| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Kernel Probes (KProbes) |
| * |
| * Copyright IBM Corp. 2002, 2006 |
| * |
| * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> |
| */ |
| |
| #define pr_fmt(fmt) "kprobes: " fmt |
| |
| #include <linux/moduleloader.h> |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/preempt.h> |
| #include <linux/stop_machine.h> |
| #include <linux/kdebug.h> |
| #include <linux/uaccess.h> |
| #include <linux/extable.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/hardirq.h> |
| #include <linux/ftrace.h> |
| #include <asm/set_memory.h> |
| #include <asm/sections.h> |
| #include <asm/dis.h> |
| #include "kprobes.h" |
| #include "entry.h" |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe); |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = { }; |
| |
| static int insn_page_in_use; |
| |
| void *alloc_insn_page(void) |
| { |
| void *page; |
| |
| page = module_alloc(PAGE_SIZE); |
| if (!page) |
| return NULL; |
| set_memory_rox((unsigned long)page, 1); |
| return page; |
| } |
| |
| static void *alloc_s390_insn_page(void) |
| { |
| if (xchg(&insn_page_in_use, 1) == 1) |
| return NULL; |
| return &kprobes_insn_page; |
| } |
| |
| static void free_s390_insn_page(void *page) |
| { |
| xchg(&insn_page_in_use, 0); |
| } |
| |
| struct kprobe_insn_cache kprobe_s390_insn_slots = { |
| .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex), |
| .alloc = alloc_s390_insn_page, |
| .free = free_s390_insn_page, |
| .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages), |
| .insn_size = MAX_INSN_SIZE, |
| }; |
| |
| static void copy_instruction(struct kprobe *p) |
| { |
| kprobe_opcode_t insn[MAX_INSN_SIZE]; |
| s64 disp, new_disp; |
| u64 addr, new_addr; |
| unsigned int len; |
| |
| len = insn_length(*p->addr >> 8); |
| memcpy(&insn, p->addr, len); |
| p->opcode = insn[0]; |
| if (probe_is_insn_relative_long(&insn[0])) { |
| /* |
| * For pc-relative instructions in RIL-b or RIL-c format patch |
| * the RI2 displacement field. We have already made sure that |
| * the insn slot for the patched instruction is within the same |
| * 2GB area as the original instruction (either kernel image or |
| * module area). Therefore the new displacement will always fit. |
| */ |
| disp = *(s32 *)&insn[1]; |
| addr = (u64)(unsigned long)p->addr; |
| new_addr = (u64)(unsigned long)p->ainsn.insn; |
| new_disp = ((addr + (disp * 2)) - new_addr) / 2; |
| *(s32 *)&insn[1] = new_disp; |
| } |
| s390_kernel_write(p->ainsn.insn, &insn, len); |
| } |
| NOKPROBE_SYMBOL(copy_instruction); |
| |
| static int s390_get_insn_slot(struct kprobe *p) |
| { |
| /* |
| * Get an insn slot that is within the same 2GB area like the original |
| * instruction. That way instructions with a 32bit signed displacement |
| * field can be patched and executed within the insn slot. |
| */ |
| p->ainsn.insn = NULL; |
| if (is_kernel((unsigned long)p->addr)) |
| p->ainsn.insn = get_s390_insn_slot(); |
| else if (is_module_addr(p->addr)) |
| p->ainsn.insn = get_insn_slot(); |
| return p->ainsn.insn ? 0 : -ENOMEM; |
| } |
| NOKPROBE_SYMBOL(s390_get_insn_slot); |
| |
| static void s390_free_insn_slot(struct kprobe *p) |
| { |
| if (!p->ainsn.insn) |
| return; |
| if (is_kernel((unsigned long)p->addr)) |
| free_s390_insn_slot(p->ainsn.insn, 0); |
| else |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| NOKPROBE_SYMBOL(s390_free_insn_slot); |
| |
| /* Check if paddr is at an instruction boundary */ |
| static bool can_probe(unsigned long paddr) |
| { |
| unsigned long addr, offset = 0; |
| kprobe_opcode_t insn; |
| struct kprobe *kp; |
| |
| if (paddr & 0x01) |
| return false; |
| |
| if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) |
| return false; |
| |
| /* Decode instructions */ |
| addr = paddr - offset; |
| while (addr < paddr) { |
| if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn))) |
| return false; |
| |
| if (insn >> 8 == 0) { |
| if (insn != BREAKPOINT_INSTRUCTION) { |
| /* |
| * Note that QEMU inserts opcode 0x0000 to implement |
| * software breakpoints for guests. Since the size of |
| * the original instruction is unknown, stop following |
| * instructions and prevent setting a kprobe. |
| */ |
| return false; |
| } |
| /* |
| * Check if the instruction has been modified by another |
| * kprobe, in which case the original instruction is |
| * decoded. |
| */ |
| kp = get_kprobe((void *)addr); |
| if (!kp) { |
| /* not a kprobe */ |
| return false; |
| } |
| insn = kp->opcode; |
