| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019 HiSilicon Limited. */ |
| |
| #include <crypto/aes.h> |
| #include <crypto/aead.h> |
| #include <crypto/algapi.h> |
| #include <crypto/authenc.h> |
| #include <crypto/des.h> |
| #include <crypto/hash.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/des.h> |
| #include <crypto/sha1.h> |
| #include <crypto/sha2.h> |
| #include <crypto/skcipher.h> |
| #include <crypto/xts.h> |
| #include <linux/crypto.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/idr.h> |
| |
| #include "sec.h" |
| #include "sec_crypto.h" |
| |
| #define SEC_PRIORITY 4001 |
| #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE) |
| #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE) |
| #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE) |
| #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE) |
| #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE) |
| |
| /* SEC sqe(bd) bit operational relative MACRO */ |
| #define SEC_DE_OFFSET 1 |
| #define SEC_CIPHER_OFFSET 4 |
| #define SEC_SCENE_OFFSET 3 |
| #define SEC_DST_SGL_OFFSET 2 |
| #define SEC_SRC_SGL_OFFSET 7 |
| #define SEC_CKEY_OFFSET 9 |
| #define SEC_CMODE_OFFSET 12 |
| #define SEC_AKEY_OFFSET 5 |
| #define SEC_AEAD_ALG_OFFSET 11 |
| #define SEC_AUTH_OFFSET 6 |
| |
| #define SEC_DE_OFFSET_V3 9 |
| #define SEC_SCENE_OFFSET_V3 5 |
| #define SEC_CKEY_OFFSET_V3 13 |
| #define SEC_CTR_CNT_OFFSET 25 |
| #define SEC_CTR_CNT_ROLLOVER 2 |
| #define SEC_SRC_SGL_OFFSET_V3 11 |
| #define SEC_DST_SGL_OFFSET_V3 14 |
| #define SEC_CALG_OFFSET_V3 4 |
| #define SEC_AKEY_OFFSET_V3 9 |
| #define SEC_MAC_OFFSET_V3 4 |
| #define SEC_AUTH_ALG_OFFSET_V3 15 |
| #define SEC_CIPHER_AUTH_V3 0xbf |
| #define SEC_AUTH_CIPHER_V3 0x40 |
| #define SEC_FLAG_OFFSET 7 |
| #define SEC_FLAG_MASK 0x0780 |
| #define SEC_TYPE_MASK 0x0F |
| #define SEC_DONE_MASK 0x0001 |
| #define SEC_ICV_MASK 0x000E |
| #define SEC_SQE_LEN_RATE_MASK 0x3 |
| |
| #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth)) |
| #define SEC_SGL_SGE_NR 128 |
| #define SEC_CIPHER_AUTH 0xfe |
| #define SEC_AUTH_CIPHER 0x1 |
| #define SEC_MAX_MAC_LEN 64 |
| #define SEC_MAX_AAD_LEN 65535 |
| #define SEC_MAX_CCM_AAD_LEN 65279 |
| #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth)) |
| |
| #define SEC_PBUF_SZ 512 |
| #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ |
| #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE) |
| #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \ |
| SEC_MAX_MAC_LEN * 2) |
| #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG) |
| #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM) |
| #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \ |
| SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM)) |
| #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \ |
| SEC_PBUF_LEFT_SZ(depth)) |
| |
| #define SEC_SQE_LEN_RATE 4 |
| #define SEC_SQE_CFLAG 2 |
| #define SEC_SQE_AEAD_FLAG 3 |
| #define SEC_SQE_DONE 0x1 |
| #define SEC_ICV_ERR 0x2 |
| #define MIN_MAC_LEN 4 |
| #define MAC_LEN_MASK 0x1U |
| #define MAX_INPUT_DATA_LEN 0xFFFE00 |
| #define BITS_MASK 0xFF |
| #define BYTE_BITS 0x8 |
| #define SEC_XTS_NAME_SZ 0x3 |
| #define IV_CM_CAL_NUM 2 |
| #define IV_CL_MASK 0x7 |
| #define IV_CL_MIN 2 |
| #define IV_CL_MID 4 |
| #define IV_CL_MAX 8 |
| #define IV_FLAGS_OFFSET 0x6 |
| #define IV_CM_OFFSET 0x3 |
| #define IV_LAST_BYTE1 1 |
| #define IV_LAST_BYTE2 2 |
| #define IV_LAST_BYTE_MASK 0xFF |
| #define IV_CTR_INIT 0x1 |
| #define IV_BYTE_OFFSET 0x8 |
| |
| static DEFINE_MUTEX(sec_algs_lock); |
| static unsigned int sec_available_devs; |
| |
| struct sec_skcipher { |
| u64 alg_msk; |
| struct skcipher_alg alg; |
| }; |
| |
| struct sec_aead { |
| u64 alg_msk; |
| struct aead_alg alg; |
| }; |
| |
| /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */ |
| static inline u32 sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| if (req->c_req.encrypt) |
| return (u32)atomic_inc_return(&ctx->enc_qcyclic) % |
| ctx->hlf_q_num; |
| |
| return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num + |
| ctx->hlf_q_num; |
| } |
| |
| static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| if (req->c_req.encrypt) |
| atomic_dec(&ctx->enc_qcyclic); |
| else |
| atomic_dec(&ctx->dec_qcyclic); |
| } |
| |
| static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx) |
| { |
| int req_id; |
| |
| spin_lock_bh(&qp_ctx->req_lock); |
| req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC); |
| spin_unlock_bh(&qp_ctx->req_lock); |
| if (unlikely(req_id < 0)) { |
| dev_err(req->ctx->dev, "alloc req id fail!\n"); |
| return req_id; |
| } |
| |
| req->qp_ctx = qp_ctx; |
| qp_ctx->req_list[req_id] = req; |
| |
| return req_id; |
| } |
| |
| static void sec_free_req_id(struct sec_req *req) |
| { |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| int req_id = req->req_id; |
| |
| if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) { |
| dev_err(req->ctx->dev, "free request id invalid!\n"); |
| return; |
| } |
| |
| qp_ctx->req_list[req_id] = NULL; |
| req->qp_ctx = NULL; |
| |
| spin_lock_bh(&qp_ctx->req_lock); |
| idr_remove(&qp_ctx->req_idr, req_id); |
| spin_unlock_bh(&qp_ctx->req_lock); |
| } |
| |
| static u8 pre_parse_finished_bd(struct bd_status *status, void *resp) |
| { |
| struct sec_sqe *bd = resp; |
| |
| status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK; |
| status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1; |
| status->flag = (le16_to_cpu(bd->type2.done_flag) & |
| SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; |
| status->tag = le16_to_cpu(bd->type2.tag); |
| status->err_type = bd->type2.error_type; |
| |
| return bd->type_cipher_auth & SEC_TYPE_MASK; |
| } |
| |
| static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp) |
| { |
| struct sec_sqe3 *bd3 = resp; |
| |
| status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK; |
| status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1; |
| status->flag = (le16_to_cpu(bd3->done_flag) & |
| SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; |
| status->tag = le64_to_cpu(bd3->tag); |
| status->err_type = bd3->error_type; |
| |
| return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK; |
| } |
| |
| static int sec_cb_status_check(struct sec_req *req, |
| struct bd_status *status) |
| { |
| struct sec_ctx *ctx = req->ctx; |
| |
| if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) { |
| dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n", |
