| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI EPF driver for MHI Endpoint devices |
| * |
| * Copyright (C) 2023 Linaro Ltd. |
| * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> |
| */ |
| |
| #include <linux/dmaengine.h> |
| #include <linux/mhi_ep.h> |
| #include <linux/module.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/pci-epc.h> |
| #include <linux/pci-epf.h> |
| |
| #define MHI_VERSION_1_0 0x01000000 |
| |
| #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl) |
| |
| /* Platform specific flags */ |
| #define MHI_EPF_USE_DMA BIT(0) |
| |
| struct pci_epf_mhi_dma_transfer { |
| struct pci_epf_mhi *epf_mhi; |
| struct mhi_ep_buf_info buf_info; |
| struct list_head node; |
| dma_addr_t paddr; |
| enum dma_data_direction dir; |
| size_t size; |
| }; |
| |
| struct pci_epf_mhi_ep_info { |
| const struct mhi_ep_cntrl_config *config; |
| struct pci_epf_header *epf_header; |
| enum pci_barno bar_num; |
| u32 epf_flags; |
| u32 msi_count; |
| u32 mru; |
| u32 flags; |
| }; |
| |
| #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction) \ |
| { \ |
| .num = ch_num, \ |
| .name = ch_name, \ |
| .dir = direction, \ |
| } |
| |
| #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name) \ |
| MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE) |
| |
| #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name) \ |
| MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE) |
| |
| static const struct mhi_ep_channel_config mhi_v1_channels[] = { |
| MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"), |
| MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"), |
| MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"), |
| MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"), |
| MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"), |
| MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"), |
| MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"), |
| MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"), |
| MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"), |
| MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"), |
| MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"), |
| MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"), |
| MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"), |
| MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"), |
| MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"), |
| MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"), |
| MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"), |
| MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"), |
| MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"), |
| MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"), |
| MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"), |
| MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"), |
| MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"), |
| MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"), |
| MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"), |
| MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"), |
| }; |
| |
| static const struct mhi_ep_cntrl_config mhi_v1_config = { |
| .max_channels = 128, |
| .num_channels = ARRAY_SIZE(mhi_v1_channels), |
| .ch_cfg = mhi_v1_channels, |
| .mhi_version = MHI_VERSION_1_0, |
| }; |
| |
| static struct pci_epf_header sdx55_header = { |
| .vendorid = PCI_VENDOR_ID_QCOM, |
| .deviceid = 0x0306, |
| .baseclass_code = PCI_BASE_CLASS_COMMUNICATION, |
| .subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff, |
| .interrupt_pin = PCI_INTERRUPT_INTA, |
| }; |
| |
| static const struct pci_epf_mhi_ep_info sdx55_info = { |
| .config = &mhi_v1_config, |
| .epf_header = &sdx55_header, |
| .bar_num = BAR_0, |
| .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32, |
| .msi_count = 32, |
| .mru = 0x8000, |
| }; |
| |
| static struct pci_epf_header sm8450_header = { |
| .vendorid = PCI_VENDOR_ID_QCOM, |
