| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * AMD SVM support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_types.h> |
| #include <linux/hashtable.h> |
| #include <linux/amd-iommu.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/irq_remapping.h> |
| |
| #include "trace.h" |
| #include "lapic.h" |
| #include "x86.h" |
| #include "irq.h" |
| #include "svm.h" |
| |
| /* |
| * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID, |
| * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry |
| * if an interrupt can't be delivered, e.g. because the vCPU isn't running. |
| * |
| * For the vCPU ID, use however many bits are currently allowed for the max |
| * guest physical APIC ID (limited by the size of the physical ID table), and |
| * use whatever bits remain to assign arbitrary AVIC IDs to VMs. Note, the |
| * size of the GATag is defined by hardware (32 bits), but is an opaque value |
| * as far as hardware is concerned. |
| */ |
| #define AVIC_VCPU_ID_MASK AVIC_PHYSICAL_MAX_INDEX_MASK |
| |
| #define AVIC_VM_ID_SHIFT HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK) |
| #define AVIC_VM_ID_MASK (GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT) |
| |
| #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK) |
| #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) |
| |
| #define __AVIC_GATAG(vm_id, vcpu_id) ((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \ |
| ((vcpu_id) & AVIC_VCPU_ID_MASK)) |
| #define AVIC_GATAG(vm_id, vcpu_id) \ |
| ({ \ |
| u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id); \ |
| \ |
| WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id)); \ |
| WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id)); \ |
| ga_tag; \ |
| }) |
| |
| static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u); |
| |
| static bool force_avic; |
| module_param_unsafe(force_avic, bool, 0444); |
| |
| /* Note: |
| * This hash table is used to map VM_ID to a struct kvm_svm, |
| * when handling AMD IOMMU GALOG notification to schedule in |
| * a particular vCPU. |
| */ |
| #define SVM_VM_DATA_HASH_BITS 8 |
| static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); |
| static u32 next_vm_id = 0; |
| static bool next_vm_id_wrapped = 0; |
| static DEFINE_SPINLOCK(svm_vm_data_hash_lock); |
| bool x2avic_enabled; |
| |
| /* |
| * This is a wrapper of struct amd_iommu_ir_data. |
| */ |
| struct amd_svm_iommu_ir { |
| struct list_head node; /* Used by SVM for per-vcpu ir_list */ |
| void *data; /* Storing pointer to struct amd_ir_data */ |
| }; |
| |
| static void avic_activate_vmcb(struct vcpu_svm *svm) |
| { |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| |
| vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK); |
| vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK; |
| |
| vmcb->control.int_ctl |= AVIC_ENABLE_MASK; |
| |
| /* |
| * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR |
| * accesses, while interrupt injection to a running vCPU can be |
| * achieved using AVIC doorbell. KVM disables the APIC access page |
| * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling |
| * AVIC in hybrid mode activates only the doorbell mechanism. |
| */ |
| if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) { |
| vmcb->control.int_ctl |= X2APIC_MODE_MASK; |
| vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID; |
| /* Disabling MSR intercept for x2APIC registers */ |
| svm_set_x2apic_msr_interception(svm, false); |
| } else { |
| /* |
| * Flush the TLB, the guest may have inserted a non-APIC |
| * mapping into the TLB while AVIC was disabled. |
| */ |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu); |
| |
| /* For xAVIC and hybrid-xAVIC modes */ |
| vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID; |
| /* Enabling MSR intercept for x2APIC registers */ |
| svm_set_x2apic_msr_interception(svm, true); |
| } |
| } |
| |
| static void avic_deactivate_vmcb(struct vcpu_svm *svm) |
| { |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| |
| vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK); |
| vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK; |
| |
| /* |
| * If running nested and the guest uses its own MSR bitmap, there |
| * is no need to update L0's msr bitmap |
| */ |
| if (is_guest_mode(&svm->vcpu) && |
| vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)) |
| return; |
| |
| /* Enabling MSR intercept for x2APIC registers */ |