| req->err_type, status->done); |
| return -EIO; |
| } |
| |
| if (unlikely(ctx->alg_type == SEC_SKCIPHER)) { |
| if (unlikely(status->flag != SEC_SQE_CFLAG)) { |
| dev_err_ratelimited(ctx->dev, "flag[%u]\n", |
| status->flag); |
| return -EIO; |
| } |
| } else if (unlikely(ctx->alg_type == SEC_AEAD)) { |
| if (unlikely(status->flag != SEC_SQE_AEAD_FLAG || |
| status->icv == SEC_ICV_ERR)) { |
| dev_err_ratelimited(ctx->dev, |
| "flag[%u], icv[%u]\n", |
| status->flag, status->icv); |
| return -EBADMSG; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void sec_req_cb(struct hisi_qp *qp, void *resp) |
| { |
| struct sec_qp_ctx *qp_ctx = qp->qp_ctx; |
| struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx; |
| u8 type_supported = qp_ctx->ctx->type_supported; |
| struct bd_status status; |
| struct sec_ctx *ctx; |
| struct sec_req *req; |
| int err; |
| u8 type; |
| |
| if (type_supported == SEC_BD_TYPE2) { |
| type = pre_parse_finished_bd(&status, resp); |
| req = qp_ctx->req_list[status.tag]; |
| } else { |
| type = pre_parse_finished_bd3(&status, resp); |
| req = (void *)(uintptr_t)status.tag; |
| } |
| |
| if (unlikely(type != type_supported)) { |
| atomic64_inc(&dfx->err_bd_cnt); |
| pr_err("err bd type [%u]\n", type); |
| return; |
| } |
| |
| if (unlikely(!req)) { |
| atomic64_inc(&dfx->invalid_req_cnt); |
| atomic_inc(&qp->qp_status.used); |
| return; |
| } |
| |
| req->err_type = status.err_type; |
| ctx = req->ctx; |
| err = sec_cb_status_check(req, &status); |
| if (err) |
| atomic64_inc(&dfx->done_flag_cnt); |
| |
| atomic64_inc(&dfx->recv_cnt); |
| |
| ctx->req_op->buf_unmap(ctx, req); |
| |
| ctx->req_op->callback(ctx, req, err); |
| } |
| |
| static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| int ret; |
| |
| if (ctx->fake_req_limit <= |
| atomic_read(&qp_ctx->qp->qp_status.used) && |
| !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)) |
| return -EBUSY; |
| |
| spin_lock_bh(&qp_ctx->req_lock); |
| ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe); |
| if (ctx->fake_req_limit <= |
| atomic_read(&qp_ctx->qp->qp_status.used) && !ret) { |
| list_add_tail(&req->backlog_head, &qp_ctx->backlog); |
| atomic64_inc(&ctx->sec->debug.dfx.send_cnt); |
| atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt); |
| spin_unlock_bh(&qp_ctx->req_lock); |
| return -EBUSY; |
| } |
| spin_unlock_bh(&qp_ctx->req_lock); |
| |
| if (unlikely(ret == -EBUSY)) |
| return -ENOBUFS; |
| |
| if (likely(!ret)) { |
| ret = -EINPROGRESS; |
| atomic64_inc(&ctx->sec->debug.dfx.send_cnt); |
| } |
| |
| return ret; |
| } |
| |
| /* Get DMA memory resources */ |
| static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| u16 q_depth = res->depth; |
| int i; |
| |
| res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), |
| &res->c_ivin_dma, GFP_KERNEL); |
| if (!res->c_ivin) |
| return -ENOMEM; |
| |
| for (i = 1; i < q_depth; i++) { |
| res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE; |
| res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| if (res->c_ivin) |
| dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), |
| res->c_ivin, res->c_ivin_dma); |
| } |
| |
| static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| u16 q_depth = res->depth; |
| int i; |
| |
| res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), |
| &res->a_ivin_dma, GFP_KERNEL); |
| if (!res->a_ivin) |
| return -ENOMEM; |
| |
| for (i = 1; i < q_depth; i++) { |
| res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE; |
| res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| if (res->a_ivin) |
| dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), |
| res->a_ivin, res->a_ivin_dma); |
| } |
| |
| static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| u16 q_depth = res->depth; |
| int i; |
| |
| res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1, |
| &res->out_mac_dma, GFP_KERNEL); |
| if (!res->out_mac) |
| return -ENOMEM; |
| |
| for (i = 1; i < q_depth; i++) { |
| res[i].out_mac_dma = res->out_mac_dma + |
| i * (SEC_MAX_MAC_LEN << 1); |
| res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1); |
| } |
| |
| return 0; |
| } |
| |
| static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| if (res->out_mac) |
| dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1, |
| res->out_mac, res->out_mac_dma); |
| } |
| |
| static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| if (res->pbuf) |
| dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth), |
| res->pbuf, res->pbuf_dma); |
| } |
| |
| /* |
| * To improve performance, pbuffer is used for |
| * small packets (< 512Bytes) as IOMMU translation using. |
| */ |
| static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res) |
| { |
| u16 q_depth = res->depth; |
| int size = SEC_PBUF_PAGE_NUM(q_depth); |
| int pbuf_page_offset; |
| int i, j, k; |
| |
| res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth), |
| &res->pbuf_dma, GFP_KERNEL); |
| if (!res->pbuf) |
| return -ENOMEM; |
| |
| /* |
| * SEC_PBUF_PKG contains data pbuf, iv and |
| * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC> |
| * Every PAGE contains six SEC_PBUF_PKG |
| * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG |
| * So we need SEC_PBUF_PAGE_NUM numbers of PAGE |
| * for the SEC_TOTAL_PBUF_SZ |
| */ |
| for (i = 0; i <= size; i++) { |
| pbuf_page_offset = PAGE_SIZE * i; |
| for (j = 0; j < SEC_PBUF_NUM; j++) { |
| k = i * SEC_PBUF_NUM + j; |
| if (k == q_depth) |
| break; |
| res[k].pbuf = res->pbuf + |
| j * SEC_PBUF_PKG + pbuf_page_offset; |
| res[k].pbuf_dma = res->pbuf_dma + |
| j * SEC_PBUF_PKG + pbuf_page_offset; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sec_alg_resource_alloc(struct sec_ctx *ctx, |
| struct sec_qp_ctx *qp_ctx) |
| { |
| struct sec_alg_res *res = qp_ctx->res; |
| struct device *dev = ctx->dev; |
| int ret; |
| |
| ret = sec_alloc_civ_resource(dev, res); |
| if (ret) |
| return ret; |
| |
| if (ctx->alg_type == SEC_AEAD) { |
| ret = sec_alloc_aiv_resource(dev, res); |
| if (ret) |
| goto alloc_aiv_fail; |
| |
| ret = sec_alloc_mac_resource(dev, res); |
| if (ret) |
| goto alloc_mac_fail; |
| } |
| if (ctx->pbuf_supported) { |
| ret = sec_alloc_pbuf_resource(dev, res); |
| if (ret) { |
| dev_err(dev, "fail to alloc pbuf dma resource!\n"); |
| goto alloc_pbuf_fail; |
| } |
| } |
| |
| return 0; |
| |
| alloc_pbuf_fail: |
| if (ctx->alg_type == SEC_AEAD) |
| sec_free_mac_resource(dev, qp_ctx->res); |
| alloc_mac_fail: |
| if (ctx->alg_type == SEC_AEAD) |