| .deviceid = 0x0306, |
| .baseclass_code = PCI_CLASS_OTHERS, |
| .interrupt_pin = PCI_INTERRUPT_INTA, |
| }; |
| |
| static const struct pci_epf_mhi_ep_info sm8450_info = { |
| .config = &mhi_v1_config, |
| .epf_header = &sm8450_header, |
| .bar_num = BAR_0, |
| .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32, |
| .msi_count = 32, |
| .mru = 0x8000, |
| .flags = MHI_EPF_USE_DMA, |
| }; |
| |
| struct pci_epf_mhi { |
| const struct pci_epc_features *epc_features; |
| const struct pci_epf_mhi_ep_info *info; |
| struct mhi_ep_cntrl mhi_cntrl; |
| struct pci_epf *epf; |
| struct mutex lock; |
| void __iomem *mmio; |
| resource_size_t mmio_phys; |
| struct dma_chan *dma_chan_tx; |
| struct dma_chan *dma_chan_rx; |
| struct workqueue_struct *dma_wq; |
| struct work_struct dma_work; |
| struct list_head dma_list; |
| spinlock_t list_lock; |
| u32 mmio_size; |
| int irq; |
| }; |
| |
| static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr) |
| { |
| return addr & (epf_mhi->epc_features->align -1); |
| } |
| |
| static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, |
| phys_addr_t *paddr, void __iomem **vaddr, |
| size_t offset, size_t size) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct pci_epf *epf = epf_mhi->epf; |
| struct pci_epc *epc = epf->epc; |
| int ret; |
| |
| *vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset); |
| if (!*vaddr) |
| return -ENOMEM; |
| |
| ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr, |
| pci_addr - offset, size + offset); |
| if (ret) { |
| pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset); |
| return ret; |
| } |
| |
| *paddr = *paddr + offset; |
| *vaddr = *vaddr + offset; |
| |
| return 0; |
| } |
| |
| static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, |
| phys_addr_t *paddr, void __iomem **vaddr, |
| size_t size) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| size_t offset = get_align_offset(epf_mhi, pci_addr); |
| |
| return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr, |
| offset, size); |
| } |
| |
| static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, |
| u64 pci_addr, phys_addr_t paddr, |
| void __iomem *vaddr, size_t offset, |
| size_t size) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct pci_epf *epf = epf_mhi->epf; |
| struct pci_epc *epc = epf->epc; |
| |
| pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset); |
| pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset, |
| size + offset); |
| } |
| |
| static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr, |
| phys_addr_t paddr, void __iomem *vaddr, |
| size_t size) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| size_t offset = get_align_offset(epf_mhi, pci_addr); |
| |
| __pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset, |
| size); |
| } |
| |
| static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct pci_epf *epf = epf_mhi->epf; |
| struct pci_epc *epc = epf->epc; |
| |
| /* |
| * MHI supplies 0 based MSI vectors but the API expects the vector |
| * number to start from 1, so we need to increment the vector by 1. |
| */ |
| pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI, |
| vector + 1); |
| } |
| |
| static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_buf_info *buf_info) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| size_t offset = get_align_offset(epf_mhi, buf_info->host_addr); |
| void __iomem *tre_buf; |
| phys_addr_t tre_phys; |
| int ret; |
| |
| mutex_lock(&epf_mhi->lock); |
| |
| ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys, |
| &tre_buf, offset, buf_info->size); |
| if (ret) { |
| mutex_unlock(&epf_mhi->lock); |
| return ret; |
| } |
| |
| memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size); |
| |
| __pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys, |
| tre_buf, offset, buf_info->size); |
| |
| mutex_unlock(&epf_mhi->lock); |
| |
| if (buf_info->cb) |
| buf_info->cb(buf_info); |
| |
| return 0; |
| } |
| |