| svm_set_x2apic_msr_interception(svm, true); |
| } |
| |
| /* Note: |
| * This function is called from IOMMU driver to notify |
| * SVM to schedule in a particular vCPU of a particular VM. |
| */ |
| int avic_ga_log_notifier(u32 ga_tag) |
| { |
| unsigned long flags; |
| struct kvm_svm *kvm_svm; |
| struct kvm_vcpu *vcpu = NULL; |
| u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); |
| u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); |
| |
| pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); |
| trace_kvm_avic_ga_log(vm_id, vcpu_id); |
| |
| spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
| hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { |
| if (kvm_svm->avic_vm_id != vm_id) |
| continue; |
| vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); |
| break; |
| } |
| spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
| |
| /* Note: |
| * At this point, the IOMMU should have already set the pending |
| * bit in the vAPIC backing page. So, we just need to schedule |
| * in the vcpu. |
| */ |
| if (vcpu) |
| kvm_vcpu_wake_up(vcpu); |
| |
| return 0; |
| } |
| |
| void avic_vm_destroy(struct kvm *kvm) |
| { |
| unsigned long flags; |
| struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
| |
| if (!enable_apicv) |
| return; |
| |
| if (kvm_svm->avic_logical_id_table_page) |
| __free_page(kvm_svm->avic_logical_id_table_page); |
| if (kvm_svm->avic_physical_id_table_page) |
| __free_page(kvm_svm->avic_physical_id_table_page); |
| |
| spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
| hash_del(&kvm_svm->hnode); |
| spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
| } |
| |
| int avic_vm_init(struct kvm *kvm) |
| { |
| unsigned long flags; |
| int err = -ENOMEM; |
| struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
| struct kvm_svm *k2; |
| struct page *p_page; |
| struct page *l_page; |
| u32 vm_id; |
| |
| if (!enable_apicv) |
| return 0; |
| |
| /* Allocating physical APIC ID table (4KB) */ |
| p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!p_page) |
| goto free_avic; |
| |
| kvm_svm->avic_physical_id_table_page = p_page; |
| |
| /* Allocating logical APIC ID table (4KB) */ |
| l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!l_page) |
| goto free_avic; |
| |
| kvm_svm->avic_logical_id_table_page = l_page; |
| |
| spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
| again: |
| vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; |
| if (vm_id == 0) { /* id is 1-based, zero is not okay */ |
| next_vm_id_wrapped = 1; |
| goto again; |
| } |
| /* Is it still in use? Only possible if wrapped at least once */ |
| if (next_vm_id_wrapped) { |
| hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { |
| if (k2->avic_vm_id == vm_id) |
| goto again; |
| } |
| } |
| kvm_svm->avic_vm_id = vm_id; |
| hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); |
| spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
| |
| return 0; |
| |
| free_avic: |
| avic_vm_destroy(kvm); |
| return err; |
| } |
| |
| void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb) |
| { |
| struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); |
| phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); |
| phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); |
| phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); |
| |
| vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; |
| vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; |
| vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; |
| vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK; |
| |
| if (kvm_apicv_activated(svm->vcpu.kvm)) |
| avic_activate_vmcb(svm); |
| else |
| avic_deactivate_vmcb(svm); |
| } |
| |
| static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, |
| unsigned int index) |
| { |
| u64 *avic_physical_id_table; |
| struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
| |
| if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) || |
| (index > X2AVIC_MAX_PHYSICAL_ID)) |
| return NULL; |
| |
| avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); |
| |
| return &avic_physical_id_table[index]; |
| } |
| |
| static int avic_init_backing_page(struct kvm_vcpu *vcpu) |
| { |
| u64 *entry, new_entry; |
| int id = vcpu->vcpu_id; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) || |
| (id > X2AVIC_MAX_PHYSICAL_ID)) |
| return -EINVAL; |
| |
