| /* Copyright (c) 2018, Mellanox Technologies All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 |  | 
 | #include <net/tls.h> | 
 | #include <crypto/aead.h> | 
 | #include <crypto/scatterwalk.h> | 
 | #include <net/ip6_checksum.h> | 
 |  | 
 | static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk) | 
 | { | 
 | 	struct scatterlist *src = walk->sg; | 
 | 	int diff = walk->offset - src->offset; | 
 |  | 
 | 	sg_set_page(sg, sg_page(src), | 
 | 		    src->length - diff, walk->offset); | 
 |  | 
 | 	scatterwalk_crypto_chain(sg, sg_next(src), 2); | 
 | } | 
 |  | 
 | static int tls_enc_record(struct aead_request *aead_req, | 
 | 			  struct crypto_aead *aead, char *aad, | 
 | 			  char *iv, __be64 rcd_sn, | 
 | 			  struct scatter_walk *in, | 
 | 			  struct scatter_walk *out, int *in_len) | 
 | { | 
 | 	unsigned char buf[TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE]; | 
 | 	struct scatterlist sg_in[3]; | 
 | 	struct scatterlist sg_out[3]; | 
 | 	u16 len; | 
 | 	int rc; | 
 |  | 
 | 	len = min_t(int, *in_len, ARRAY_SIZE(buf)); | 
 |  | 
 | 	scatterwalk_copychunks(buf, in, len, 0); | 
 | 	scatterwalk_copychunks(buf, out, len, 1); | 
 |  | 
 | 	*in_len -= len; | 
 | 	if (!*in_len) | 
 | 		return 0; | 
 |  | 
 | 	scatterwalk_pagedone(in, 0, 1); | 
 | 	scatterwalk_pagedone(out, 1, 1); | 
 |  | 
 | 	len = buf[4] | (buf[3] << 8); | 
 | 	len -= TLS_CIPHER_AES_GCM_128_IV_SIZE; | 
 |  | 
 | 	tls_make_aad(aad, len - TLS_CIPHER_AES_GCM_128_TAG_SIZE, | 
 | 		(char *)&rcd_sn, sizeof(rcd_sn), buf[0], | 
 | 		TLS_1_2_VERSION); | 
 |  | 
 | 	memcpy(iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, buf + TLS_HEADER_SIZE, | 
 | 	       TLS_CIPHER_AES_GCM_128_IV_SIZE); | 
 |  | 
 | 	sg_init_table(sg_in, ARRAY_SIZE(sg_in)); | 
 | 	sg_init_table(sg_out, ARRAY_SIZE(sg_out)); | 
 | 	sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE); | 
 | 	sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE); | 
 | 	chain_to_walk(sg_in + 1, in); | 
 | 	chain_to_walk(sg_out + 1, out); | 
 |  | 
 | 	*in_len -= len; | 
 | 	if (*in_len < 0) { | 
 | 		*in_len += TLS_CIPHER_AES_GCM_128_TAG_SIZE; | 
 | 		/* the input buffer doesn't contain the entire record. | 
 | 		 * trim len accordingly. The resulting authentication tag | 
 | 		 * will contain garbage, but we don't care, so we won't | 
 | 		 * include any of it in the output skb | 
 | 		 * Note that we assume the output buffer length | 
 | 		 * is larger then input buffer length + tag size | 
 | 		 */ | 
 | 		if (*in_len < 0) | 
 | 			len += *in_len; | 
 |  | 
 | 		*in_len = 0; | 
 | 	} | 
 |  | 
 | 	if (*in_len) { | 
 | 		scatterwalk_copychunks(NULL, in, len, 2); | 
 | 		scatterwalk_pagedone(in, 0, 1); | 
 | 		scatterwalk_copychunks(NULL, out, len, 2); | 
 | 		scatterwalk_pagedone(out, 1, 1); | 
 | 	} | 
 |  | 
 | 	len -= TLS_CIPHER_AES_GCM_128_TAG_SIZE; | 
 | 	aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv); | 
 |  | 
 | 	rc = crypto_aead_encrypt(aead_req); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void tls_init_aead_request(struct aead_request *aead_req, | 
 | 				  struct crypto_aead *aead) | 
 | { | 
 | 	aead_request_set_tfm(aead_req, aead); | 
 | 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); | 
 | } | 
 |  | 
 | static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead, | 
 | 						   gfp_t flags) | 
 | { | 
 | 	unsigned int req_size = sizeof(struct aead_request) + | 