| static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_buf_info *buf_info) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| size_t offset = get_align_offset(epf_mhi, buf_info->host_addr); |
| void __iomem *tre_buf; |
| phys_addr_t tre_phys; |
| int ret; |
| |
| mutex_lock(&epf_mhi->lock); |
| |
| ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys, |
| &tre_buf, offset, buf_info->size); |
| if (ret) { |
| mutex_unlock(&epf_mhi->lock); |
| return ret; |
| } |
| |
| memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size); |
| |
| __pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys, |
| tre_buf, offset, buf_info->size); |
| |
| mutex_unlock(&epf_mhi->lock); |
| |
| if (buf_info->cb) |
| buf_info->cb(buf_info); |
| |
| return 0; |
| } |
| |
| static void pci_epf_mhi_dma_callback(void *param) |
| { |
| complete(param); |
| } |
| |
| static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_buf_info *buf_info) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct device *dma_dev = epf_mhi->epf->epc->dev.parent; |
| struct dma_chan *chan = epf_mhi->dma_chan_rx; |
| struct device *dev = &epf_mhi->epf->dev; |
| DECLARE_COMPLETION_ONSTACK(complete); |
| struct dma_async_tx_descriptor *desc; |
| struct dma_slave_config config = {}; |
| dma_cookie_t cookie; |
| dma_addr_t dst_addr; |
| int ret; |
| |
| if (buf_info->size < SZ_4K) |
| return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info); |
| |
| mutex_lock(&epf_mhi->lock); |
| |
| config.direction = DMA_DEV_TO_MEM; |
| config.src_addr = buf_info->host_addr; |
| |
| ret = dmaengine_slave_config(chan, &config); |
| if (ret) { |
| dev_err(dev, "Failed to configure DMA channel\n"); |
| goto err_unlock; |
| } |
| |
| dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size, |
| DMA_FROM_DEVICE); |
| ret = dma_mapping_error(dma_dev, dst_addr); |
| if (ret) { |
| dev_err(dev, "Failed to map remote memory\n"); |
| goto err_unlock; |
| } |
| |
| desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size, |
| DMA_DEV_TO_MEM, |
| DMA_CTRL_ACK | DMA_PREP_INTERRUPT); |
| if (!desc) { |
| dev_err(dev, "Failed to prepare DMA\n"); |
| ret = -EIO; |
| goto err_unmap; |
| } |
| |
| desc->callback = pci_epf_mhi_dma_callback; |
| desc->callback_param = &complete; |
| |
| cookie = dmaengine_submit(desc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dev_err(dev, "Failed to do DMA submit\n"); |
| goto err_unmap; |
| } |
| |
| dma_async_issue_pending(chan); |
| ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000)); |
| if (!ret) { |
| dev_err(dev, "DMA transfer timeout\n"); |
| dmaengine_terminate_sync(chan); |
| ret = -ETIMEDOUT; |
| } |
| |
| err_unmap: |
| dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE); |
| err_unlock: |
| mutex_unlock(&epf_mhi->lock); |
| |
| return ret; |
| } |
| |
| static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_buf_info *buf_info) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct device *dma_dev = epf_mhi->epf->epc->dev.parent; |
| struct dma_chan *chan = epf_mhi->dma_chan_tx; |
| struct device *dev = &epf_mhi->epf->dev; |
| DECLARE_COMPLETION_ONSTACK(complete); |
| struct dma_async_tx_descriptor *desc; |
| struct dma_slave_config config = {}; |
| dma_cookie_t cookie; |
| dma_addr_t src_addr; |
| int ret; |
| |
| if (buf_info->size < SZ_4K) |
| return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info); |
| |
| mutex_lock(&epf_mhi->lock); |
| |
| config.direction = DMA_MEM_TO_DEV; |
| config.dst_addr = buf_info->host_addr; |
| |
| ret = dmaengine_slave_config(chan, &config); |
| if (ret) { |
| dev_err(dev, "Failed to configure DMA channel\n"); |
| goto err_unlock; |
| } |
| |
| src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size, |
| DMA_TO_DEVICE); |
| ret = dma_mapping_error(dma_dev, src_addr); |
| if (ret) { |
| dev_err(dev, "Failed to map remote memory\n"); |
| goto err_unlock; |
| } |
| |
| desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size, |
