|  | #include <linux/errno.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <trace/power.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/idle.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/ds.h> | 
|  |  | 
|  | unsigned long idle_halt; | 
|  | EXPORT_SYMBOL(idle_halt); | 
|  | unsigned long idle_nomwait; | 
|  | EXPORT_SYMBOL(idle_nomwait); | 
|  |  | 
|  | struct kmem_cache *task_xstate_cachep; | 
|  |  | 
|  | DEFINE_TRACE(power_start); | 
|  | DEFINE_TRACE(power_end); | 
|  |  | 
|  | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) | 
|  | { | 
|  | *dst = *src; | 
|  | if (src->thread.xstate) { | 
|  | dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, | 
|  | GFP_KERNEL); | 
|  | if (!dst->thread.xstate) | 
|  | return -ENOMEM; | 
|  | WARN_ON((unsigned long)dst->thread.xstate & 15); | 
|  | memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void free_thread_xstate(struct task_struct *tsk) | 
|  | { | 
|  | if (tsk->thread.xstate) { | 
|  | kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); | 
|  | tsk->thread.xstate = NULL; | 
|  | } | 
|  |  | 
|  | WARN(tsk->thread.ds_ctx, "leaking DS context\n"); | 
|  | } | 
|  |  | 
|  | void free_thread_info(struct thread_info *ti) | 
|  | { | 
|  | free_thread_xstate(ti->task); | 
|  | free_pages((unsigned long)ti, get_order(THREAD_SIZE)); | 
|  | } | 
|  |  | 
|  | void arch_task_cache_init(void) | 
|  | { | 
|  | task_xstate_cachep = | 
|  | kmem_cache_create("task_xstate", xstate_size, | 
|  | __alignof__(union thread_xstate), | 
|  | SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free current thread data structures etc.. | 
|  | */ | 
|  | void exit_thread(void) | 
|  | { | 
|  | struct task_struct *me = current; | 
|  | struct thread_struct *t = &me->thread; | 
|  | unsigned long *bp = t->io_bitmap_ptr; | 
|  |  | 
|  | if (bp) { | 
|  | struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); | 
|  |  | 
|  | t->io_bitmap_ptr = NULL; | 
|  | clear_thread_flag(TIF_IO_BITMAP); | 
|  | /* | 
|  | * Careful, clear this in the TSS too: | 
|  | */ | 
|  | memset(tss->io_bitmap, 0xff, t->io_bitmap_max); | 
|  | t->io_bitmap_max = 0; | 
|  | put_cpu(); | 
|  | kfree(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void flush_thread(void) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) { | 
|  | clear_tsk_thread_flag(tsk, TIF_ABI_PENDING); | 
|  | if (test_tsk_thread_flag(tsk, TIF_IA32)) { | 
|  | clear_tsk_thread_flag(tsk, TIF_IA32); | 
|  | } else { | 
|  | set_tsk_thread_flag(tsk, TIF_IA32); | 
|  | current_thread_info()->status |= TS_COMPAT; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | clear_tsk_thread_flag(tsk, TIF_DEBUG); | 
|  |  | 
|  | tsk->thread.debugreg[0] = 0; | 
|  | tsk->thread.debugreg[1] = 0; | 
|  | tsk->thread.debugreg[2] = 0; | 
|  | tsk->thread.debugreg[3] = 0; | 
|  | tsk->thread.debugreg6 = 0; | 
|  | tsk->thread.debugreg7 = 0; | 
|  | memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); | 
|  | /* | 
|  | * Forget coprocessor state.. | 
|  | */ | 
|  | tsk->fpu_counter = 0; | 
|  | clear_fpu(tsk); | 
|  | clear_used_math(); | 
|  | } | 
|  |  | 
|  | static void hard_disable_TSC(void) | 
|  | { | 
|  | write_cr4(read_cr4() | X86_CR4_TSD); | 
|  | } | 
|  |  | 
|  | void disable_TSC(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (!test_and_set_thread_flag(TIF_NOTSC)) | 
|  | /* | 
|  | * Must flip the CPU state synchronously with | 
|  | * TIF_NOTSC in the current running context. | 
|  | */ | 