| sec_free_aiv_resource(dev, res); |
| alloc_aiv_fail: |
| sec_free_civ_resource(dev, res); |
| return ret; |
| } |
| |
| static void sec_alg_resource_free(struct sec_ctx *ctx, |
| struct sec_qp_ctx *qp_ctx) |
| { |
| struct device *dev = ctx->dev; |
| |
| sec_free_civ_resource(dev, qp_ctx->res); |
| |
| if (ctx->pbuf_supported) |
| sec_free_pbuf_resource(dev, qp_ctx->res); |
| if (ctx->alg_type == SEC_AEAD) |
| sec_free_mac_resource(dev, qp_ctx->res); |
| } |
| |
| static int sec_alloc_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) |
| { |
| u16 q_depth = qp_ctx->qp->sq_depth; |
| struct device *dev = ctx->dev; |
| int ret = -ENOMEM; |
| |
| qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL); |
| if (!qp_ctx->req_list) |
| return ret; |
| |
| qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL); |
| if (!qp_ctx->res) |
| goto err_free_req_list; |
| qp_ctx->res->depth = q_depth; |
| |
| qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); |
| if (IS_ERR(qp_ctx->c_in_pool)) { |
| dev_err(dev, "fail to create sgl pool for input!\n"); |
| goto err_free_res; |
| } |
| |
| qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); |
| if (IS_ERR(qp_ctx->c_out_pool)) { |
| dev_err(dev, "fail to create sgl pool for output!\n"); |
| goto err_free_c_in_pool; |
| } |
| |
| ret = sec_alg_resource_alloc(ctx, qp_ctx); |
| if (ret) |
| goto err_free_c_out_pool; |
| |
| return 0; |
| |
| err_free_c_out_pool: |
| hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); |
| err_free_c_in_pool: |
| hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); |
| err_free_res: |
| kfree(qp_ctx->res); |
| err_free_req_list: |
| kfree(qp_ctx->req_list); |
| return ret; |
| } |
| |
| static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) |
| { |
| struct device *dev = ctx->dev; |
| |
| sec_alg_resource_free(ctx, qp_ctx); |
| hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); |
| hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); |
| kfree(qp_ctx->res); |
| kfree(qp_ctx->req_list); |
| } |
| |
| static int sec_create_qp_ctx(struct sec_ctx *ctx, int qp_ctx_id) |
| { |
| struct sec_qp_ctx *qp_ctx; |
| struct hisi_qp *qp; |
| int ret; |
| |
| qp_ctx = &ctx->qp_ctx[qp_ctx_id]; |
| qp = ctx->qps[qp_ctx_id]; |
| qp->req_type = 0; |
| qp->qp_ctx = qp_ctx; |
| qp_ctx->qp = qp; |
| qp_ctx->ctx = ctx; |
| |
| qp->req_cb = sec_req_cb; |
| |
| spin_lock_init(&qp_ctx->req_lock); |
| idr_init(&qp_ctx->req_idr); |
| INIT_LIST_HEAD(&qp_ctx->backlog); |
| |
| ret = sec_alloc_qp_ctx_resource(ctx, qp_ctx); |
| if (ret) |
| goto err_destroy_idr; |
| |
| ret = hisi_qm_start_qp(qp, 0); |
| if (ret < 0) |
| goto err_resource_free; |
| |
| return 0; |
| |
| err_resource_free: |
| sec_free_qp_ctx_resource(ctx, qp_ctx); |
| err_destroy_idr: |
| idr_destroy(&qp_ctx->req_idr); |
| return ret; |
| } |
| |
| static void sec_release_qp_ctx(struct sec_ctx *ctx, |
| struct sec_qp_ctx *qp_ctx) |
| { |
| hisi_qm_stop_qp(qp_ctx->qp); |
| sec_free_qp_ctx_resource(ctx, qp_ctx); |
| idr_destroy(&qp_ctx->req_idr); |
| } |
| |
| static int sec_ctx_base_init(struct sec_ctx *ctx) |
| { |
| struct sec_dev *sec; |
| int i, ret; |
| |
| ctx->qps = sec_create_qps(); |
| if (!ctx->qps) { |
| pr_err("Can not create sec qps!\n"); |
| return -ENODEV; |
| } |
| |
| sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm); |
| ctx->sec = sec; |
| ctx->dev = &sec->qm.pdev->dev; |
| ctx->hlf_q_num = sec->ctx_q_num >> 1; |
| |
| ctx->pbuf_supported = ctx->sec->iommu_used; |
| |
| /* Half of queue depth is taken as fake requests limit in the queue. */ |
| ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1; |
| ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx), |
| GFP_KERNEL); |
| if (!ctx->qp_ctx) { |
| ret = -ENOMEM; |
| goto err_destroy_qps; |
| } |
| |
| for (i = 0; i < sec->ctx_q_num; i++) { |
| ret = sec_create_qp_ctx(ctx, i); |
| if (ret) |
| goto err_sec_release_qp_ctx; |
| } |
| |
| return 0; |
| |
| err_sec_release_qp_ctx: |
| for (i = i - 1; i >= 0; i--) |
| sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); |
| kfree(ctx->qp_ctx); |
| err_destroy_qps: |
| sec_destroy_qps(ctx->qps, sec->ctx_q_num); |
| return ret; |
| } |
| |
| static void sec_ctx_base_uninit(struct sec_ctx *ctx) |
| { |
| int i; |
| |
| for (i = 0; i < ctx->sec->ctx_q_num; i++) |
| sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); |
| |
| sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num); |
| kfree(ctx->qp_ctx); |
| } |
| |
| static int sec_cipher_init(struct sec_ctx *ctx) |
| { |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| |
| c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE, |
| &c_ctx->c_key_dma, GFP_KERNEL); |
| if (!c_ctx->c_key) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void sec_cipher_uninit(struct sec_ctx *ctx) |
| { |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| |
| memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE); |
| dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE, |
| c_ctx->c_key, c_ctx->c_key_dma); |
| } |
| |
| static int sec_auth_init(struct sec_ctx *ctx) |
| { |
| struct sec_auth_ctx *a_ctx = &ctx->a_ctx; |
| |
| a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, |
| &a_ctx->a_key_dma, GFP_KERNEL); |
| if (!a_ctx->a_key) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void sec_auth_uninit(struct sec_ctx *ctx) |
| { |
| struct sec_auth_ctx *a_ctx = &ctx->a_ctx; |
| |
| memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE); |
| dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, |
| a_ctx->a_key, a_ctx->a_key_dma); |
| } |
| |
| static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm) |
| { |
| const char *alg = crypto_tfm_alg_name(&tfm->base); |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| |
| c_ctx->fallback = false; |
| |
| /* Currently, only XTS mode need fallback tfm when using 192bit key */ |
| if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ))) |
| return 0; |
| |
| c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(c_ctx->fbtfm)) { |
| pr_err("failed to alloc xts mode fallback tfm!\n"); |
| return PTR_ERR(c_ctx->fbtfm); |
| } |
| |
| return 0; |
| } |
| |
| static int sec_skcipher_init(struct crypto_skcipher *tfm) |
| { |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int ret; |
| |
| ctx->alg_type = SEC_SKCIPHER; |
| crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req)); |
| ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm); |
| if (ctx->c_ctx.ivsize > SEC_IV_SIZE) { |