 | 		crypto_aead_reqsize(aead); | 
 | 	struct aead_request *aead_req; | 
 |  | 
 | 	aead_req = kzalloc(req_size, flags); | 
 | 	if (aead_req) | 
 | 		tls_init_aead_request(aead_req, aead); | 
 | 	return aead_req; | 
 | } | 
 |  | 
 | static int tls_enc_records(struct aead_request *aead_req, | 
 | 			   struct crypto_aead *aead, struct scatterlist *sg_in, | 
 | 			   struct scatterlist *sg_out, char *aad, char *iv, | 
 | 			   u64 rcd_sn, int len) | 
 | { | 
 | 	struct scatter_walk out, in; | 
 | 	int rc; | 
 |  | 
 | 	scatterwalk_start(&in, sg_in); | 
 | 	scatterwalk_start(&out, sg_out); | 
 |  | 
 | 	do { | 
 | 		rc = tls_enc_record(aead_req, aead, aad, iv, | 
 | 				    cpu_to_be64(rcd_sn), &in, &out, &len); | 
 | 		rcd_sn++; | 
 |  | 
 | 	} while (rc == 0 && len); | 
 |  | 
 | 	scatterwalk_done(&in, 0, 0); | 
 | 	scatterwalk_done(&out, 1, 0); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses | 
 |  * might have been changed by NAT. | 
 |  */ | 
 | static void update_chksum(struct sk_buff *skb, int headln) | 
 | { | 
 | 	struct tcphdr *th = tcp_hdr(skb); | 
 | 	int datalen = skb->len - headln; | 
 | 	const struct ipv6hdr *ipv6h; | 
 | 	const struct iphdr *iph; | 
 |  | 
 | 	/* We only changed the payload so if we are using partial we don't | 
 | 	 * need to update anything. | 
 | 	 */ | 
 | 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) | 
 | 		return; | 
 |  | 
 | 	skb->ip_summed = CHECKSUM_PARTIAL; | 
 | 	skb->csum_start = skb_transport_header(skb) - skb->head; | 
 | 	skb->csum_offset = offsetof(struct tcphdr, check); | 
 |  | 
 | 	if (skb->sk->sk_family == AF_INET6) { | 
 | 		ipv6h = ipv6_hdr(skb); | 
 | 		th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, | 
 | 					     datalen, IPPROTO_TCP, 0); | 
 | 	} else { | 
 | 		iph = ip_hdr(skb); | 
 | 		th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen, | 
 | 					       IPPROTO_TCP, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln) | 
 | { | 
 | 	struct sock *sk = skb->sk; | 
 | 	int delta; | 
 |  | 
 | 	skb_copy_header(nskb, skb); | 
 |  | 
 | 	skb_put(nskb, skb->len); | 
 | 	memcpy(nskb->data, skb->data, headln); | 
 |  | 
 | 	nskb->destructor = skb->destructor; | 
 | 	nskb->sk = sk; | 
 | 	skb->destructor = NULL; | 
 | 	skb->sk = NULL; | 
 |  | 
 | 	update_chksum(nskb, headln); | 
 |  | 
 | 	/* sock_efree means skb must gone through skb_orphan_partial() */ | 
 | 	if (nskb->destructor == sock_efree) | 
 | 		return; | 
 |  | 
 | 	delta = nskb->truesize - skb->truesize; | 
 | 	if (likely(delta < 0)) | 
 | 		WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); | 
 | 	else if (delta) | 
 | 		refcount_add(delta, &sk->sk_wmem_alloc); | 
 | } | 
 |  | 
 | /* This function may be called after the user socket is already | 
 |  * closed so make sure we don't use anything freed during | 
 |  * tls_sk_proto_close here | 
 |  */ | 
 |  | 
 | static int fill_sg_in(struct scatterlist *sg_in, | 
 | 		      struct sk_buff *skb, | 
 | 		      struct tls_offload_context_tx *ctx, | 
 | 		      u64 *rcd_sn, | 
 | 		      s32 *sync_size, | 
 | 		      int *resync_sgs) | 
 | { | 
 | 	int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 	int payload_len = skb->len - tcp_payload_offset; | 
 | 	u32 tcp_seq = ntohl(tcp_hdr(skb)->seq); | 
 | 	struct tls_record_info *record; | 
 | 	unsigned long flags; | 
 | 	int remaining; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irqsave(&ctx->lock, flags); | 