| DMA_MEM_TO_DEV, |
| DMA_CTRL_ACK | DMA_PREP_INTERRUPT); |
| if (!desc) { |
| dev_err(dev, "Failed to prepare DMA\n"); |
| ret = -EIO; |
| goto err_unmap; |
| } |
| |
| desc->callback = pci_epf_mhi_dma_callback; |
| desc->callback_param = &complete; |
| |
| cookie = dmaengine_submit(desc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dev_err(dev, "Failed to do DMA submit\n"); |
| goto err_unmap; |
| } |
| |
| dma_async_issue_pending(chan); |
| ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000)); |
| if (!ret) { |
| dev_err(dev, "DMA transfer timeout\n"); |
| dmaengine_terminate_sync(chan); |
| ret = -ETIMEDOUT; |
| } |
| |
| err_unmap: |
| dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE); |
| err_unlock: |
| mutex_unlock(&epf_mhi->lock); |
| |
| return ret; |
| } |
| |
| static void pci_epf_mhi_dma_worker(struct work_struct *work) |
| { |
| struct pci_epf_mhi *epf_mhi = container_of(work, struct pci_epf_mhi, dma_work); |
| struct device *dma_dev = epf_mhi->epf->epc->dev.parent; |
| struct pci_epf_mhi_dma_transfer *itr, *tmp; |
| struct mhi_ep_buf_info *buf_info; |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&epf_mhi->list_lock, flags); |
| list_splice_tail_init(&epf_mhi->dma_list, &head); |
| spin_unlock_irqrestore(&epf_mhi->list_lock, flags); |
| |
| list_for_each_entry_safe(itr, tmp, &head, node) { |
| list_del(&itr->node); |
| dma_unmap_single(dma_dev, itr->paddr, itr->size, itr->dir); |
| buf_info = &itr->buf_info; |
| buf_info->cb(buf_info); |
| kfree(itr); |
| } |
| } |
| |
| static void pci_epf_mhi_dma_async_callback(void *param) |
| { |
| struct pci_epf_mhi_dma_transfer *transfer = param; |
| struct pci_epf_mhi *epf_mhi = transfer->epf_mhi; |
| |
| spin_lock(&epf_mhi->list_lock); |
| list_add_tail(&transfer->node, &epf_mhi->dma_list); |
| spin_unlock(&epf_mhi->list_lock); |
| |
| queue_work(epf_mhi->dma_wq, &epf_mhi->dma_work); |
| } |
| |
| static int pci_epf_mhi_edma_read_async(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_buf_info *buf_info) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct device *dma_dev = epf_mhi->epf->epc->dev.parent; |
| struct pci_epf_mhi_dma_transfer *transfer = NULL; |
| struct dma_chan *chan = epf_mhi->dma_chan_rx; |
| struct device *dev = &epf_mhi->epf->dev; |
| DECLARE_COMPLETION_ONSTACK(complete); |
| struct dma_async_tx_descriptor *desc; |
| struct dma_slave_config config = {}; |
| dma_cookie_t cookie; |
| dma_addr_t dst_addr; |
| int ret; |
| |
| mutex_lock(&epf_mhi->lock); |
| |
| config.direction = DMA_DEV_TO_MEM; |
| config.src_addr = buf_info->host_addr; |
| |
| ret = dmaengine_slave_config(chan, &config); |
| if (ret) { |
| dev_err(dev, "Failed to configure DMA channel\n"); |
| goto err_unlock; |
| } |
| |
| dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size, |
| DMA_FROM_DEVICE); |
| ret = dma_mapping_error(dma_dev, dst_addr); |
| if (ret) { |
| dev_err(dev, "Failed to map remote memory\n"); |
| goto err_unlock; |
| } |
| |
| desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size, |
| DMA_DEV_TO_MEM, |
| DMA_CTRL_ACK | DMA_PREP_INTERRUPT); |
| if (!desc) { |
| dev_err(dev, "Failed to prepare DMA\n"); |
| ret = -EIO; |
| goto err_unmap; |
| } |
| |
| transfer = kzalloc(sizeof(*transfer), GFP_KERNEL); |
| if (!transfer) { |
| ret = -ENOMEM; |
| goto err_unmap; |
| } |
| |
| transfer->epf_mhi = epf_mhi; |
| transfer->paddr = dst_addr; |
| transfer->size = buf_info->size; |
| transfer->dir = DMA_FROM_DEVICE; |
| memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info)); |
| |
| desc->callback = pci_epf_mhi_dma_async_callback; |
| desc->callback_param = transfer; |
| |
| cookie = dmaengine_submit(desc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dev_err(dev, "Failed to do DMA submit\n"); |
| goto err_free_transfer; |
| } |
| |
| dma_async_issue_pending(chan); |
| |
| goto err_unlock; |
| |
| err_free_transfer: |
| kfree(transfer); |
| err_unmap: |
| dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE); |