| if (!vcpu->arch.apic->regs) |
| return -EINVAL; |
| |
| if (kvm_apicv_activated(vcpu->kvm)) { |
| int ret; |
| |
| /* |
| * Note, AVIC hardware walks the nested page table to check |
| * permissions, but does not use the SPA address specified in |
| * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE |
| * pointer field of the VMCB. |
| */ |
| ret = kvm_alloc_apic_access_page(vcpu->kvm); |
| if (ret) |
| return ret; |
| } |
| |
| svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs); |
| |
| /* Setting AVIC backing page address in the phy APIC ID table */ |
| entry = avic_get_physical_id_entry(vcpu, id); |
| if (!entry) |
| return -EINVAL; |
| |
| new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & |
| AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | |
| AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); |
| WRITE_ONCE(*entry, new_entry); |
| |
| svm->avic_physical_id_cache = entry; |
| |
| return 0; |
| } |
| |
| void avic_ring_doorbell(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Note, the vCPU could get migrated to a different pCPU at any point, |
| * which could result in signalling the wrong/previous pCPU. But if |
| * that happens the vCPU is guaranteed to do a VMRUN (after being |
| * migrated) and thus will process pending interrupts, i.e. a doorbell |
| * is not needed (and the spurious one is harmless). |
| */ |
| int cpu = READ_ONCE(vcpu->cpu); |
| |
| if (cpu != get_cpu()) { |
| wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu)); |
| trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu)); |
| } |
| put_cpu(); |
| } |
| |
| |
| static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl) |
| { |
| vcpu->arch.apic->irr_pending = true; |
| svm_complete_interrupt_delivery(vcpu, |
| icrl & APIC_MODE_MASK, |
| icrl & APIC_INT_LEVELTRIG, |
| icrl & APIC_VECTOR_MASK); |
| } |
| |
| static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id, |
| u32 icrl) |
| { |
| /* |
| * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID, |
| * i.e. APIC ID == vCPU ID. |
| */ |
| struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id); |
| |
| /* Once again, nothing to do if the target vCPU doesn't exist. */ |
| if (unlikely(!target_vcpu)) |
| return; |
| |
| avic_kick_vcpu(target_vcpu, icrl); |
| } |
| |
| static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table, |
| u32 logid_index, u32 icrl) |
| { |
| u32 physical_id; |
| |
| if (avic_logical_id_table) { |
| u32 logid_entry = avic_logical_id_table[logid_index]; |
| |
| /* Nothing to do if the logical destination is invalid. */ |
| if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK))) |
| return; |
| |
| physical_id = logid_entry & |
| AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; |
| } else { |
| /* |
| * For x2APIC, the logical APIC ID is a read-only value that is |
| * derived from the x2APIC ID, thus the x2APIC ID can be found |
| * by reversing the calculation (stored in logid_index). Note, |
| * bits 31:20 of the x2APIC ID aren't propagated to the logical |
| * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS. |
| */ |
| physical_id = logid_index; |
| } |
| |
| avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl); |
| } |
| |
| /* |
| * A fast-path version of avic_kick_target_vcpus(), which attempts to match |
| * destination APIC ID to vCPU without looping through all vCPUs. |
| */ |
| static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source, |
| u32 icrl, u32 icrh, u32 index) |
| { |
| int dest_mode = icrl & APIC_DEST_MASK; |
| int shorthand = icrl & APIC_SHORT_MASK; |
| struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
| u32 dest; |
| |
| if (shorthand != APIC_DEST_NOSHORT) |
| return -EINVAL; |
| |
| if (apic_x2apic_mode(source)) |
| dest = icrh; |
| else |
| dest = GET_XAPIC_DEST_FIELD(icrh); |
| |
| if (dest_mode == APIC_DEST_PHYSICAL) { |
| /* broadcast destination, use slow path */ |
| if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST) |
| return -EINVAL; |
| if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST) |
| return -EINVAL; |
| |
| if (WARN_ON_ONCE(dest != index)) |
| return -EINVAL; |
| |
| avic_kick_vcpu_by_physical_id(kvm, dest, icrl); |
| } else { |
| u32 *avic_logical_id_table; |
| unsigned long bitmap, i; |
| u32 cluster; |
| |
| if (apic_x2apic_mode(source)) { |
| /* 16 bit dest mask, 16 bit cluster id */ |
| bitmap = dest & 0xFFFF; |
| cluster = (dest >> 16) << 4; |