| pr_err("get error skcipher iv size!\n"); |
| return -EINVAL; |
| } |
| |
| ret = sec_ctx_base_init(ctx); |
| if (ret) |
| return ret; |
| |
| ret = sec_cipher_init(ctx); |
| if (ret) |
| goto err_cipher_init; |
| |
| ret = sec_skcipher_fbtfm_init(tfm); |
| if (ret) |
| goto err_fbtfm_init; |
| |
| return 0; |
| |
| err_fbtfm_init: |
| sec_cipher_uninit(ctx); |
| err_cipher_init: |
| sec_ctx_base_uninit(ctx); |
| return ret; |
| } |
| |
| static void sec_skcipher_uninit(struct crypto_skcipher *tfm) |
| { |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| if (ctx->c_ctx.fbtfm) |
| crypto_free_sync_skcipher(ctx->c_ctx.fbtfm); |
| |
| sec_cipher_uninit(ctx); |
| sec_ctx_base_uninit(ctx); |
| } |
| |
| static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen) |
| { |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| int ret; |
| |
| ret = verify_skcipher_des3_key(tfm, key); |
| if (ret) |
| return ret; |
| |
| switch (keylen) { |
| case SEC_DES3_2KEY_SIZE: |
| c_ctx->c_key_len = SEC_CKEY_3DES_2KEY; |
| break; |
| case SEC_DES3_3KEY_SIZE: |
| c_ctx->c_key_len = SEC_CKEY_3DES_3KEY; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx, |
| const u32 keylen, |
| const enum sec_cmode c_mode) |
| { |
| if (c_mode == SEC_CMODE_XTS) { |
| switch (keylen) { |
| case SEC_XTS_MIN_KEY_SIZE: |
| c_ctx->c_key_len = SEC_CKEY_128BIT; |
| break; |
| case SEC_XTS_MID_KEY_SIZE: |
| c_ctx->fallback = true; |
| break; |
| case SEC_XTS_MAX_KEY_SIZE: |
| c_ctx->c_key_len = SEC_CKEY_256BIT; |
| break; |
| default: |
| pr_err("hisi_sec2: xts mode key error!\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (c_ctx->c_alg == SEC_CALG_SM4 && |
| keylen != AES_KEYSIZE_128) { |
| pr_err("hisi_sec2: sm4 key error!\n"); |
| return -EINVAL; |
| } else { |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| c_ctx->c_key_len = SEC_CKEY_128BIT; |
| break; |
| case AES_KEYSIZE_192: |
| c_ctx->c_key_len = SEC_CKEY_192BIT; |
| break; |
| case AES_KEYSIZE_256: |
| c_ctx->c_key_len = SEC_CKEY_256BIT; |
| break; |
| default: |
| pr_err("hisi_sec2: aes key error!\n"); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| const u32 keylen, const enum sec_calg c_alg, |
| const enum sec_cmode c_mode) |
| { |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| struct device *dev = ctx->dev; |
| int ret; |
| |
| if (c_mode == SEC_CMODE_XTS) { |
| ret = xts_verify_key(tfm, key, keylen); |
| if (ret) { |
| dev_err(dev, "xts mode key err!\n"); |
| return ret; |
| } |
| } |
| |
| c_ctx->c_alg = c_alg; |
| c_ctx->c_mode = c_mode; |
| |
| switch (c_alg) { |
| case SEC_CALG_3DES: |
| ret = sec_skcipher_3des_setkey(tfm, key, keylen); |
| break; |
| case SEC_CALG_AES: |
| case SEC_CALG_SM4: |
| ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); |
| break; |
| default: |
| dev_err(dev, "sec c_alg err!\n"); |
| return -EINVAL; |
| } |
| |
| if (ret) { |
| dev_err(dev, "set sec key err!\n"); |
| return ret; |
| } |
| |
| memcpy(c_ctx->c_key, key, keylen); |
| if (c_ctx->fallback && c_ctx->fbtfm) { |
| ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen); |
| if (ret) { |
| dev_err(dev, "failed to set fallback skcipher key!\n"); |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \ |
| static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\ |
| u32 keylen) \ |
| { \ |
| return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \ |
| } |
| |
| GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB) |
| GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC) |
| GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS) |
| GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR) |
| GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB) |
| GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC) |
| GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS) |
| GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC) |
| GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR) |
| |
| static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req, |
| struct scatterlist *src) |
| { |
| struct sec_aead_req *a_req = &req->aead_req; |
| struct aead_request *aead_req = a_req->aead_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| struct device *dev = ctx->dev; |
| int copy_size, pbuf_length; |
| int req_id = req->req_id; |
| struct crypto_aead *tfm; |
| size_t authsize; |
| u8 *mac_offset; |
| |
| if (ctx->alg_type == SEC_AEAD) |
| copy_size = aead_req->cryptlen + aead_req->assoclen; |
| else |
| copy_size = c_req->c_len; |
| |
| pbuf_length = sg_copy_to_buffer(src, sg_nents(src), |
| qp_ctx->res[req_id].pbuf, copy_size); |
| if (unlikely(pbuf_length != copy_size)) { |
| dev_err(dev, "copy src data to pbuf error!\n"); |
| return -EINVAL; |
| } |
| if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { |
| tfm = crypto_aead_reqtfm(aead_req); |
| authsize = crypto_aead_authsize(tfm); |
| mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize; |
| memcpy(a_req->out_mac, mac_offset, authsize); |
| } |
| |
| req->in_dma = qp_ctx->res[req_id].pbuf_dma; |
| c_req->c_out_dma = req->in_dma; |
| |
| return 0; |
| } |
| |
| static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req, |
| struct scatterlist *dst) |
| { |
| struct aead_request *aead_req = req->aead_req.aead_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| int copy_size, pbuf_length; |
| int req_id = req->req_id; |
| |
| if (ctx->alg_type == SEC_AEAD) |
| copy_size = c_req->c_len + aead_req->assoclen; |
| else |
| copy_size = c_req->c_len; |
| |
| pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), |
| qp_ctx->res[req_id].pbuf, copy_size); |
| if (unlikely(pbuf_length != copy_size)) |
| dev_err(ctx->dev, "copy pbuf data to dst error!\n"); |
| } |
| |
| static int sec_aead_mac_init(struct sec_aead_req *req) |
| { |
| struct aead_request *aead_req = req->aead_req; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); |
| size_t authsize = crypto_aead_authsize(tfm); |
| u8 *mac_out = req->out_mac; |
| struct scatterlist *sgl = aead_req->src; |
| size_t copy_size; |
| off_t skip_size; |
| |
| /* Copy input mac */ |
| skip_size = aead_req->assoclen + aead_req->cryptlen - authsize; |
| copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, |
| authsize, skip_size); |
| if (unlikely(copy_size != authsize)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req, |
| struct scatterlist *src, struct scatterlist *dst) |