|  | hard_disable_TSC(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void hard_enable_TSC(void) | 
|  | { | 
|  | write_cr4(read_cr4() & ~X86_CR4_TSD); | 
|  | } | 
|  |  | 
|  | static void enable_TSC(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (test_and_clear_thread_flag(TIF_NOTSC)) | 
|  | /* | 
|  | * Must flip the CPU state synchronously with | 
|  | * TIF_NOTSC in the current running context. | 
|  | */ | 
|  | hard_enable_TSC(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | int get_tsc_mode(unsigned long adr) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | if (test_thread_flag(TIF_NOTSC)) | 
|  | val = PR_TSC_SIGSEGV; | 
|  | else | 
|  | val = PR_TSC_ENABLE; | 
|  |  | 
|  | return put_user(val, (unsigned int __user *)adr); | 
|  | } | 
|  |  | 
|  | int set_tsc_mode(unsigned int val) | 
|  | { | 
|  | if (val == PR_TSC_SIGSEGV) | 
|  | disable_TSC(); | 
|  | else if (val == PR_TSC_ENABLE) | 
|  | enable_TSC(); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, | 
|  | struct tss_struct *tss) | 
|  | { | 
|  | struct thread_struct *prev, *next; | 
|  |  | 
|  | prev = &prev_p->thread; | 
|  | next = &next_p->thread; | 
|  |  | 
|  | if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || | 
|  | test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) | 
|  | ds_switch_to(prev_p, next_p); | 
|  | else if (next->debugctlmsr != prev->debugctlmsr) | 
|  | update_debugctlmsr(next->debugctlmsr); | 
|  |  | 
|  | if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { | 
|  | set_debugreg(next->debugreg[0], 0); | 
|  | set_debugreg(next->debugreg[1], 1); | 
|  | set_debugreg(next->debugreg[2], 2); | 
|  | set_debugreg(next->debugreg[3], 3); | 
|  | /* no 4 and 5 */ | 
|  | set_debugreg(next->debugreg6, 6); | 
|  | set_debugreg(next->debugreg7, 7); | 
|  | } | 
|  |  | 
|  | if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ | 
|  | test_tsk_thread_flag(next_p, TIF_NOTSC)) { | 
|  | /* prev and next are different */ | 
|  | if (test_tsk_thread_flag(next_p, TIF_NOTSC)) | 
|  | hard_disable_TSC(); | 
|  | else | 
|  | hard_enable_TSC(); | 
|  | } | 
|  |  | 
|  | if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { | 
|  | /* | 
|  | * Copy the relevant range of the IO bitmap. | 
|  | * Normally this is 128 bytes or less: | 
|  | */ | 
|  | memcpy(tss->io_bitmap, next->io_bitmap_ptr, | 
|  | max(prev->io_bitmap_max, next->io_bitmap_max)); | 
|  | } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { | 
|  | /* | 
|  | * Clear any possible leftover bits: | 
|  | */ | 
|  | memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); | 
|  | } | 
|  | } | 
|  |  | 
|  | int sys_fork(struct pt_regs *regs) | 
|  | { | 
|  | return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is trivial, and on the face of it looks like it | 
|  | * could equally well be done in user mode. | 
|  | * | 
|  | * Not so, for quite unobvious reasons - register pressure. | 
|  | * In user mode vfork() cannot have a stack frame, and if | 
|  | * done by calling the "clone()" system call directly, you | 
|  | * do not have enough call-clobbered registers to hold all | 
|  | * the information you need. | 
|  | */ | 
|  | int sys_vfork(struct pt_regs *regs) | 
|  | { | 
|  | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, | 
|  | NULL, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Idle related variables and functions | 
|  | */ | 
|  | unsigned long boot_option_idle_override = 0; | 
|  | EXPORT_SYMBOL(boot_option_idle_override); | 
