| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * BLAKE2b digest algorithm, NEON accelerated |
| * |
| * Copyright 2020 Google LLC |
| * |
| * Author: Eric Biggers <ebiggers@google.com> |
| */ |
| |
| #include <linux/linkage.h> |
| |
| .text |
| .fpu neon |
| |
| // The arguments to blake2b_compress_neon() |
| STATE .req r0 |
| BLOCK .req r1 |
| NBLOCKS .req r2 |
| INC .req r3 |
| |
| // Pointers to the rotation tables |
| ROR24_TABLE .req r4 |
| ROR16_TABLE .req r5 |
| |
| // The original stack pointer |
| ORIG_SP .req r6 |
| |
| // NEON registers which contain the message words of the current block. |
| // M_0-M_3 are occasionally used for other purposes too. |
| M_0 .req d16 |
| M_1 .req d17 |
| M_2 .req d18 |
| M_3 .req d19 |
| M_4 .req d20 |
| M_5 .req d21 |
| M_6 .req d22 |
| M_7 .req d23 |
| M_8 .req d24 |
| M_9 .req d25 |
| M_10 .req d26 |
| M_11 .req d27 |
| M_12 .req d28 |
| M_13 .req d29 |
| M_14 .req d30 |
| M_15 .req d31 |
| |
| .align 4 |
| // Tables for computing ror64(x, 24) and ror64(x, 16) using the vtbl.8 |
| // instruction. This is the most efficient way to implement these |
| // rotation amounts with NEON. (On Cortex-A53 it's the same speed as |
| // vshr.u64 + vsli.u64, while on Cortex-A7 it's faster.) |
| .Lror24_table: |
| .byte 3, 4, 5, 6, 7, 0, 1, 2 |
| .Lror16_table: |
| .byte 2, 3, 4, 5, 6, 7, 0, 1 |
| // The BLAKE2b initialization vector |
| .Lblake2b_IV: |
| .quad 0x6a09e667f3bcc908, 0xbb67ae8584caa73b |
| .quad 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 |
| .quad 0x510e527fade682d1, 0x9b05688c2b3e6c1f |
| .quad 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 |
| |
| // Execute one round of BLAKE2b by updating the state matrix v[0..15] in the |
| // NEON registers q0-q7. The message block is in q8..q15 (M_0-M_15). The stack |
| // pointer points to a 32-byte aligned buffer containing a copy of q8 and q9 |
| // (M_0-M_3), so that they can be reloaded if they are used as temporary |
| // registers. The macro arguments s0-s15 give the order in which the message |
| // words are used in this round. 'final' is 1 if this is the final round. |
| .macro _blake2b_round s0, s1, s2, s3, s4, s5, s6, s7, \ |
| s8, s9, s10, s11, s12, s13, s14, s15, final=0 |
| |
| // Mix the columns: |
| // (v[0], v[4], v[8], v[12]), (v[1], v[5], v[9], v[13]), |
| // (v[2], v[6], v[10], v[14]), and (v[3], v[7], v[11], v[15]). |
| |
| // a += b + m[blake2b_sigma[r][2*i + 0]]; |
| vadd.u64 q0, q0, q2 |
| vadd.u64 q1, q1, q3 |
| vadd.u64 d0, d0, M_\s0 |
| vadd.u64 d1, d1, M_\s2 |
| vadd.u64 d2, d2, M_\s4 |
| vadd.u64 d3, d3, M_\s6 |
| |
| // d = ror64(d ^ a, 32); |
| veor q6, q6, q0 |
| veor q7, q7, q1 |
| vrev64.32 q6, q6 |
| vrev64.32 q7, q7 |
| |
| // c += d; |
| vadd.u64 q4, q4, q6 |
| vadd.u64 q5, q5, q7 |
| |
| // b = ror64(b ^ c, 24); |
| vld1.8 {M_0}, [ROR24_TABLE, :64] |
| veor q2, q2, q4 |
| veor q3, q3, q5 |
| vtbl.8 d4, {d4}, M_0 |
| vtbl.8 d5, {d5}, M_0 |
| vtbl.8 d6, {d6}, M_0 |
| vtbl.8 d7, {d7}, M_0 |
| |
| // a += b + m[blake2b_sigma[r][2*i + 1]]; |
| // |
| // M_0 got clobbered above, so we have to reload it if any of the four |
| // message words this step needs happens to be M_0. Otherwise we don't |
| // need to reload it here, as it will just get clobbered again below. |
| .if \s1 == 0 || \s3 == 0 || \s5 == 0 || \s7 == 0 |
| vld1.8 {M_0}, [sp, :64] |
| .endif |
| vadd.u64 q0, q0, q2 |
| vadd.u64 q1, q1, q3 |
| vadd.u64 d0, d0, M_\s1 |
| vadd.u64 d1, d1, M_\s3 |
| vadd.u64 d2, d2, M_\s5 |
| vadd.u64 d3, d3, M_\s7 |
| |
| // d = ror64(d ^ a, 16); |
| vld1.8 {M_0}, [ROR16_TABLE, :64] |
| veor q6, q6, q0 |
| veor q7, q7, q1 |