| { |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct sec_aead_req *a_req = &req->aead_req; |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| struct sec_alg_res *res = &qp_ctx->res[req->req_id]; |
| struct device *dev = ctx->dev; |
| int ret; |
| |
| if (req->use_pbuf) { |
| c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET; |
| c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET; |
| if (ctx->alg_type == SEC_AEAD) { |
| a_req->a_ivin = res->a_ivin; |
| a_req->a_ivin_dma = res->a_ivin_dma; |
| a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET; |
| a_req->out_mac_dma = res->pbuf_dma + |
| SEC_PBUF_MAC_OFFSET; |
| } |
| ret = sec_cipher_pbuf_map(ctx, req, src); |
| |
| return ret; |
| } |
| c_req->c_ivin = res->c_ivin; |
| c_req->c_ivin_dma = res->c_ivin_dma; |
| if (ctx->alg_type == SEC_AEAD) { |
| a_req->a_ivin = res->a_ivin; |
| a_req->a_ivin_dma = res->a_ivin_dma; |
| a_req->out_mac = res->out_mac; |
| a_req->out_mac_dma = res->out_mac_dma; |
| } |
| |
| req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src, |
| qp_ctx->c_in_pool, |
| req->req_id, |
| &req->in_dma); |
| if (IS_ERR(req->in)) { |
| dev_err(dev, "fail to dma map input sgl buffers!\n"); |
| return PTR_ERR(req->in); |
| } |
| |
| if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { |
| ret = sec_aead_mac_init(a_req); |
| if (unlikely(ret)) { |
| dev_err(dev, "fail to init mac data for ICV!\n"); |
| hisi_acc_sg_buf_unmap(dev, src, req->in); |
| return ret; |
| } |
| } |
| |
| if (dst == src) { |
| c_req->c_out = req->in; |
| c_req->c_out_dma = req->in_dma; |
| } else { |
| c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst, |
| qp_ctx->c_out_pool, |
| req->req_id, |
| &c_req->c_out_dma); |
| |
| if (IS_ERR(c_req->c_out)) { |
| dev_err(dev, "fail to dma map output sgl buffers!\n"); |
| hisi_acc_sg_buf_unmap(dev, src, req->in); |
| return PTR_ERR(c_req->c_out); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req, |
| struct scatterlist *src, struct scatterlist *dst) |
| { |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct device *dev = ctx->dev; |
| |
| if (req->use_pbuf) { |
| sec_cipher_pbuf_unmap(ctx, req, dst); |
| } else { |
| if (dst != src) |
| hisi_acc_sg_buf_unmap(dev, src, req->in); |
| |
| hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out); |
| } |
| } |
| |
| static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct skcipher_request *sq = req->c_req.sk_req; |
| |
| return sec_cipher_map(ctx, req, sq->src, sq->dst); |
| } |
| |
| static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct skcipher_request *sq = req->c_req.sk_req; |
| |
| sec_cipher_unmap(ctx, req, sq->src, sq->dst); |
| } |
| |
| static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx, |
| struct crypto_authenc_keys *keys) |
| { |
| switch (keys->enckeylen) { |
| case AES_KEYSIZE_128: |
| c_ctx->c_key_len = SEC_CKEY_128BIT; |
| break; |
| case AES_KEYSIZE_192: |
| c_ctx->c_key_len = SEC_CKEY_192BIT; |
| break; |
| case AES_KEYSIZE_256: |
| c_ctx->c_key_len = SEC_CKEY_256BIT; |
| break; |
| default: |
| pr_err("hisi_sec2: aead aes key error!\n"); |
| return -EINVAL; |
| } |
| memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen); |
| |
| return 0; |
| } |
| |
| static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx, |
| struct crypto_authenc_keys *keys) |
| { |
| struct crypto_shash *hash_tfm = ctx->hash_tfm; |
| int blocksize, digestsize, ret; |
| |
| if (!keys->authkeylen) { |
| pr_err("hisi_sec2: aead auth key error!\n"); |
| return -EINVAL; |
| } |
| |
| blocksize = crypto_shash_blocksize(hash_tfm); |
| digestsize = crypto_shash_digestsize(hash_tfm); |
| if (keys->authkeylen > blocksize) { |
| ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey, |
| keys->authkeylen, ctx->a_key); |
| if (ret) { |
| pr_err("hisi_sec2: aead auth digest error!\n"); |
| return -EINVAL; |
| } |
| ctx->a_key_len = digestsize; |
| } else { |
| memcpy(ctx->a_key, keys->authkey, keys->authkeylen); |
| ctx->a_key_len = keys->authkeylen; |
| } |
| |
| return 0; |
| } |
| |
| static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct sec_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct sec_auth_ctx *a_ctx = &ctx->a_ctx; |
| |
| if (unlikely(a_ctx->fallback_aead_tfm)) |
| return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize); |
| |
| return 0; |
| } |
| |
| static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx, |
| struct crypto_aead *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK); |
| crypto_aead_set_flags(a_ctx->fallback_aead_tfm, |
| crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); |
| return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen); |
| } |
| |
| static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| const u32 keylen, const enum sec_hash_alg a_alg, |
| const enum sec_calg c_alg, |
| const enum sec_mac_len mac_len, |
| const enum sec_cmode c_mode) |
| { |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| struct sec_auth_ctx *a_ctx = &ctx->a_ctx; |
| struct device *dev = ctx->dev; |
| struct crypto_authenc_keys keys; |
| int ret; |
| |
| ctx->a_ctx.a_alg = a_alg; |
| ctx->c_ctx.c_alg = c_alg; |
| ctx->a_ctx.mac_len = mac_len; |
| c_ctx->c_mode = c_mode; |
| |
| if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) { |
| ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); |
| if (ret) { |
| dev_err(dev, "set sec aes ccm cipher key err!\n"); |
| return ret; |
| } |
| memcpy(c_ctx->c_key, key, keylen); |
| |
| if (unlikely(a_ctx->fallback_aead_tfm)) { |
| ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| ret = crypto_authenc_extractkeys(&keys, key, keylen); |
| if (ret) |
| goto bad_key; |
| |
| ret = sec_aead_aes_set_key(c_ctx, &keys); |
| if (ret) { |
| dev_err(dev, "set sec cipher key err!\n"); |
| goto bad_key; |
| } |
| |
| ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys); |
| if (ret) { |
| dev_err(dev, "set sec auth key err!\n"); |
| goto bad_key; |
| } |
| |
| if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) || |
| (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) { |
| ret = -EINVAL; |
| dev_err(dev, "MAC or AUTH key length error!\n"); |
| goto bad_key; |
| } |
| |
| return 0; |
| |
| bad_key: |
| memzero_explicit(&keys, sizeof(struct crypto_authenc_keys)); |
| return ret; |
| } |
| |
| |
| #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \ |
| static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \ |
| u32 keylen) \ |
| { \ |
| return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\ |
| } |
| |
| GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, |
| SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC) |
| GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, |
| SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC) |
| GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, |
| SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC) |
| GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, |
| SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) |
| GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, |
| SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) |
| GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, |
| SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) |
| GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, |
| SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) |
| |
| static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct aead_request *aq = req->aead_req.aead_req; |
| |
| return sec_cipher_map(ctx, req, aq->src, aq->dst); |
| } |
| |
| static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct aead_request *aq = req->aead_req.aead_req; |
| |
| sec_cipher_unmap(ctx, req, aq->src, aq->dst); |
| } |
| |
| static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| int ret; |
| |
| ret = ctx->req_op->buf_map(ctx, req); |
| if (unlikely(ret)) |
| return ret; |
| |
| ctx->req_op->do_transfer(ctx, req); |
| |
| ret = ctx->req_op->bd_fill(ctx, req); |
| if (unlikely(ret)) |
| goto unmap_req_buf; |
| |
| return ret; |
| |
| unmap_req_buf: |
| ctx->req_op->buf_unmap(ctx, req); |
| return ret; |
| } |
| |
| static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| ctx->req_op->buf_unmap(ctx, req); |
| } |
| |
| static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct skcipher_request *sk_req = req->c_req.sk_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| |
| memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize); |
| } |
| |
| static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct sec_sqe *sec_sqe = &req->sec_sqe; |
| u8 scene, sa_type, da_type; |
| u8 bd_type, cipher; |
| u8 de = 0; |
| |
| memset(sec_sqe, 0, sizeof(struct sec_sqe)); |
| |
| sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma); |
| sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); |
| sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma); |
| sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma); |
| |
| sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) << |
| SEC_CMODE_OFFSET); |
| sec_sqe->type2.c_alg = c_ctx->c_alg; |
| sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) << |
| SEC_CKEY_OFFSET); |
| |
| bd_type = SEC_BD_TYPE2; |
| if (c_req->encrypt) |
| cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET; |
| else |
| cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET; |
| sec_sqe->type_cipher_auth = bd_type | cipher; |
| |
| /* Set destination and source address type */ |
| if (req->use_pbuf) { |
| sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET; |
| da_type = SEC_PBUF << SEC_DST_SGL_OFFSET; |
| } else { |
| sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET; |
| da_type = SEC_SGL << SEC_DST_SGL_OFFSET; |
| } |
| |
| sec_sqe->sdm_addr_type |= da_type; |
| scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET; |
| if (req->in_dma != c_req->c_out_dma) |
| de = 0x1 << SEC_DE_OFFSET; |
| |
| sec_sqe->sds_sa_type = (de | scene | sa_type); |
| |
| sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len); |
| sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id); |
| |
| return 0; |
| } |
| |
| static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| struct sec_cipher_req *c_req = &req->c_req; |
| u32 bd_param = 0; |
| u16 cipher; |
| |
| memset(sec_sqe3, 0, sizeof(struct sec_sqe3)); |
| |
| sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma); |
| sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); |
| sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma); |
| sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma); |
| |
| sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) | |
| c_ctx->c_mode; |
| sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) << |
| SEC_CKEY_OFFSET_V3); |
| |
| if (c_req->encrypt) |
| cipher = SEC_CIPHER_ENC; |
| else |
| cipher = SEC_CIPHER_DEC; |
| sec_sqe3->c_icv_key |= cpu_to_le16(cipher); |
| |
| /* Set the CTR counter mode is 128bit rollover */ |
| sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER << |
| SEC_CTR_CNT_OFFSET); |
| |
| if (req->use_pbuf) { |
| bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3; |
| bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3; |
| } else { |
| bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3; |
| bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3; |
| } |
| |
| bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3; |
| if (req->in_dma != c_req->c_out_dma) |
| bd_param |= 0x1 << SEC_DE_OFFSET_V3; |
| |
| bd_param |= SEC_BD_TYPE3; |
| sec_sqe3->bd_param = cpu_to_le32(bd_param); |
| |
| sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len); |
| sec_sqe3->tag = cpu_to_le64((unsigned long)req); |
| |
| return 0; |
| } |
| |
| /* increment counter (128-bit int) */ |
| static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums) |
| { |
| do { |
| --bits; |
| nums += counter[bits]; |
| counter[bits] = nums & BITS_MASK; |
| nums >>= BYTE_BITS; |
| } while (bits && nums); |
| } |
| |
| static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type) |
| { |
| struct aead_request *aead_req = req->aead_req.aead_req; |
| struct skcipher_request *sk_req = req->c_req.sk_req; |
| u32 iv_size = req->ctx->c_ctx.ivsize; |
| struct scatterlist *sgl; |
| unsigned int cryptlen; |
| size_t sz; |
| u8 *iv; |
| |
| if (req->c_req.encrypt) |
| sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst; |
| else |
| sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src; |
| |
| if (alg_type == SEC_SKCIPHER) { |
| iv = sk_req->iv; |
| cryptlen = sk_req->cryptlen; |
| } else { |
| iv = aead_req->iv; |
| cryptlen = aead_req->cryptlen; |
| } |
| |
| if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) { |
| sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size, |
| cryptlen - iv_size); |
| if (unlikely(sz != iv_size)) |
| dev_err(req->ctx->dev, "copy output iv error!\n"); |
| } else { |
| sz = cryptlen / iv_size; |
| if (cryptlen % iv_size) |
| sz += 1; |
| ctr_iv_inc(iv, iv_size, sz); |
| } |
| } |
| |
| static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx, |