|  |  | 
|  | /* | 
|  | * Powermanagement idle function, if any.. | 
|  | */ | 
|  | void (*pm_idle)(void); | 
|  | EXPORT_SYMBOL(pm_idle); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * This halt magic was a workaround for ancient floppy DMA | 
|  | * wreckage. It should be safe to remove. | 
|  | */ | 
|  | static int hlt_counter; | 
|  | void disable_hlt(void) | 
|  | { | 
|  | hlt_counter++; | 
|  | } | 
|  | EXPORT_SYMBOL(disable_hlt); | 
|  |  | 
|  | void enable_hlt(void) | 
|  | { | 
|  | hlt_counter--; | 
|  | } | 
|  | EXPORT_SYMBOL(enable_hlt); | 
|  |  | 
|  | static inline int hlt_use_halt(void) | 
|  | { | 
|  | return (!hlt_counter && boot_cpu_data.hlt_works_ok); | 
|  | } | 
|  | #else | 
|  | static inline int hlt_use_halt(void) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We use this if we don't have any better | 
|  | * idle routine.. | 
|  | */ | 
|  | void default_idle(void) | 
|  | { | 
|  | if (hlt_use_halt()) { | 
|  | struct power_trace it; | 
|  |  | 
|  | trace_power_start(&it, POWER_CSTATE, 1); | 
|  | current_thread_info()->status &= ~TS_POLLING; | 
|  | /* | 
|  | * TS_POLLING-cleared state must be visible before we | 
|  | * test NEED_RESCHED: | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (!need_resched()) | 
|  | safe_halt();	/* enables interrupts racelessly */ | 
|  | else | 
|  | local_irq_enable(); | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | trace_power_end(&it); | 
|  | } else { | 
|  | local_irq_enable(); | 
|  | /* loop is done by the caller */ | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_APM_MODULE | 
|  | EXPORT_SYMBOL(default_idle); | 
|  | #endif | 
|  |  | 
|  | void stop_this_cpu(void *dummy) | 
|  | { | 
|  | local_irq_disable(); | 
|  | /* | 
|  | * Remove this CPU: | 
|  | */ | 
|  | set_cpu_online(smp_processor_id(), false); | 
|  | disable_local_APIC(); | 
|  |  | 
|  | for (;;) { | 
|  | if (hlt_works(smp_processor_id())) | 
|  | halt(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_nothing(void *unused) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpu_idle_wait - Used to ensure that all the CPUs discard old value of | 
|  | * pm_idle and update to new pm_idle value. Required while changing pm_idle | 
|  | * handler on SMP systems. | 
|  | * | 
|  | * Caller must have changed pm_idle to the new value before the call. Old | 
|  | * pm_idle value will not be used by any CPU after the return of this function. | 
|  | */ | 
|  | void cpu_idle_wait(void) | 
|  | { | 
|  | smp_mb(); | 
|  | /* kick all the CPUs so that they exit out of pm_idle */ | 
|  | smp_call_function(do_nothing, NULL, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_idle_wait); | 
|  |  | 
|  | /* | 
|  | * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, | 
|  | * which can obviate IPI to trigger checking of need_resched. | 
|  | * We execute MONITOR against need_resched and enter optimized wait state | 
|  | * through MWAIT. Whenever someone changes need_resched, we would be woken | 
|  | * up from MWAIT (without an IPI). | 
|  | * | 
|  | * New with Core Duo processors, MWAIT can take some hints based on CPU | 
|  | * capability. | 
|  | */ | 
|  | void mwait_idle_with_hints(unsigned long ax, unsigned long cx) | 
|  | { | 
|  | struct power_trace it; | 
|  |  | 
|  | trace_power_start(&it, POWER_CSTATE, (ax>>4)+1); | 
|  | if (!need_resched()) { | 
|  | if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) | 