| vtbl.8 d12, {d12}, M_0 |
| vtbl.8 d13, {d13}, M_0 |
| vtbl.8 d14, {d14}, M_0 |
| vtbl.8 d15, {d15}, M_0 |
| |
| // c += d; |
| vadd.u64 q4, q4, q6 |
| vadd.u64 q5, q5, q7 |
| |
| // b = ror64(b ^ c, 63); |
| // |
| // This rotation amount isn't a multiple of 8, so it has to be |
| // implemented using a pair of shifts, which requires temporary |
| // registers. Use q8-q9 (M_0-M_3) for this, and reload them afterwards. |
| veor q8, q2, q4 |
| veor q9, q3, q5 |
| vshr.u64 q2, q8, #63 |
| vshr.u64 q3, q9, #63 |
| vsli.u64 q2, q8, #1 |
| vsli.u64 q3, q9, #1 |
| vld1.8 {q8-q9}, [sp, :256] |
| |
| // Mix the diagonals: |
| // (v[0], v[5], v[10], v[15]), (v[1], v[6], v[11], v[12]), |
| // (v[2], v[7], v[8], v[13]), and (v[3], v[4], v[9], v[14]). |
| // |
| // There are two possible ways to do this: use 'vext' instructions to |
| // shift the rows of the matrix so that the diagonals become columns, |
| // and undo it afterwards; or just use 64-bit operations on 'd' |
| // registers instead of 128-bit operations on 'q' registers. We use the |
| // latter approach, as it performs much better on Cortex-A7. |
| |
| // a += b + m[blake2b_sigma[r][2*i + 0]]; |
| vadd.u64 d0, d0, d5 |
| vadd.u64 d1, d1, d6 |
| vadd.u64 d2, d2, d7 |
| vadd.u64 d3, d3, d4 |
| vadd.u64 d0, d0, M_\s8 |
| vadd.u64 d1, d1, M_\s10 |
| vadd.u64 d2, d2, M_\s12 |
| vadd.u64 d3, d3, M_\s14 |
| |
| // d = ror64(d ^ a, 32); |
| veor d15, d15, d0 |
| veor d12, d12, d1 |
| veor d13, d13, d2 |
| veor d14, d14, d3 |
| vrev64.32 d15, d15 |
| vrev64.32 d12, d12 |
| vrev64.32 d13, d13 |
| vrev64.32 d14, d14 |
| |
| // c += d; |
| vadd.u64 d10, d10, d15 |
| vadd.u64 d11, d11, d12 |
| vadd.u64 d8, d8, d13 |
| vadd.u64 d9, d9, d14 |
| |
| // b = ror64(b ^ c, 24); |
| vld1.8 {M_0}, [ROR24_TABLE, :64] |
| veor d5, d5, d10 |
| veor d6, d6, d11 |
| veor d7, d7, d8 |
| veor d4, d4, d9 |
| vtbl.8 d5, {d5}, M_0 |
| vtbl.8 d6, {d6}, M_0 |
| vtbl.8 d7, {d7}, M_0 |
| vtbl.8 d4, {d4}, M_0 |
| |
| // a += b + m[blake2b_sigma[r][2*i + 1]]; |
| .if \s9 == 0 || \s11 == 0 || \s13 == 0 || \s15 == 0 |
| vld1.8 {M_0}, [sp, :64] |
| .endif |
| vadd.u64 d0, d0, d5 |
| vadd.u64 d1, d1, d6 |
| vadd.u64 d2, d2, d7 |
| vadd.u64 d3, d3, d4 |
| vadd.u64 d0, d0, M_\s9 |
| vadd.u64 d1, d1, M_\s11 |
| vadd.u64 d2, d2, M_\s13 |
| vadd.u64 d3, d3, M_\s15 |
| |
| // d = ror64(d ^ a, 16); |
| vld1.8 {M_0}, [ROR16_TABLE, :64] |
| veor d15, d15, d0 |
| veor d12, d12, d1 |
| veor d13, d13, d2 |
| veor d14, d14, d3 |
| vtbl.8 d12, {d12}, M_0 |
| vtbl.8 d13, {d13}, M_0 |
| vtbl.8 d14, {d14}, M_0 |
| vtbl.8 d15, {d15}, M_0 |
| |
| // c += d; |
| vadd.u64 d10, d10, d15 |
| vadd.u64 d11, d11, d12 |
| vadd.u64 d8, d8, d13 |
| vadd.u64 d9, d9, d14 |
| |
| // b = ror64(b ^ c, 63); |
| veor d16, d4, d9 |
| veor d17, d5, d10 |
| veor d18, d6, d11 |
| veor d19, d7, d8 |
| vshr.u64 q2, q8, #63 |
| vshr.u64 q3, q9, #63 |
| vsli.u64 q2, q8, #1 |
| vsli.u64 q3, q9, #1 |
| // Reloading q8-q9 can be skipped on the final round. |
| .if ! \final |
| vld1.8 {q8-q9}, [sp, :256] |
| .endif |
| .endm |
| |
| // |
| // void blake2b_compress_neon(struct blake2b_state *state, |
| // const u8 *block, size_t nblocks, u32 inc); |
| // |
| // Only the first three fields of struct blake2b_state are used: |
| // u64 h[8]; (inout) |
| // u64 t[2]; (inout) |
| // u64 f[2]; (in) |
| // |
| .align 5 |
| ENTRY(blake2b_compress_neon) |
| push {r4-r10} |
| |
| // Allocate a 32-byte stack buffer that is 32-byte aligned. |
| mov ORIG_SP, sp |
| sub ip, sp, #32 |
| bic ip, ip, #31 |
| mov sp, ip |
| |
| adr ROR24_TABLE, .Lror24_table |
| adr ROR16_TABLE, .Lror16_table |
| |