| err_unlock: |
| mutex_unlock(&epf_mhi->lock); |
| |
| return ret; |
| } |
| |
| static int pci_epf_mhi_edma_write_async(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_buf_info *buf_info) |
| { |
| struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); |
| struct device *dma_dev = epf_mhi->epf->epc->dev.parent; |
| struct pci_epf_mhi_dma_transfer *transfer = NULL; |
| struct dma_chan *chan = epf_mhi->dma_chan_tx; |
| struct device *dev = &epf_mhi->epf->dev; |
| DECLARE_COMPLETION_ONSTACK(complete); |
| struct dma_async_tx_descriptor *desc; |
| struct dma_slave_config config = {}; |
| dma_cookie_t cookie; |
| dma_addr_t src_addr; |
| int ret; |
| |
| mutex_lock(&epf_mhi->lock); |
| |
| config.direction = DMA_MEM_TO_DEV; |
| config.dst_addr = buf_info->host_addr; |
| |
| ret = dmaengine_slave_config(chan, &config); |
| if (ret) { |
| dev_err(dev, "Failed to configure DMA channel\n"); |
| goto err_unlock; |
| } |
| |
| src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size, |
| DMA_TO_DEVICE); |
| ret = dma_mapping_error(dma_dev, src_addr); |
| if (ret) { |
| dev_err(dev, "Failed to map remote memory\n"); |
| goto err_unlock; |
| } |
| |
| desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size, |
| DMA_MEM_TO_DEV, |
| DMA_CTRL_ACK | DMA_PREP_INTERRUPT); |
| if (!desc) { |
| dev_err(dev, "Failed to prepare DMA\n"); |
| ret = -EIO; |
| goto err_unmap; |
| } |
| |
| transfer = kzalloc(sizeof(*transfer), GFP_KERNEL); |
| if (!transfer) { |
| ret = -ENOMEM; |
| goto err_unmap; |
| } |
| |
| transfer->epf_mhi = epf_mhi; |
| transfer->paddr = src_addr; |
| transfer->size = buf_info->size; |
| transfer->dir = DMA_TO_DEVICE; |
| memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info)); |
| |
| desc->callback = pci_epf_mhi_dma_async_callback; |
| desc->callback_param = transfer; |
| |
| cookie = dmaengine_submit(desc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dev_err(dev, "Failed to do DMA submit\n"); |
| goto err_free_transfer; |
| } |
| |
| dma_async_issue_pending(chan); |
| |
| goto err_unlock; |
| |
| err_free_transfer: |
| kfree(transfer); |
| err_unmap: |
| dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE); |
| err_unlock: |
| mutex_unlock(&epf_mhi->lock); |
| |
| return ret; |
| } |
| |
| struct epf_dma_filter { |
| struct device *dev; |
| u32 dma_mask; |
| }; |
| |
| static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node) |
| { |
| struct epf_dma_filter *filter = node; |
| struct dma_slave_caps caps; |
| |
| memset(&caps, 0, sizeof(caps)); |
| dma_get_slave_caps(chan, &caps); |
| |
| return chan->device->dev == filter->dev && filter->dma_mask & |
| caps.directions; |
| } |
| |
| static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi) |
| { |
| struct device *dma_dev = epf_mhi->epf->epc->dev.parent; |
| struct device *dev = &epf_mhi->epf->dev; |
| struct epf_dma_filter filter; |
| dma_cap_mask_t mask; |
| int ret; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| filter.dev = dma_dev; |
| filter.dma_mask = BIT(DMA_MEM_TO_DEV); |
| epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter, |
| &filter); |
| if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) { |
| dev_err(dev, "Failed to request tx channel\n"); |
| return -ENODEV; |
| } |
| |
| filter.dma_mask = BIT(DMA_DEV_TO_MEM); |
| epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter, |
| &filter); |
| if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) { |
| dev_err(dev, "Failed to request rx channel\n"); |
| ret = -ENODEV; |
| goto err_release_tx; |
| } |
| |
| epf_mhi->dma_wq = alloc_workqueue("pci_epf_mhi_dma_wq", 0, 0); |
| if (!epf_mhi->dma_wq) { |
| ret = -ENOMEM; |
| goto err_release_rx; |
| } |
| |
| INIT_LIST_HEAD(&epf_mhi->dma_list); |
| INIT_WORK(&epf_mhi->dma_work, pci_epf_mhi_dma_worker); |
| spin_lock_init(&epf_mhi->list_lock); |
| |
| return 0; |
| |
| err_release_rx: |
| dma_release_channel(epf_mhi->dma_chan_rx); |