| } |
| addr += insn_length(insn >> 8); |
| } |
| return addr == paddr; |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| if (!can_probe((unsigned long)p->addr)) |
| return -EINVAL; |
| /* Make sure the probe isn't going on a difficult instruction */ |
| if (probe_is_prohibited_opcode(p->addr)) |
| return -EINVAL; |
| if (s390_get_insn_slot(p)) |
| return -ENOMEM; |
| copy_instruction(p); |
| return 0; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_kprobe); |
| |
| struct swap_insn_args { |
| struct kprobe *p; |
| unsigned int arm_kprobe : 1; |
| }; |
| |
| static int swap_instruction(void *data) |
| { |
| struct swap_insn_args *args = data; |
| struct kprobe *p = args->p; |
| u16 opc; |
| |
| opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; |
| s390_kernel_write(p->addr, &opc, sizeof(opc)); |
| return 0; |
| } |
| NOKPROBE_SYMBOL(swap_instruction); |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; |
| |
| stop_machine_cpuslocked(swap_instruction, &args, NULL); |
| } |
| NOKPROBE_SYMBOL(arch_arm_kprobe); |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; |
| |
| stop_machine_cpuslocked(swap_instruction, &args, NULL); |
| } |
| NOKPROBE_SYMBOL(arch_disarm_kprobe); |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| s390_free_insn_slot(p); |
| } |
| NOKPROBE_SYMBOL(arch_remove_kprobe); |
| |
| static void enable_singlestep(struct kprobe_ctlblk *kcb, |
| struct pt_regs *regs, |
| unsigned long ip) |
| { |
| union { |
| struct ctlreg regs[3]; |
| struct { |
| struct ctlreg control; |
| struct ctlreg start; |
| struct ctlreg end; |
| }; |
| } per_kprobe; |
| |
| /* Set up the PER control registers %cr9-%cr11 */ |
| per_kprobe.control.val = PER_EVENT_IFETCH; |
| per_kprobe.start.val = ip; |
| per_kprobe.end.val = ip; |
| |
| /* Save control regs and psw mask */ |
| __local_ctl_store(9, 11, kcb->kprobe_saved_ctl); |
| kcb->kprobe_saved_imask = regs->psw.mask & |
| (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); |
| |
| /* Set PER control regs, turns on single step for the given address */ |
| __local_ctl_load(9, 11, per_kprobe.regs); |
| regs->psw.mask |= PSW_MASK_PER; |
| regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); |
| regs->psw.addr = ip; |
| } |
| NOKPROBE_SYMBOL(enable_singlestep); |
| |
| static void disable_singlestep(struct kprobe_ctlblk *kcb, |
| struct pt_regs *regs, |
| unsigned long ip) |
| { |
| /* Restore control regs and psw mask, set new psw address */ |
| __local_ctl_load(9, 11, kcb->kprobe_saved_ctl); |
| regs->psw.mask &= ~PSW_MASK_PER; |
| regs->psw.mask |= kcb->kprobe_saved_imask; |
| regs->psw.addr = ip; |
| } |
| NOKPROBE_SYMBOL(disable_singlestep); |
| |
| /* |
| * Activate a kprobe by storing its pointer to current_kprobe. The |
| * previous kprobe is stored in kcb->prev_kprobe. A stack of up to |
| * two kprobes can be active, see KPROBE_REENTER. |
| */ |
| static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) |
| { |
| kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| __this_cpu_write(current_kprobe, p); |
| } |
| NOKPROBE_SYMBOL(push_kprobe); |
| |
| /* |
| * Deactivate a kprobe by backing up to the previous state. If the |
| * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, |
| * for any other state prev_kprobe.kp will be NULL. |
| */ |
| static void pop_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->prev_kprobe.kp = NULL; |
| } |
| NOKPROBE_SYMBOL(pop_kprobe); |
| |
| static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) |
| { |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SSDONE: |
| case KPROBE_HIT_ACTIVE: |
| kprobes_inc_nmissed_count(p); |
| break; |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| default: |
| /* |
| * A kprobe on the code path to single step an instruction |
| * is a BUG. The code path resides in the .kprobes.text |
| * section and is executed with interrupts disabled. |
| */ |
| pr_err("Failed to recover from reentered kprobes.\n"); |
| dump_kprobe(p); |
| BUG(); |
| } |
| } |
| NOKPROBE_SYMBOL(kprobe_reenter_check); |
| |
| static int kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb; |
| struct kprobe *p; |
| |
| /* |
| * We want to disable preemption for the entire duration of kprobe |
| * processing. That includes the calls to the pre/post handlers |
| * and single stepping the kprobe instruction. |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| p = get_kprobe((void *)(regs->psw.addr - 2)); |
| |
| if (p) { |
| if (kprobe_running()) { |