| mov ip, STATE |
| vld1.64 {q0-q1}, [ip]! // Load h[0..3] |
| vld1.64 {q2-q3}, [ip]! // Load h[4..7] |
| .Lnext_block: |
| adr r10, .Lblake2b_IV |
| vld1.64 {q14-q15}, [ip] // Load t[0..1] and f[0..1] |
| vld1.64 {q4-q5}, [r10]! // Load IV[0..3] |
| vmov r7, r8, d28 // Copy t[0] to (r7, r8) |
| vld1.64 {q6-q7}, [r10] // Load IV[4..7] |
| adds r7, r7, INC // Increment counter |
| bcs .Lslow_inc_ctr |
| vmov.i32 d28[0], r7 |
| vst1.64 {d28}, [ip] // Update t[0] |
| .Linc_ctr_done: |
| |
| // Load the next message block and finish initializing the state matrix |
| // 'v'. Fortunately, there are exactly enough NEON registers to fit the |
| // entire state matrix in q0-q7 and the entire message block in q8-15. |
| // |
| // However, _blake2b_round also needs some extra registers for rotates, |
| // so we have to spill some registers. It's better to spill the message |
| // registers than the state registers, as the message doesn't change. |
| // Therefore we store a copy of the first 32 bytes of the message block |
| // (q8-q9) in an aligned buffer on the stack so that they can be |
| // reloaded when needed. (We could just reload directly from the |
| // message buffer, but it's faster to use aligned loads.) |
| vld1.8 {q8-q9}, [BLOCK]! |
| veor q6, q6, q14 // v[12..13] = IV[4..5] ^ t[0..1] |
| vld1.8 {q10-q11}, [BLOCK]! |
| veor q7, q7, q15 // v[14..15] = IV[6..7] ^ f[0..1] |
| vld1.8 {q12-q13}, [BLOCK]! |
| vst1.8 {q8-q9}, [sp, :256] |
| mov ip, STATE |
| vld1.8 {q14-q15}, [BLOCK]! |
| |
| // Execute the rounds. Each round is provided the order in which it |
| // needs to use the message words. |
| _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 |
| _blake2b_round 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 |
| _blake2b_round 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 |
| _blake2b_round 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 |
| _blake2b_round 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 |
| _blake2b_round 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 |
| _blake2b_round 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 |
| _blake2b_round 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 |
| _blake2b_round 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 |
| _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 \ |
| final=1 |
| |
| // Fold the final state matrix into the hash chaining value: |
| // |
| // for (i = 0; i < 8; i++) |
| // h[i] ^= v[i] ^ v[i + 8]; |
| // |
| vld1.64 {q8-q9}, [ip]! // Load old h[0..3] |
| veor q0, q0, q4 // v[0..1] ^= v[8..9] |
| veor q1, q1, q5 // v[2..3] ^= v[10..11] |
| vld1.64 {q10-q11}, [ip] // Load old h[4..7] |
| veor q2, q2, q6 // v[4..5] ^= v[12..13] |
| veor q3, q3, q7 // v[6..7] ^= v[14..15] |
| veor q0, q0, q8 // v[0..1] ^= h[0..1] |
| veor q1, q1, q9 // v[2..3] ^= h[2..3] |
| mov ip, STATE |
| subs NBLOCKS, NBLOCKS, #1 // nblocks-- |
| vst1.64 {q0-q1}, [ip]! // Store new h[0..3] |
| veor q2, q2, q10 // v[4..5] ^= h[4..5] |
| veor q3, q3, q11 // v[6..7] ^= h[6..7] |
| vst1.64 {q2-q3}, [ip]! // Store new h[4..7] |
| |
| // Advance to the next block, if there is one. |
| bne .Lnext_block // nblocks != 0? |
| |
| mov sp, ORIG_SP |
| pop {r4-r10} |
| mov pc, lr |
| |
| .Lslow_inc_ctr: |
| // Handle the case where the counter overflowed its low 32 bits, by |
| // carrying the overflow bit into the full 128-bit counter. |
| vmov r9, r10, d29 |
| adcs r8, r8, #0 |
| adcs r9, r9, #0 |
| adc r10, r10, #0 |
| vmov d28, r7, r8 |
| vmov d29, r9, r10 |
| vst1.64 {q14}, [ip] // Update t[0] and t[1] |
| b .Linc_ctr_done |
| ENDPROC(blake2b_compress_neon) |