| epf_mhi->dma_chan_rx = NULL; |
| err_release_tx: |
| dma_release_channel(epf_mhi->dma_chan_tx); |
| epf_mhi->dma_chan_tx = NULL; |
| |
| return ret; |
| } |
| |
| static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi) |
| { |
| destroy_workqueue(epf_mhi->dma_wq); |
| dma_release_channel(epf_mhi->dma_chan_tx); |
| dma_release_channel(epf_mhi->dma_chan_rx); |
| epf_mhi->dma_chan_tx = NULL; |
| epf_mhi->dma_chan_rx = NULL; |
| } |
| |
| static int pci_epf_mhi_core_init(struct pci_epf *epf) |
| { |
| struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); |
| const struct pci_epf_mhi_ep_info *info = epf_mhi->info; |
| struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num]; |
| struct pci_epc *epc = epf->epc; |
| struct device *dev = &epf->dev; |
| int ret; |
| |
| epf_bar->phys_addr = epf_mhi->mmio_phys; |
| epf_bar->size = epf_mhi->mmio_size; |
| epf_bar->barno = info->bar_num; |
| epf_bar->flags = info->epf_flags; |
| ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar); |
| if (ret) { |
| dev_err(dev, "Failed to set BAR: %d\n", ret); |
| return ret; |
| } |
| |
| ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no, |
| order_base_2(info->msi_count)); |
| if (ret) { |
| dev_err(dev, "Failed to set MSI configuration: %d\n", ret); |
| return ret; |
| } |
| |
| ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, |
| epf->header); |
| if (ret) { |
| dev_err(dev, "Failed to set Configuration header: %d\n", ret); |
| return ret; |
| } |
| |
| epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); |
| if (!epf_mhi->epc_features) |
| return -ENODATA; |
| |
| return 0; |
| } |
| |
| static int pci_epf_mhi_link_up(struct pci_epf *epf) |
| { |
| struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); |
| const struct pci_epf_mhi_ep_info *info = epf_mhi->info; |
| struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; |
| struct pci_epc *epc = epf->epc; |
| struct device *dev = &epf->dev; |
| int ret; |
| |
| if (info->flags & MHI_EPF_USE_DMA) { |
| ret = pci_epf_mhi_dma_init(epf_mhi); |
| if (ret) { |
| dev_err(dev, "Failed to initialize DMA: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| mhi_cntrl->mmio = epf_mhi->mmio; |
| mhi_cntrl->irq = epf_mhi->irq; |
| mhi_cntrl->mru = info->mru; |
| |
| /* Assign the struct dev of PCI EP as MHI controller device */ |
| mhi_cntrl->cntrl_dev = epc->dev.parent; |
| mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq; |
| mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map; |
| mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free; |
| mhi_cntrl->read_sync = mhi_cntrl->read_async = pci_epf_mhi_iatu_read; |
| mhi_cntrl->write_sync = mhi_cntrl->write_async = pci_epf_mhi_iatu_write; |
| if (info->flags & MHI_EPF_USE_DMA) { |
| mhi_cntrl->read_sync = pci_epf_mhi_edma_read; |
| mhi_cntrl->write_sync = pci_epf_mhi_edma_write; |
| mhi_cntrl->read_async = pci_epf_mhi_edma_read_async; |
| mhi_cntrl->write_async = pci_epf_mhi_edma_write_async; |
| } |
| |
| /* Register the MHI EP controller */ |
| ret = mhi_ep_register_controller(mhi_cntrl, info->config); |
| if (ret) { |
| dev_err(dev, "Failed to register MHI EP controller: %d\n", ret); |
| if (info->flags & MHI_EPF_USE_DMA) |
| pci_epf_mhi_dma_deinit(epf_mhi); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int pci_epf_mhi_link_down(struct pci_epf *epf) |
| { |
| struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); |
| const struct pci_epf_mhi_ep_info *info = epf_mhi->info; |
| struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; |
| |
| if (mhi_cntrl->mhi_dev) { |
| mhi_ep_power_down(mhi_cntrl); |
| if (info->flags & MHI_EPF_USE_DMA) |
| pci_epf_mhi_dma_deinit(epf_mhi); |
| mhi_ep_unregister_controller(mhi_cntrl); |
| } |
| |
| return 0; |
| } |
| |
| static int pci_epf_mhi_bme(struct pci_epf *epf) |
| { |
| struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); |
| const struct pci_epf_mhi_ep_info *info = epf_mhi->info; |
| struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; |