| } else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) { |
| /* 8 bit dest mask*/ |
| bitmap = dest; |
| cluster = 0; |
| } else { |
| /* 4 bit desk mask, 4 bit cluster id */ |
| bitmap = dest & 0xF; |
| cluster = (dest >> 4) << 2; |
| } |
| |
| /* Nothing to do if there are no destinations in the cluster. */ |
| if (unlikely(!bitmap)) |
| return 0; |
| |
| if (apic_x2apic_mode(source)) |
| avic_logical_id_table = NULL; |
| else |
| avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page); |
| |
| /* |
| * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical |
| * IDs, thus each bit in the destination is guaranteed to map |
| * to at most one vCPU. |
| */ |
| for_each_set_bit(i, &bitmap, 16) |
| avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table, |
| cluster + i, icrl); |
| } |
| |
| return 0; |
| } |
| |
| static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source, |
| u32 icrl, u32 icrh, u32 index) |
| { |
| u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh); |
| unsigned long i; |
| struct kvm_vcpu *vcpu; |
| |
| if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index)) |
| return; |
| |
| trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index); |
| |
| /* |
| * Wake any target vCPUs that are blocking, i.e. waiting for a wake |
| * event. There's no need to signal doorbells, as hardware has handled |
| * vCPUs that were in guest at the time of the IPI, and vCPUs that have |
| * since entered the guest will have processed pending IRQs at VMRUN. |
| */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK, |
| dest, icrl & APIC_DEST_MASK)) |
| avic_kick_vcpu(vcpu, icrl); |
| } |
| } |
| |
| int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 icrh = svm->vmcb->control.exit_info_1 >> 32; |
| u32 icrl = svm->vmcb->control.exit_info_1; |
| u32 id = svm->vmcb->control.exit_info_2 >> 32; |
| u32 index = svm->vmcb->control.exit_info_2 & 0x1FF; |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index); |
| |
| switch (id) { |
| case AVIC_IPI_FAILURE_INVALID_TARGET: |
| case AVIC_IPI_FAILURE_INVALID_INT_TYPE: |
| /* |
| * Emulate IPIs that are not handled by AVIC hardware, which |
| * only virtualizes Fixed, Edge-Triggered INTRs, and falls over |
| * if _any_ targets are invalid, e.g. if the logical mode mask |
| * is a superset of running vCPUs. |
| * |
| * The exit is a trap, e.g. ICR holds the correct value and RIP |
| * has been advanced, KVM is responsible only for emulating the |
| * IPI. Sadly, hardware may sometimes leave the BUSY flag set, |
| * in which case KVM needs to emulate the ICR write as well in |
| * order to clear the BUSY flag. |
| */ |
| if (icrl & APIC_ICR_BUSY) |
| kvm_apic_write_nodecode(vcpu, APIC_ICR); |
| else |
| kvm_apic_send_ipi(apic, icrl, icrh); |
| break; |
| case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: |
| /* |
| * At this point, we expect that the AVIC HW has already |
| * set the appropriate IRR bits on the valid target |
| * vcpus. So, we just need to kick the appropriate vcpu. |
| */ |
| avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index); |
| break; |
| case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: |
| WARN_ONCE(1, "Invalid backing page\n"); |
| break; |
| case AVIC_IPI_FAILURE_INVALID_IPI_VECTOR: |
| /* Invalid IPI with vector < 16 */ |
| break; |
| default: |
| vcpu_unimpl(vcpu, "Unknown avic incomplete IPI interception\n"); |
| } |
| |
| return 1; |
| } |
| |
| unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) |
| return APICV_INHIBIT_REASON_NESTED; |
| return 0; |
| } |
| |
| static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) |
| { |
| struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
| u32 *logical_apic_id_table; |
| u32 cluster, index; |
| |
| ldr = GET_APIC_LOGICAL_ID(ldr); |
| |
| if (flat) { |
| cluster = 0; |
| } else { |
| cluster = (ldr >> 4); |
| if (cluster >= 0xf) |
| return NULL; |
| ldr &= 0xf; |
| } |
| if (!ldr || !is_power_of_2(ldr)) |
| return NULL; |
| |
| index = __ffs(ldr); |
| if (WARN_ON_ONCE(index > 7)) |
| return NULL; |
| index += (cluster << 2); |
| |
| logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); |
| |
| return &logical_apic_id_table[index]; |
| } |
| |
| static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) |
| { |
| bool flat; |
| u32 *entry, new_entry; |
| |
| flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; |