 | 	record = tls_get_record(ctx, tcp_seq, rcd_sn); | 
 | 	if (!record) { | 
 | 		spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*sync_size = tcp_seq - tls_record_start_seq(record); | 
 | 	if (*sync_size < 0) { | 
 | 		int is_start_marker = tls_record_is_start_marker(record); | 
 |  | 
 | 		spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 		/* This should only occur if the relevant record was | 
 | 		 * already acked. In that case it should be ok | 
 | 		 * to drop the packet and avoid retransmission. | 
 | 		 * | 
 | 		 * There is a corner case where the packet contains | 
 | 		 * both an acked and a non-acked record. | 
 | 		 * We currently don't handle that case and rely | 
 | 		 * on TCP to retranmit a packet that doesn't contain | 
 | 		 * already acked payload. | 
 | 		 */ | 
 | 		if (!is_start_marker) | 
 | 			*sync_size = 0; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	remaining = *sync_size; | 
 | 	for (i = 0; remaining > 0; i++) { | 
 | 		skb_frag_t *frag = &record->frags[i]; | 
 |  | 
 | 		__skb_frag_ref(frag); | 
 | 		sg_set_page(sg_in + i, skb_frag_page(frag), | 
 | 			    skb_frag_size(frag), skb_frag_off(frag)); | 
 |  | 
 | 		remaining -= skb_frag_size(frag); | 
 |  | 
 | 		if (remaining < 0) | 
 | 			sg_in[i].length += remaining; | 
 | 	} | 
 | 	*resync_sgs = i; | 
 |  | 
 | 	spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void fill_sg_out(struct scatterlist sg_out[3], void *buf, | 
 | 			struct tls_context *tls_ctx, | 
 | 			struct sk_buff *nskb, | 
 | 			int tcp_payload_offset, | 
 | 			int payload_len, | 
 | 			int sync_size, | 
 | 			void *dummy_buf) | 
 | { | 
 | 	sg_set_buf(&sg_out[0], dummy_buf, sync_size); | 
 | 	sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len); | 
 | 	/* Add room for authentication tag produced by crypto */ | 
 | 	dummy_buf += sync_size; | 
 | 	sg_set_buf(&sg_out[2], dummy_buf, TLS_CIPHER_AES_GCM_128_TAG_SIZE); | 
 | } | 
 |  | 
 | static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx, | 
 | 				   struct scatterlist sg_out[3], | 
 | 				   struct scatterlist *sg_in, | 
 | 				   struct sk_buff *skb, | 
 | 				   s32 sync_size, u64 rcd_sn) | 
 | { | 
 | 	int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); | 
 | 	int payload_len = skb->len - tcp_payload_offset; | 
 | 	void *buf, *iv, *aad, *dummy_buf; | 
 | 	struct aead_request *aead_req; | 
 | 	struct sk_buff *nskb = NULL; | 
 | 	int buf_len; | 
 |  | 
 | 	aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC); | 
 | 	if (!aead_req) | 
 | 		return NULL; | 
 |  | 
 | 	buf_len = TLS_CIPHER_AES_GCM_128_SALT_SIZE + | 
 | 		  TLS_CIPHER_AES_GCM_128_IV_SIZE + | 
 | 		  TLS_AAD_SPACE_SIZE + | 
 | 		  sync_size + | 
 | 		  TLS_CIPHER_AES_GCM_128_TAG_SIZE; | 
 | 	buf = kmalloc(buf_len, GFP_ATOMIC); | 
 | 	if (!buf) | 
 | 		goto free_req; | 
 |  | 
 | 	iv = buf; | 
 | 	memcpy(iv, tls_ctx->crypto_send.aes_gcm_128.salt, | 
 | 	       TLS_CIPHER_AES_GCM_128_SALT_SIZE); | 
 | 	aad = buf + TLS_CIPHER_AES_GCM_128_SALT_SIZE + | 
 | 	      TLS_CIPHER_AES_GCM_128_IV_SIZE; | 
 | 	dummy_buf = aad + TLS_AAD_SPACE_SIZE; | 
 |  | 
 | 	nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC); | 
 | 	if (!nskb) | 
 | 		goto free_buf; | 
 |  | 
 | 	skb_reserve(nskb, skb_headroom(skb)); | 
 |  | 
 | 	fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset, | 
 | 		    payload_len, sync_size, dummy_buf); | 
 |  | 