|  | clflush((void *)¤t_thread_info()->flags); | 
|  |  | 
|  | __monitor((void *)¤t_thread_info()->flags, 0, 0); | 
|  | smp_mb(); | 
|  | if (!need_resched()) | 
|  | __mwait(ax, cx); | 
|  | } | 
|  | trace_power_end(&it); | 
|  | } | 
|  |  | 
|  | /* Default MONITOR/MWAIT with no hints, used for default C1 state */ | 
|  | static void mwait_idle(void) | 
|  | { | 
|  | struct power_trace it; | 
|  | if (!need_resched()) { | 
|  | trace_power_start(&it, POWER_CSTATE, 1); | 
|  | if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) | 
|  | clflush((void *)¤t_thread_info()->flags); | 
|  |  | 
|  | __monitor((void *)¤t_thread_info()->flags, 0, 0); | 
|  | smp_mb(); | 
|  | if (!need_resched()) | 
|  | __sti_mwait(0, 0); | 
|  | else | 
|  | local_irq_enable(); | 
|  | trace_power_end(&it); | 
|  | } else | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On SMP it's slightly faster (but much more power-consuming!) | 
|  | * to poll the ->work.need_resched flag instead of waiting for the | 
|  | * cross-CPU IPI to arrive. Use this option with caution. | 
|  | */ | 
|  | static void poll_idle(void) | 
|  | { | 
|  | struct power_trace it; | 
|  |  | 
|  | trace_power_start(&it, POWER_CSTATE, 0); | 
|  | local_irq_enable(); | 
|  | while (!need_resched()) | 
|  | cpu_relax(); | 
|  | trace_power_end(&it); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mwait selection logic: | 
|  | * | 
|  | * It depends on the CPU. For AMD CPUs that support MWAIT this is | 
|  | * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings | 
|  | * then depend on a clock divisor and current Pstate of the core. If | 
|  | * all cores of a processor are in halt state (C1) the processor can | 
|  | * enter the C1E (C1 enhanced) state. If mwait is used this will never | 
|  | * happen. | 
|  | * | 
|  | * idle=mwait overrides this decision and forces the usage of mwait. | 
|  | */ | 
|  | static int __cpuinitdata force_mwait; | 
|  |  | 
|  | #define MWAIT_INFO			0x05 | 
|  | #define MWAIT_ECX_EXTENDED_INFO		0x01 | 
|  | #define MWAIT_EDX_C1			0xf0 | 
|  |  | 
|  | static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 eax, ebx, ecx, edx; | 
|  |  | 
|  | if (force_mwait) | 
|  | return 1; | 
|  |  | 
|  | if (c->cpuid_level < MWAIT_INFO) | 
|  | return 0; | 
|  |  | 
|  | cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); | 
|  | /* Check, whether EDX has extended info about MWAIT */ | 
|  | if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * edx enumeratios MONITOR/MWAIT extensions. Check, whether | 
|  | * C1  supports MWAIT | 
|  | */ | 
|  | return (edx & MWAIT_EDX_C1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for AMD CPUs, which have potentially C1E support | 
|  | */ | 
|  | static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (c->x86_vendor != X86_VENDOR_AMD) | 
|  | return 0; | 
|  |  | 
|  | if (c->x86 < 0x0F) | 
|  | return 0; | 
|  |  | 
|  | /* Family 0x0f models < rev F do not have C1E */ | 
|  | if (c->x86 == 0x0f && c->x86_model < 0x40) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static cpumask_var_t c1e_mask; | 
|  | static int c1e_detected; | 
|  |  | 
|  | void c1e_remove_cpu(int cpu) | 
|  | { | 
|  | if (c1e_mask != NULL) | 
|  | cpumask_clear_cpu(cpu, c1e_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * C1E aware idle routine. We check for C1E active in the interrupt | 
|  | * pending message MSR. If we detect C1E, then we handle it the same | 
|  | * way as C3 power states (local apic timer and TSC stop) | 