| entry = avic_get_logical_id_entry(vcpu, ldr, flat); |
| if (!entry) |
| return; |
| |
| new_entry = READ_ONCE(*entry); |
| new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; |
| new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); |
| new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; |
| WRITE_ONCE(*entry, new_entry); |
| } |
| |
| static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| bool flat = svm->dfr_reg == APIC_DFR_FLAT; |
| u32 *entry; |
| |
| /* Note: x2AVIC does not use logical APIC ID table */ |
| if (apic_x2apic_mode(vcpu->arch.apic)) |
| return; |
| |
| entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); |
| if (entry) |
| clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); |
| } |
| |
| static void avic_handle_ldr_update(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); |
| u32 id = kvm_xapic_id(vcpu->arch.apic); |
| |
| /* AVIC does not support LDR update for x2APIC */ |
| if (apic_x2apic_mode(vcpu->arch.apic)) |
| return; |
| |
| if (ldr == svm->ldr_reg) |
| return; |
| |
| avic_invalidate_logical_id_entry(vcpu); |
| |
| svm->ldr_reg = ldr; |
| avic_ldr_write(vcpu, id, ldr); |
| } |
| |
| static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); |
| |
| if (svm->dfr_reg == dfr) |
| return; |
| |
| avic_invalidate_logical_id_entry(vcpu); |
| svm->dfr_reg = dfr; |
| } |
| |
| static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu) |
| { |
| u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 & |
| AVIC_UNACCEL_ACCESS_OFFSET_MASK; |
| |
| switch (offset) { |
| case APIC_LDR: |
| avic_handle_ldr_update(vcpu); |
| break; |
| case APIC_DFR: |
| avic_handle_dfr_update(vcpu); |
| break; |
| case APIC_RRR: |
| /* Ignore writes to Read Remote Data, it's read-only. */ |
| return 1; |
| default: |
| break; |
| } |
| |
| kvm_apic_write_nodecode(vcpu, offset); |
| return 1; |
| } |
| |
| static bool is_avic_unaccelerated_access_trap(u32 offset) |
| { |
| bool ret = false; |
| |
| switch (offset) { |
| case APIC_ID: |
| case APIC_EOI: |
| case APIC_RRR: |
| case APIC_LDR: |
| case APIC_DFR: |
| case APIC_SPIV: |
| case APIC_ESR: |
| case APIC_ICR: |
| case APIC_LVTT: |
| case APIC_LVTTHMR: |
| case APIC_LVTPC: |
| case APIC_LVT0: |
| case APIC_LVT1: |
| case APIC_LVTERR: |
| case APIC_TMICT: |
| case APIC_TDCR: |
| ret = true; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret = 0; |
| u32 offset = svm->vmcb->control.exit_info_1 & |
| AVIC_UNACCEL_ACCESS_OFFSET_MASK; |
| u32 vector = svm->vmcb->control.exit_info_2 & |
| AVIC_UNACCEL_ACCESS_VECTOR_MASK; |
| bool write = (svm->vmcb->control.exit_info_1 >> 32) & |
| AVIC_UNACCEL_ACCESS_WRITE_MASK; |
| bool trap = is_avic_unaccelerated_access_trap(offset); |
| |
| trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset, |
| trap, write, vector); |
| if (trap) { |
| /* Handling Trap */ |
| WARN_ONCE(!write, "svm: Handling trap read.\n"); |
| ret = avic_unaccel_trap_write(vcpu); |
| } else { |
| /* Handling Fault */ |
| ret = kvm_emulate_instruction(vcpu, 0); |
| } |
| |
| return ret; |
| } |
| |
| int avic_init_vcpu(struct vcpu_svm *svm) |
| { |
| int ret; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm)) |
| return 0; |
| |
| ret = avic_init_backing_page(vcpu); |
| if (ret) |
| return ret; |
| |
| INIT_LIST_HEAD(&svm->ir_list); |
| spin_lock_init(&svm->ir_list_lock); |
| svm->dfr_reg = APIC_DFR_FLAT; |
| |
| return ret; |
| } |
| |
| void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu) |
| { |
| avic_handle_dfr_update(vcpu); |
| avic_handle_ldr_update(vcpu); |
| } |
| |
| static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate) |
| { |
| int ret = 0; |
| unsigned long flags; |
| struct amd_svm_iommu_ir *ir; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!kvm_arch_has_assigned_device(vcpu->kvm)) |
| return 0; |
| |
| /* |
| * Here, we go through the per-vcpu ir_list to update all existing |
| * interrupt remapping table entry targeting this vcpu. |
| */ |
| spin_lock_irqsave(&svm->ir_list_lock, flags); |
| |
| if (list_empty(&svm->ir_list)) |
| goto out; |
| |
| list_for_each_entry(ir, &svm->ir_list, node) { |
| if (activate) |
| ret = amd_iommu_activate_guest_mode(ir->data); |
| else |
| ret = amd_iommu_deactivate_guest_mode(ir->data); |
| if (ret) |
| break; |
| } |
| out: |
| spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| return ret; |
| } |
| |
| static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) |
