epf_mhi_ep_info *info =
(struct pci_epf_mhi_ep_info *)id->driver_data;
struct pci_epf_mhi *epf_mhi;
struct device *dev = &epf->dev;
epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
if (!epf_mhi)
return -ENOMEM;
epf->header = info->epf_header;
epf_mhi->info = info;
epf_mhi->epf = epf;
epf->event_ops = &pci_epf_mhi_event_ops;
mutex_init(&epf_mhi->lock);
epf_set_drvdata(epf, epf_mhi);
return 0;
}
static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
{ .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
{ .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
{},
};
static const struct pci_epf_ops pci_epf_mhi_ops = {
.unbind = pci_epf_mhi_unbind,
.bind = pci_epf_mhi_bind,
};
static struct pci_epf_driver pci_epf_mhi_driver = {
.driver.name = "pci_epf_mhi",
.probe = pci_epf_mhi_probe,
.id_table = pci_epf_mhi_ids,
.ops = &pci_epf_mhi_ops,
.owner = THIS_MODULE,
};
static int __init pci_epf_mhi_init(void)
{
return pci_epf_register_driver(&pci_epf_mhi_driver);
}
module_init(pci_epf_mhi_init);
static void __exit pci_epf_mhi_exit(void)
{
pci_epf_unregister_driver(&pci_epf_mhi_driver);
}
module_exit(pci_epf_mhi_exit);
MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_LICENSE("GPL");