|  | */ | 
|  | static void c1e_idle(void) | 
|  | { | 
|  | if (need_resched()) | 
|  | return; | 
|  |  | 
|  | if (!c1e_detected) { | 
|  | u32 lo, hi; | 
|  |  | 
|  | rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); | 
|  | if (lo & K8_INTP_C1E_ACTIVE_MASK) { | 
|  | c1e_detected = 1; | 
|  | if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) | 
|  | mark_tsc_unstable("TSC halt in AMD C1E"); | 
|  | printk(KERN_INFO "System has AMD C1E enabled\n"); | 
|  | set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (c1e_detected) { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, c1e_mask)) { | 
|  | cpumask_set_cpu(cpu, c1e_mask); | 
|  | /* | 
|  | * Force broadcast so ACPI can not interfere. Needs | 
|  | * to run with interrupts enabled as it uses | 
|  | * smp_function_call. | 
|  | */ | 
|  | local_irq_enable(); | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, | 
|  | &cpu); | 
|  | printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", | 
|  | cpu); | 
|  | local_irq_disable(); | 
|  | } | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); | 
|  |  | 
|  | default_idle(); | 
|  |  | 
|  | /* | 
|  | * The switch back from broadcast mode needs to be | 
|  | * called with interrupts disabled. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); | 
|  | local_irq_enable(); | 
|  | } else | 
|  | default_idle(); | 
|  | } | 
|  |  | 
|  | void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (pm_idle == poll_idle && smp_num_siblings > 1) { | 
|  | printk(KERN_WARNING "WARNING: polling idle and HT enabled," | 
|  | " performance may degrade.\n"); | 
|  | } | 
|  | #endif | 
|  | if (pm_idle) | 
|  | return; | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { | 
|  | /* | 
|  | * One CPU supports mwait => All CPUs supports mwait | 
|  | */ | 
|  | printk(KERN_INFO "using mwait in idle threads.\n"); | 
|  | pm_idle = mwait_idle; | 
|  | } else if (check_c1e_idle(c)) { | 
|  | printk(KERN_INFO "using C1E aware idle routine\n"); | 
|  | pm_idle = c1e_idle; | 
|  | } else | 
|  | pm_idle = default_idle; | 
|  | } | 
|  |  | 
|  | void __init init_c1e_mask(void) | 
|  | { | 
|  | /* If we're using c1e_idle, we need to allocate c1e_mask. */ | 
|  | if (pm_idle == c1e_idle) { | 
|  | alloc_cpumask_var(&c1e_mask, GFP_KERNEL); | 
|  | cpumask_clear(c1e_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init idle_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcmp(str, "poll")) { | 
|  | printk("using polling idle threads.\n"); | 
|  | pm_idle = poll_idle; | 
|  | } else if (!strcmp(str, "mwait")) | 
|  | force_mwait = 1; | 
|  | else if (!strcmp(str, "halt")) { | 
|  | /* | 
|  | * When the boot option of idle=halt is added, halt is | 
|  | * forced to be used for CPU idle. In such case CPU C2/C3 | 
|  | * won't be used again. | 
|  | * To continue to load the CPU idle driver, don't touch | 
|  | * the boot_option_idle_override. | 
|  | */ | 
|  | pm_idle = default_idle; | 
|  | idle_halt = 1; | 
|  | return 0; | 
|  | } else if (!strcmp(str, "nomwait")) { | 
|  | /* | 
|  | * If the boot option of "idle=nomwait" is added, | 
|  | * it means that mwait will be disabled for CPU C2/C3 | 
|  | * states. In such case it won't touch the variable | 
|  | * of boot_option_idle_override. | 
|  | */ | 
|  | idle_nomwait = 1; | 
|  | return 0; | 
|  | } else | 
|  | return -1; | 
|  |  | 
|  | boot_option_idle_override = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("idle", idle_setup); | 
|  |  |