| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * arch/parisc/kernel/kprobes.c |
| * |
| * PA-RISC kprobes implementation |
| * |
| * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org> |
| * Copyright (c) 2022 Helge Deller <deller@gmx.de> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kprobes.h> |
| #include <linux/slab.h> |
| #include <asm/cacheflush.h> |
| #include <asm/patch.h> |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| if ((unsigned long)p->addr & 3UL) |
| return -EINVAL; |
| |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| return -ENOMEM; |
| |
| /* |
| * Set up new instructions. Second break instruction will |
| * trigger call of parisc_kprobe_ss_handler(). |
| */ |
| p->opcode = *p->addr; |
| p->ainsn.insn[0] = p->opcode; |
| p->ainsn.insn[1] = PARISC_KPROBES_BREAK_INSN2; |
| |
| flush_insn_slot(p); |
| return 0; |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| if (!p->ainsn.insn) |
| return; |
| |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| patch_text(p->addr, PARISC_KPROBES_BREAK_INSN); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| patch_text(p->addr, p->opcode); |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| } |
| |
| static inline void __kprobes set_current_kprobe(struct kprobe *p) |
| { |
| __this_cpu_write(current_kprobe, p); |
| } |
| |
| static void __kprobes setup_singlestep(struct kprobe *p, |
| struct kprobe_ctlblk *kcb, struct pt_regs *regs) |
| { |
| kcb->iaoq[0] = regs->iaoq[0]; |
| kcb->iaoq[1] = regs->iaoq[1]; |
| instruction_pointer_set(regs, (unsigned long)p->ainsn.insn); |
| } |
| |
| int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| struct kprobe_ctlblk *kcb; |
| |
| preempt_disable(); |
| |
| kcb = get_kprobe_ctlblk(); |
| p = get_kprobe((unsigned long *)regs->iaoq[0]); |
| |
| if (!p) { |
| preempt_enable_no_resched(); |
| return 0; |
| } |
| |
| if (kprobe_running()) { |
| /* |
| * We have reentered the kprobe_handler, since another kprobe |
| * was hit while within the handler, we save the original |
| * kprobes and single step on the instruction of the new probe |
| * without calling any user handlers to avoid recursive |
| * kprobes. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p); |
| kprobes_inc_nmissed_count(p); |
| setup_singlestep(p, kcb, regs); |
| kcb->kprobe_status = KPROBE_REENTER; |
| return 1; |
| } |
| |
| set_current_kprobe(p); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| /* If we have no pre-handler or it returned 0, we continue with |
| * normal processing. If we have a pre-handler and it returned |
| * non-zero - which means user handler setup registers to exit |
| * to another instruction, we must skip the single stepping. |
| */ |
| |
| if (!p->pre_handler || !p->pre_handler(p, regs)) { |
| setup_singlestep(p, kcb, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| } else { |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| } |
| return 1; |
| } |
| |
| int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| struct kprobe *p = kprobe_running(); |
| |
| if (!p) |
| return 0; |
| |
| if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4) |
| return 0; |
| |
| /* restore back original saved kprobe variables and continue */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| return 1; |
| } |
| |
| /* for absolute branch instructions we can copy iaoq_b. for relative |
| * branch instructions we need to calculate the new address based on the |
| * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without |
| * modifications because it's based on our ainsn.insn address. |
| */ |
| |
| if (p->post_handler) |
| p->post_handler(p, regs, 0); |
| |
| switch (regs->iir >> 26) { |
| case 0x38: /* BE */ |
| case 0x39: /* BE,L */ |
| case 0x3a: /* BV */ |
| case 0x3b: /* BVE */ |
| /* for absolute branches, regs->iaoq[1] has already the right |
| * address |
| */ |
| regs->iaoq[0] = kcb->iaoq[1]; |
| break; |
| default: |
| regs->iaoq[0] = kcb->iaoq[1]; |
| regs->iaoq[1] = regs->iaoq[0] + 4; |
| break; |
| } |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| reset_current_kprobe(); |
| return 1; |
| } |
| |
| void __kretprobe_trampoline(void) |
| { |
| asm volatile("nop"); |
| asm volatile("nop"); |
| } |
| |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs); |
| |
| static struct kprobe trampoline_p = { |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| __kretprobe_trampoline_handler(regs, NULL); |
| |
| return 1; |
| } |
| |
| void arch_kretprobe_fixup_return(struct pt_regs *regs, |
| kprobe_opcode_t *correct_ret_addr) |
| { |
| regs->gr[2] = (unsigned long)correct_ret_addr; |
| } |
| |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *)regs->gr[2]; |
| ri->fp = NULL; |
| |
| /* Replace the return addr with trampoline addr. */ |
| regs->gr[2] = (unsigned long)trampoline_p.addr; |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| return p->addr == trampoline_p.addr; |
| } |
| |
| int __init arch_init_kprobes(void) |
| { |
| trampoline_p.addr = (kprobe_opcode_t *) |
| dereference_function_descriptor(__kretprobe_trampoline); |
| return register_kprobe(&trampoline_p); |
| } |