 | 	if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv, | 
 | 			    rcd_sn, sync_size + payload_len) < 0) | 
 | 		goto free_nskb; | 
 |  | 
 | 	complete_skb(nskb, skb, tcp_payload_offset); | 
 |  | 
 | 	/* validate_xmit_skb_list assumes that if the skb wasn't segmented | 
 | 	 * nskb->prev will point to the skb itself | 
 | 	 */ | 
 | 	nskb->prev = nskb; | 
 |  | 
 | free_buf: | 
 | 	kfree(buf); | 
 | free_req: | 
 | 	kfree(aead_req); | 
 | 	return nskb; | 
 | free_nskb: | 
 | 	kfree_skb(nskb); | 
 | 	nskb = NULL; | 
 | 	goto free_buf; | 
 | } | 
 |  | 
 | static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); | 
 | 	int payload_len = skb->len - tcp_payload_offset; | 
 | 	struct scatterlist *sg_in, sg_out[3]; | 
 | 	struct sk_buff *nskb = NULL; | 
 | 	int sg_in_max_elements; | 
 | 	int resync_sgs = 0; | 
 | 	s32 sync_size = 0; | 
 | 	u64 rcd_sn; | 
 |  | 
 | 	/* worst case is: | 
 | 	 * MAX_SKB_FRAGS in tls_record_info | 
 | 	 * MAX_SKB_FRAGS + 1 in SKB head and frags. | 
 | 	 */ | 
 | 	sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1; | 
 |  | 
 | 	if (!payload_len) | 
 | 		return skb; | 
 |  | 
 | 	sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC); | 
 | 	if (!sg_in) | 
 | 		goto free_orig; | 
 |  | 
 | 	sg_init_table(sg_in, sg_in_max_elements); | 
 | 	sg_init_table(sg_out, ARRAY_SIZE(sg_out)); | 
 |  | 
 | 	if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) { | 
 | 		/* bypass packets before kernel TLS socket option was set */ | 
 | 		if (sync_size < 0 && payload_len <= -sync_size) | 
 | 			nskb = skb_get(skb); | 
 | 		goto put_sg; | 
 | 	} | 
 |  | 
 | 	nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn); | 
 |  | 
 | put_sg: | 
 | 	while (resync_sgs) | 
 | 		put_page(sg_page(&sg_in[--resync_sgs])); | 
 | 	kfree(sg_in); | 
 | free_orig: | 
 | 	if (nskb) | 
 | 		consume_skb(skb); | 
 | 	else | 
 | 		kfree_skb(skb); | 
 | 	return nskb; | 
 | } | 
 |  | 
 | struct sk_buff *tls_validate_xmit_skb(struct sock *sk, | 
 | 				      struct net_device *dev, | 
 | 				      struct sk_buff *skb) | 
 | { | 
 | 	if (dev == tls_get_ctx(sk)->netdev) | 
 | 		return skb; | 
 |  | 
 | 	return tls_sw_fallback(sk, skb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(tls_validate_xmit_skb); | 
 |  | 
 | struct sk_buff *tls_encrypt_skb(struct sk_buff *skb) | 
 | { | 
 | 	return tls_sw_fallback(skb->sk, skb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(tls_encrypt_skb); | 
 |  | 
 | int tls_sw_fallback_init(struct sock *sk, | 
 | 			 struct tls_offload_context_tx *offload_ctx, | 
 | 			 struct tls_crypto_info *crypto_info) | 
 | { | 
 | 	const u8 *key; | 
 | 	int rc; | 
 |  | 
 | 	offload_ctx->aead_send = | 
 | 	    crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); | 
 | 	if (IS_ERR(offload_ctx->aead_send)) { | 
 | 		rc = PTR_ERR(offload_ctx->aead_send); | 
 | 		pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc); | 
 | 		offload_ctx->aead_send = NULL; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key; | 
 |  | 
 | 	rc = crypto_aead_setkey(offload_ctx->aead_send, key, | 
 | 				TLS_CIPHER_AES_GCM_128_KEY_SIZE); | 
 | 	if (rc) | 
 | 		goto free_aead; | 
 |  | 
 | 	rc = crypto_aead_setauthsize(offload_ctx->aead_send, | 
 | 				     TLS_CIPHER_AES_GCM_128_TAG_SIZE); | 
 | 	if (rc) | 
 | 		goto free_aead; | 
 |  | 
 | 	return 0; | 
 | free_aead: | 
 | 	crypto_free_aead(offload_ctx->aead_send); | 
 | err_out: | 
 | 	return rc; | 
 | } |