| struct device *dev = &epf->dev; |
| int ret; |
| |
| /* |
| * Power up the MHI EP stack if link is up and stack is in power down |
| * state. |
| */ |
| if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) { |
| ret = mhi_ep_power_up(mhi_cntrl); |
| if (ret) { |
| dev_err(dev, "Failed to power up MHI EP: %d\n", ret); |
| if (info->flags & MHI_EPF_USE_DMA) |
| pci_epf_mhi_dma_deinit(epf_mhi); |
| mhi_ep_unregister_controller(mhi_cntrl); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pci_epf_mhi_bind(struct pci_epf *epf) |
| { |
| struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); |
| struct pci_epc *epc = epf->epc; |
| struct platform_device *pdev = to_platform_device(epc->dev.parent); |
| struct resource *res; |
| int ret; |
| |
| /* Get MMIO base address from Endpoint controller */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio"); |
| epf_mhi->mmio_phys = res->start; |
| epf_mhi->mmio_size = resource_size(res); |
| |
| epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size); |
| if (!epf_mhi->mmio) |
| return -ENOMEM; |
| |
| ret = platform_get_irq_byname(pdev, "doorbell"); |
| if (ret < 0) { |
| iounmap(epf_mhi->mmio); |
| return ret; |
| } |
| |
| epf_mhi->irq = ret; |
| |
| return 0; |
| } |
| |
| static void pci_epf_mhi_unbind(struct pci_epf *epf) |
| { |
| struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); |
| const struct pci_epf_mhi_ep_info *info = epf_mhi->info; |
| struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num]; |
| struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; |
| struct pci_epc *epc = epf->epc; |
| |
| /* |
| * Forcefully power down the MHI EP stack. Only way to bring the MHI EP |
| * stack back to working state after successive bind is by getting BME |
| * from host. |
| */ |
| if (mhi_cntrl->mhi_dev) { |
| mhi_ep_power_down(mhi_cntrl); |
| if (info->flags & MHI_EPF_USE_DMA) |
| pci_epf_mhi_dma_deinit(epf_mhi); |
| mhi_ep_unregister_controller(mhi_cntrl); |
| } |
| |
| iounmap(epf_mhi->mmio); |
| pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar); |
| } |
| |
| static const struct pci_epc_event_ops pci_epf_mhi_event_ops = { |
| .core_init = pci_epf_mhi_core_init, |
| .link_up = pci_epf_mhi_link_up, |
| .link_down = pci_epf_mhi_link_down, |
| .bme = pci_epf_mhi_bme, |
| }; |
| |
| static int pci_epf_mhi_probe(struct pci_epf *epf, |
| const struct pci_epf_device_id *id) |
| { |
| struct pci_epf_mhi_ep_info *info = |
| (struct pci_epf_mhi_ep_info *)id->driver_data; |
| struct pci_epf_mhi *epf_mhi; |
| struct device *dev = &epf->dev; |
| |
| epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL); |
| if (!epf_mhi) |
| return -ENOMEM; |
| |
| epf->header = info->epf_header; |
| epf_mhi->info = info; |
| epf_mhi->epf = epf; |
| |
| epf->event_ops = &pci_epf_mhi_event_ops; |
| |
| mutex_init(&epf_mhi->lock); |
| |
| epf_set_drvdata(epf, epf_mhi); |
| |
| return 0; |
| } |
| |
| static const struct pci_epf_device_id pci_epf_mhi_ids[] = { |
| { .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info }, |
| { .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info }, |
| {}, |
| }; |
| |
| static const struct pci_epf_ops pci_epf_mhi_ops = { |
| .unbind = pci_epf_mhi_unbind, |
| .bind = pci_epf_mhi_bind, |
| }; |
| |
| static struct pci_epf_driver pci_epf_mhi_driver = { |
| .driver.name = "pci_epf_mhi", |
| .probe = pci_epf_mhi_probe, |
| .id_table = pci_epf_mhi_ids, |
| .ops = &pci_epf_mhi_ops, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init pci_epf_mhi_init(void) |
| { |
| return pci_epf_register_driver(&pci_epf_mhi_driver); |
| } |
| module_init(pci_epf_mhi_init); |
| |
| static void __exit pci_epf_mhi_exit(void) |
| { |
| pci_epf_unregister_driver(&pci_epf_mhi_driver); |
| } |
| module_exit(pci_epf_mhi_exit); |
| |
| MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices"); |
| MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); |
| MODULE_LICENSE("GPL"); |