| { |
| unsigned long flags; |
| struct amd_svm_iommu_ir *cur; |
| |
| spin_lock_irqsave(&svm->ir_list_lock, flags); |
| list_for_each_entry(cur, &svm->ir_list, node) { |
| if (cur->data != pi->ir_data) |
| continue; |
| list_del(&cur->node); |
| kfree(cur); |
| break; |
| } |
| spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| } |
| |
| static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) |
| { |
| int ret = 0; |
| unsigned long flags; |
| struct amd_svm_iommu_ir *ir; |
| u64 entry; |
| |
| /** |
| * In some cases, the existing irte is updated and re-set, |
| * so we need to check here if it's already been * added |
| * to the ir_list. |
| */ |
| if (pi->ir_data && (pi->prev_ga_tag != 0)) { |
| struct kvm *kvm = svm->vcpu.kvm; |
| u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); |
| struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); |
| struct vcpu_svm *prev_svm; |
| |
| if (!prev_vcpu) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| prev_svm = to_svm(prev_vcpu); |
| svm_ir_list_del(prev_svm, pi); |
| } |
| |
| /** |
| * Allocating new amd_iommu_pi_data, which will get |
| * add to the per-vcpu ir_list. |
| */ |
| ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); |
| if (!ir) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| ir->data = pi->ir_data; |
| |
| spin_lock_irqsave(&svm->ir_list_lock, flags); |
| |
| /* |
| * Update the target pCPU for IOMMU doorbells if the vCPU is running. |
| * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM |
| * will update the pCPU info when the vCPU awkened and/or scheduled in. |
| * See also avic_vcpu_load(). |
| */ |
| entry = READ_ONCE(*(svm->avic_physical_id_cache)); |
| if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) |
| amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK, |
| true, pi->ir_data); |
| |
| list_add(&ir->node, &svm->ir_list); |
| spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| out: |
| return ret; |
| } |
| |
| /* |
| * Note: |
| * The HW cannot support posting multicast/broadcast |
| * interrupts to a vCPU. So, we still use legacy interrupt |
| * remapping for these kind of interrupts. |
| * |
| * For lowest-priority interrupts, we only support |
| * those with single CPU as the destination, e.g. user |
| * configures the interrupts via /proc/irq or uses |
| * irqbalance to make the interrupts single-CPU. |
| */ |
| static int |
| get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, |
| struct vcpu_data *vcpu_info, struct vcpu_svm **svm) |
| { |
| struct kvm_lapic_irq irq; |
| struct kvm_vcpu *vcpu = NULL; |
| |
| kvm_set_msi_irq(kvm, e, &irq); |
| |
| if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || |
| !kvm_irq_is_postable(&irq)) { |
| pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", |
| __func__, irq.vector); |
| return -1; |
| } |
| |
| pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, |
| irq.vector); |
| *svm = to_svm(vcpu); |
| vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); |
| vcpu_info->vector = irq.vector; |
| |
| return 0; |
| } |
| |
| /* |
| * avic_pi_update_irte - set IRTE for Posted-Interrupts |
| * |
| * @kvm: kvm |
| * @host_irq: host irq of the interrupt |
| * @guest_irq: gsi of the interrupt |
| * @set: set or unset PI |
| * returns 0 on success, < 0 on failure |
| */ |
| int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, |
| uint32_t guest_irq, bool set) |
| { |
| struct kvm_kernel_irq_routing_entry *e; |
| struct kvm_irq_routing_table *irq_rt; |
| int idx, ret = 0; |
| |
| if (!kvm_arch_has_assigned_device(kvm) || |
| !irq_remapping_cap(IRQ_POSTING_CAP)) |
| return 0; |
| |
| pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", |
| __func__, host_irq, guest_irq, set); |
| |
| idx = srcu_read_lock(&kvm->irq_srcu); |
| irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); |
| |
| if (guest_irq >= irq_rt->nr_rt_entries || |
| hlist_empty(&irq_rt->map[guest_irq])) { |
| pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", |
| guest_irq, irq_rt->nr_rt_entries); |
| goto out; |
| } |
| |
| hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { |
| struct vcpu_data vcpu_info; |
| struct vcpu_svm *svm = NULL; |
| |
| if (e->type != KVM_IRQ_ROUTING_MSI) |
| continue; |
| |
| /** |
| * Here, we setup with legacy mode in the following cases: |
| * 1. When cannot target interrupt to a specific vcpu. |
| * 2. Unsetting posted interrupt. |