| /* |
| * We have hit a kprobe while another is still |
| * active. This can happen in the pre and post |
| * handler. Single step the instruction of the |
| * new probe but do not call any handler function |
| * of this secondary kprobe. |
| * push_kprobe and pop_kprobe saves and restores |
| * the currently active kprobe. |
| */ |
| kprobe_reenter_check(kcb, p); |
| push_kprobe(kcb, p); |
| kcb->kprobe_status = KPROBE_REENTER; |
| } else { |
| /* |
| * If we have no pre-handler or it returned 0, we |
| * continue with single stepping. If we have a |
| * pre-handler and it returned non-zero, it prepped |
| * for changing execution path, so get out doing |
| * nothing more here. |
| */ |
| push_kprobe(kcb, p); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| if (p->pre_handler && p->pre_handler(p, regs)) { |
| pop_kprobe(kcb); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| } |
| enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); |
| return 1; |
| } /* else: |
| * No kprobe at this address and no active kprobe. The trap has |
| * not been caused by a kprobe breakpoint. The race of breakpoint |
| * vs. kprobe remove does not exist because on s390 as we use |
| * stop_machine to arm/disarm the breakpoints. |
| */ |
| preempt_enable_no_resched(); |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_handler); |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "breakpoint" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| unsigned long ip = regs->psw.addr; |
| int fixup = probe_get_fixup_type(p->ainsn.insn); |
| |
| if (fixup & FIXUP_PSW_NORMAL) |
| ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; |
| |
| if (fixup & FIXUP_BRANCH_NOT_TAKEN) { |
| int ilen = insn_length(p->ainsn.insn[0] >> 8); |
| if (ip - (unsigned long) p->ainsn.insn == ilen) |
| ip = (unsigned long) p->addr + ilen; |
| } |
| |
| if (fixup & FIXUP_RETURN_REGISTER) { |
| int reg = (p->ainsn.insn[0] & 0xf0) >> 4; |
| regs->gprs[reg] += (unsigned long) p->addr - |
| (unsigned long) p->ainsn.insn; |
| } |
| |
| disable_singlestep(kcb, regs, ip); |
| } |
| NOKPROBE_SYMBOL(resume_execution); |
| |
| static int post_kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| struct kprobe *p = kprobe_running(); |
| |
| if (!p) |
| return 0; |
| |
| resume_execution(p, regs); |
| if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| p->post_handler(p, regs, 0); |
| } |
| pop_kprobe(kcb); |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, psw mask |
| * will have PER set, in which case, continue the remaining processing |
| * of do_single_step, as if this is not a probe hit. |
| */ |
| if (regs->psw.mask & PSW_MASK_PER) |
| return 0; |
| |
| return 1; |
| } |
| NOKPROBE_SYMBOL(post_kprobe_handler); |
| |
| static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| struct kprobe *p = kprobe_running(); |
| |
| switch(kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the nip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| disable_singlestep(kcb, regs, (unsigned long) p->addr); |
| pop_kprobe(kcb); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| if (fixup_exception(regs)) |
| return 1; |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_trap_handler); |
| |
| int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| int ret; |
| |
| if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| local_irq_disable(); |
| ret = kprobe_trap_handler(regs, trapnr); |
| if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); |
| return ret; |
| } |
| NOKPROBE_SYMBOL(kprobe_fault_handler); |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = (struct die_args *) data; |
| struct pt_regs *regs = args->regs; |
| int ret = NOTIFY_DONE; |
| |
| if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| local_irq_disable(); |
| |
| switch (val) { |
| case DIE_BPT: |
| if (kprobe_handler(regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_SSTEP: |
| if (post_kprobe_handler(regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_TRAP: |
| if (!preemptible() && kprobe_running() && |
| kprobe_trap_handler(regs, args->trapnr)) |
| ret = NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| |
| if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); |
| |
| return ret; |
| } |
| NOKPROBE_SYMBOL(kprobe_exceptions_notify); |
| |
| int __init arch_init_kprobes(void) |
| { |
| return 0; |
| } |
| |
| int arch_trampoline_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |
| NOKPROBE_SYMBOL(arch_trampoline_kprobe); |