| * 3. APIC virtualization is disabled for the vcpu. |
| * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) |
| */ |
| if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && |
| kvm_vcpu_apicv_active(&svm->vcpu)) { |
| struct amd_iommu_pi_data pi; |
| |
| /* Try to enable guest_mode in IRTE */ |
| pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & |
| AVIC_HPA_MASK); |
| pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, |
| svm->vcpu.vcpu_id); |
| pi.is_guest_mode = true; |
| pi.vcpu_data = &vcpu_info; |
| ret = irq_set_vcpu_affinity(host_irq, &pi); |
| |
| /** |
| * Here, we successfully setting up vcpu affinity in |
| * IOMMU guest mode. Now, we need to store the posted |
| * interrupt information in a per-vcpu ir_list so that |
| * we can reference to them directly when we update vcpu |
| * scheduling information in IOMMU irte. |
| */ |
| if (!ret && pi.is_guest_mode) |
| svm_ir_list_add(svm, &pi); |
| } else { |
| /* Use legacy mode in IRTE */ |
| struct amd_iommu_pi_data pi; |
| |
| /** |
| * Here, pi is used to: |
| * - Tell IOMMU to use legacy mode for this interrupt. |
| * - Retrieve ga_tag of prior interrupt remapping data. |
| */ |
| pi.prev_ga_tag = 0; |
| pi.is_guest_mode = false; |
| ret = irq_set_vcpu_affinity(host_irq, &pi); |
| |
| /** |
| * Check if the posted interrupt was previously |
| * setup with the guest_mode by checking if the ga_tag |
| * was cached. If so, we need to clean up the per-vcpu |
| * ir_list. |
| */ |
| if (!ret && pi.prev_ga_tag) { |
| int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = kvm_get_vcpu_by_id(kvm, id); |
| if (vcpu) |
| svm_ir_list_del(to_svm(vcpu), &pi); |
| } |
| } |
| |
| if (!ret && svm) { |
| trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, |
| e->gsi, vcpu_info.vector, |
| vcpu_info.pi_desc_addr, set); |
| } |
| |
| if (ret < 0) { |
| pr_err("%s: failed to update PI IRTE\n", __func__); |
| goto out; |
| } |
| } |
| |
| ret = 0; |
| out: |
| srcu_read_unlock(&kvm->irq_srcu, idx); |
| return ret; |
| } |
| |
| static inline int |
| avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) |
| { |
| int ret = 0; |
| struct amd_svm_iommu_ir *ir; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| lockdep_assert_held(&svm->ir_list_lock); |
| |
| if (!kvm_arch_has_assigned_device(vcpu->kvm)) |
| return 0; |
| |
| /* |
| * Here, we go through the per-vcpu ir_list to update all existing |
| * interrupt remapping table entry targeting this vcpu. |
| */ |
| if (list_empty(&svm->ir_list)) |
| return 0; |
| |
| list_for_each_entry(ir, &svm->ir_list, node) { |
| ret = amd_iommu_update_ga(cpu, r, ir->data); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| u64 entry; |
| int h_physical_id = kvm_cpu_get_apicid(cpu); |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long flags; |
| |
| lockdep_assert_preemption_disabled(); |
| |
| if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) |
| return; |
| |
| /* |
| * No need to update anything if the vCPU is blocking, i.e. if the vCPU |
| * is being scheduled in after being preempted. The CPU entries in the |
| * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'. |
| * If the vCPU was migrated, its new CPU value will be stuffed when the |
| * vCPU unblocks. |
| */ |
| if (kvm_vcpu_is_blocking(vcpu)) |
| return; |
| |
| /* |
| * Grab the per-vCPU interrupt remapping lock even if the VM doesn't |
| * _currently_ have assigned devices, as that can change. Holding |
| * ir_list_lock ensures that either svm_ir_list_add() will consume |
| * up-to-date entry information, or that this task will wait until |
| * svm_ir_list_add() completes to set the new target pCPU. |
| */ |
| spin_lock_irqsave(&svm->ir_list_lock, flags); |
| |
| entry = READ_ONCE(*(svm->avic_physical_id_cache)); |
| WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); |
| |
| entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; |
| entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); |
| entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; |
| |
| WRITE_ONCE(*(svm->avic_physical_id_cache), entry); |
| avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true); |
| |
| spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| } |
| |
| void avic_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| u64 entry; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long flags; |
| |
| lockdep_assert_preemption_disabled(); |
| |
| /* |
| * Note, reading the Physical ID entry outside of ir_list_lock is safe |
| * as only the pCPU that has loaded (or is loading) the vCPU is allowed |
| * to modify the entry, and preemption is disabled. I.e. the vCPU |
| * can't be scheduled out and thus avic_vcpu_{put,load}() can't run |
| * recursively. |
| */ |
| entry = READ_ONCE(*(svm->avic_physical_id_cache)); |
| |
| /* Nothing to do if IsRunning == '0' due to vCPU blocking. */ |
| if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)) |
| return; |
| |
| /* |
| * Take and hold the per-vCPU interrupt remapping lock while updating |
| * the Physical ID entry even though the lock doesn't protect against |
| * multiple writers (see above). Holding ir_list_lock ensures that |
| * either svm_ir_list_add() will consume up-to-date entry information, |
| * or that this task will wait until svm_ir_list_add() completes to |
| * mark the vCPU as not running. |
| */ |
| spin_lock_irqsave(&svm->ir_list_lock, flags); |
| |
| avic_update_iommu_vcpu_affinity(vcpu, -1, 0); |
| |
| entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; |
| WRITE_ONCE(*(svm->avic_physical_id_cache), entry); |
| |
| spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| |
| } |
| |
| void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| |
| if (!lapic_in_kernel(vcpu) || !enable_apicv) |
| return; |
| |
| if (kvm_vcpu_apicv_active(vcpu)) { |
| /** |
| * During AVIC temporary deactivation, guest could update |
| * APIC ID, DFR and LDR registers, which would not be trapped |
| * by avic_unaccelerated_access_interception(). In this case, |
| * we need to check and update the AVIC logical APIC ID table |
| * accordingly before re-activating. |
| */ |
| avic_apicv_post_state_restore(vcpu); |
| avic_activate_vmcb(svm); |
| } else { |
| avic_deactivate_vmcb(svm); |
| } |
| vmcb_mark_dirty(vmcb, VMCB_AVIC); |
| } |
| |
| void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) |
| { |
| bool activated = kvm_vcpu_apicv_active(vcpu); |
| |
| if (!enable_apicv) |
| return; |
| |
| avic_refresh_virtual_apic_mode(vcpu); |
| |
| if (activated) |
| avic_vcpu_load(vcpu, vcpu->cpu); |
| else |
| avic_vcpu_put(vcpu); |
| |
| avic_set_pi_irte_mode(vcpu, activated); |
| } |
| |
| void avic_vcpu_blocking(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_vcpu_apicv_active(vcpu)) |
| return; |
| |
| /* |
| * Unload the AVIC when the vCPU is about to block, _before_ |
| * the vCPU actually blocks. |
| * |
| * Any IRQs that arrive before IsRunning=0 will not cause an |
| * incomplete IPI vmexit on the source, therefore vIRR will also |
| * be checked by kvm_vcpu_check_block() before blocking. The |
| * memory barrier implicit in set_current_state orders writing |
| * IsRunning=0 before reading the vIRR. The processor needs a |
| * matching memory barrier on interrupt delivery between writing |
| * IRR and reading IsRunning; the lack of this barrier might be |
| * the cause of errata #1235). |
| */ |
| avic_vcpu_put(vcpu); |
| } |
| |
| void avic_vcpu_unblocking(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_vcpu_apicv_active(vcpu)) |
| return; |
| |
| avic_vcpu_load(vcpu, vcpu->cpu); |
| } |
| |
| /* |
| * Note: |
| * - The module param avic enable both xAPIC and x2APIC mode. |
| * - Hypervisor can support both xAVIC and x2AVIC in the same guest. |
| * - The mode can be switched at run-time. |
| */ |
| bool avic_hardware_setup(void) |
| { |
| if (!npt_enabled) |
| return false; |
| |
| /* AVIC is a prerequisite for x2AVIC. */ |
| if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) { |
| if (boot_cpu_has(X86_FEATURE_X2AVIC)) { |
| pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled"); |
| pr_warn(FW_BUG "Try enable AVIC using force_avic option"); |
| } |
| return false; |
| } |
| |
| if (boot_cpu_has(X86_FEATURE_AVIC)) { |
| pr_info("AVIC enabled\n"); |
| } else if (force_avic) { |
| /* |
| * Some older systems does not advertise AVIC support. |
| * See Revision Guide for specific AMD processor for more detail. |
| */ |
| pr_warn("AVIC is not supported in CPUID but force enabled"); |
| pr_warn("Your system might crash and burn"); |
| } |
| |
| /* AVIC is a prerequisite for x2AVIC. */ |
| x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC); |
| if (x2avic_enabled) |
| pr_info("x2AVIC enabled\n"); |
| |
| amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); |
| |
| return true; |
| } |