| struct sec_qp_ctx *qp_ctx) |
| { |
| struct sec_req *backlog_req = NULL; |
| |
| spin_lock_bh(&qp_ctx->req_lock); |
| if (ctx->fake_req_limit >= |
| atomic_read(&qp_ctx->qp->qp_status.used) && |
| !list_empty(&qp_ctx->backlog)) { |
| backlog_req = list_first_entry(&qp_ctx->backlog, |
| typeof(*backlog_req), backlog_head); |
| list_del(&backlog_req->backlog_head); |
| } |
| spin_unlock_bh(&qp_ctx->req_lock); |
| |
| return backlog_req; |
| } |
| |
| static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req, |
| int err) |
| { |
| struct skcipher_request *sk_req = req->c_req.sk_req; |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| struct skcipher_request *backlog_sk_req; |
| struct sec_req *backlog_req; |
| |
| sec_free_req_id(req); |
| |
| /* IV output at encrypto of CBC/CTR mode */ |
| if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || |
| ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt) |
| sec_update_iv(req, SEC_SKCIPHER); |
| |
| while (1) { |
| backlog_req = sec_back_req_clear(ctx, qp_ctx); |
| if (!backlog_req) |
| break; |
| |
| backlog_sk_req = backlog_req->c_req.sk_req; |
| skcipher_request_complete(backlog_sk_req, -EINPROGRESS); |
| atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt); |
| } |
| |
| skcipher_request_complete(sk_req, err); |
| } |
| |
| static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct aead_request *aead_req = req->aead_req.aead_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct sec_aead_req *a_req = &req->aead_req; |
| size_t authsize = ctx->a_ctx.mac_len; |
| u32 data_size = aead_req->cryptlen; |
| u8 flage = 0; |
| u8 cm, cl; |
| |
| /* the specification has been checked in aead_iv_demension_check() */ |
| cl = c_req->c_ivin[0] + 1; |
| c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00; |
| memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl); |
| c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT; |
| |
| /* the last 3bit is L' */ |
| flage |= c_req->c_ivin[0] & IV_CL_MASK; |
| |
| /* the M' is bit3~bit5, the Flags is bit6 */ |
| cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM; |
| flage |= cm << IV_CM_OFFSET; |
| if (aead_req->assoclen) |
| flage |= 0x01 << IV_FLAGS_OFFSET; |
| |
| memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize); |
| a_req->a_ivin[0] = flage; |
| |
| /* |
| * the last 32bit is counter's initial number, |
| * but the nonce uses the first 16bit |
| * the tail 16bit fill with the cipher length |
| */ |
| if (!c_req->encrypt) |
| data_size = aead_req->cryptlen - authsize; |
| |
| a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = |
| data_size & IV_LAST_BYTE_MASK; |
| data_size >>= IV_BYTE_OFFSET; |
| a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] = |
| data_size & IV_LAST_BYTE_MASK; |
| } |
| |
| static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct aead_request *aead_req = req->aead_req.aead_req; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); |
| size_t authsize = crypto_aead_authsize(tfm); |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct sec_aead_req *a_req = &req->aead_req; |
| |
| memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize); |
| |
| if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) { |
| /* |
| * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter}, |
| * the counter must set to 0x01 |
| */ |
| ctx->a_ctx.mac_len = authsize; |
| /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */ |
| set_aead_auth_iv(ctx, req); |
| } |
| |
| /* GCM 12Byte Cipher_IV == Auth_IV */ |
| if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) { |
| ctx->a_ctx.mac_len = authsize; |
| memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE); |
| } |
| } |
| |
| static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir, |
| struct sec_req *req, struct sec_sqe *sec_sqe) |
| { |
| struct sec_aead_req *a_req = &req->aead_req; |
| struct aead_request *aq = a_req->aead_req; |
| |
| /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ |
| sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len); |
| |
| /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ |
| sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr; |
| sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); |
| sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET; |
| |
| if (dir) |
| sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; |
| else |
| sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; |
| |
| sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen); |
| sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0); |
| sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); |
| |
| sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); |
| } |
| |
| static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir, |
| struct sec_req *req, struct sec_sqe3 *sqe3) |
| { |
| struct sec_aead_req *a_req = &req->aead_req; |
| struct aead_request *aq = a_req->aead_req; |
| |
| /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ |
| sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3); |
| |
| /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ |
| sqe3->a_key_addr = sqe3->c_key_addr; |
| sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); |
| sqe3->auth_mac_key |= SEC_NO_AUTH; |
| |
| if (dir) |
| sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; |
| else |
| sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; |
| |
| sqe3->a_len_key = cpu_to_le32(aq->assoclen); |
| sqe3->auth_src_offset = cpu_to_le16(0x0); |
| sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); |
| sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); |
| } |
| |
| static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir, |
| struct sec_req *req, struct sec_sqe *sec_sqe) |
| { |
| struct sec_aead_req *a_req = &req->aead_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct aead_request *aq = a_req->aead_req; |
| |
| sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma); |
| |
| sec_sqe->type2.mac_key_alg = |
| cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE); |
| |
| sec_sqe->type2.mac_key_alg |= |
| cpu_to_le32((u32)((ctx->a_key_len) / |
| SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET); |
| |
| sec_sqe->type2.mac_key_alg |= |
| cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET); |
| |
| if (dir) { |
| sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET; |
| sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; |
| } else { |
| sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET; |
| sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; |
| } |
| sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen); |
| |
| sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); |
| |
| sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); |
| } |
| |
| static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; |
| struct sec_sqe *sec_sqe = &req->sec_sqe; |
| int ret; |
| |
| ret = sec_skcipher_bd_fill(ctx, req); |
| if (unlikely(ret)) { |
| dev_err(ctx->dev, "skcipher bd fill is error!\n"); |
| return ret; |
| } |
| |
| if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || |
| ctx->c_ctx.c_mode == SEC_CMODE_GCM) |
| sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe); |
| else |
| sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe); |
| |
| return 0; |
| } |
| |
| static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir, |
| struct sec_req *req, struct sec_sqe3 *sqe3) |
| { |
| struct sec_aead_req *a_req = &req->aead_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| struct aead_request *aq = a_req->aead_req; |
| |
| sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma); |
| |
| sqe3->auth_mac_key |= |
| cpu_to_le32((u32)(ctx->mac_len / |
| SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3); |
| |
| sqe3->auth_mac_key |= |
| cpu_to_le32((u32)(ctx->a_key_len / |
| SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3); |
| |
| sqe3->auth_mac_key |= |
| cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3); |
| |
| if (dir) { |
| sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1); |
| sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; |
| } else { |
| sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2); |
| sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; |
| } |
| sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen); |
| |
| sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); |
| |
| sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); |
| } |
| |
| static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; |
| struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; |
| int ret; |
| |
| ret = sec_skcipher_bd_fill_v3(ctx, req); |
| if (unlikely(ret)) { |
| dev_err(ctx->dev, "skcipher bd3 fill is error!\n"); |
| return ret; |
| } |
| |
| if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || |
| ctx->c_ctx.c_mode == SEC_CMODE_GCM) |
| sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt, |
| req, sec_sqe3); |
| else |
| sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt, |
| req, sec_sqe3); |
| |
| return 0; |
| } |
| |
| static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err) |
| { |
| struct aead_request *a_req = req->aead_req.aead_req; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); |
| struct sec_aead_req *aead_req = &req->aead_req; |
| struct sec_cipher_req *c_req = &req->c_req; |
| size_t authsize = crypto_aead_authsize(tfm); |
| struct sec_qp_ctx *qp_ctx = req->qp_ctx; |
| struct aead_request *backlog_aead_req; |
| struct sec_req *backlog_req; |
| size_t sz; |
| |
| if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt) |
| sec_update_iv(req, SEC_AEAD); |
| |
| /* Copy output mac */ |
| if (!err && c_req->encrypt) { |
| struct scatterlist *sgl = a_req->dst; |
| |
| sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), |
| aead_req->out_mac, |
| authsize, a_req->cryptlen + |
| a_req->assoclen); |
| if (unlikely(sz != authsize)) { |
| dev_err(c->dev, "copy out mac err!\n"); |
| err = -EINVAL; |
| } |
| } |
| |
| sec_free_req_id(req); |
| |
| while (1) { |
| backlog_req = sec_back_req_clear(c, qp_ctx); |
| if (!backlog_req) |
| break; |
| |
| backlog_aead_req = backlog_req->aead_req.aead_req; |
| aead_request_complete(backlog_aead_req, -EINPROGRESS); |
| atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt); |
| } |
| |
| aead_request_complete(a_req, err); |
| } |
| |
| static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| sec_free_req_id(req); |
| sec_free_queue_id(ctx, req); |
| } |
| |
| static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_qp_ctx *qp_ctx; |
| int queue_id; |
| |
| /* To load balance */ |
| queue_id = sec_alloc_queue_id(ctx, req); |
| qp_ctx = &ctx->qp_ctx[queue_id]; |
| |
| req->req_id = sec_alloc_req_id(req, qp_ctx); |
| if (unlikely(req->req_id < 0)) { |
| sec_free_queue_id(ctx, req); |
| return req->req_id; |
| } |
| |
| return 0; |
| } |
| |
| static int sec_process(struct sec_ctx *ctx, struct sec_req *req) |
| { |
| struct sec_cipher_req *c_req = &req->c_req; |
| int ret; |
| |
| ret = sec_request_init(ctx, req); |
| if (unlikely(ret)) |
| return ret; |
| |
| ret = sec_request_transfer(ctx, req); |
| if (unlikely(ret)) |
| goto err_uninit_req; |
| |
| /* Output IV as decrypto */ |
| if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || |
| ctx->c_ctx.c_mode == SEC_CMODE_CTR)) |
| sec_update_iv(req, ctx->alg_type); |
| |
| ret = ctx->req_op->bd_send(ctx, req); |
| if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) || |
| (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { |
| dev_err_ratelimited(ctx->dev, "send sec request failed!\n"); |
| goto err_send_req; |
| } |
| |
| return ret; |
| |
| err_send_req: |
| /* As failing, restore the IV from user */ |
| if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) { |
| if (ctx->alg_type == SEC_SKCIPHER) |
| memcpy(req->c_req.sk_req->iv, c_req->c_ivin, |
| ctx->c_ctx.ivsize); |
| else |
| memcpy(req->aead_req.aead_req->iv, c_req->c_ivin, |
| ctx->c_ctx.ivsize); |
| } |
| |
| sec_request_untransfer(ctx, req); |
| err_uninit_req: |
| sec_request_uninit(ctx, req); |
| return ret; |
| } |
| |
| static const struct sec_req_op sec_skcipher_req_ops = { |
| .buf_map = sec_skcipher_sgl_map, |
| .buf_unmap = sec_skcipher_sgl_unmap, |
| .do_transfer = sec_skcipher_copy_iv, |
| .bd_fill = sec_skcipher_bd_fill, |
| .bd_send = sec_bd_send, |
| .callback = sec_skcipher_callback, |
| .process = sec_process, |
| }; |
| |
| static const struct sec_req_op sec_aead_req_ops = { |
| .buf_map = sec_aead_sgl_map, |
| .buf_unmap = sec_aead_sgl_unmap, |
| .do_transfer = sec_aead_set_iv, |
| .bd_fill = sec_aead_bd_fill, |
| .bd_send = sec_bd_send, |
| .callback = sec_aead_callback, |
| .process = sec_process, |
| }; |
| |
| static const struct sec_req_op sec_skcipher_req_ops_v3 = { |
| .buf_map = sec_skcipher_sgl_map, |
| .buf_unmap = sec_skcipher_sgl_unmap, |
| .do_transfer = sec_skcipher_copy_iv, |
| .bd_fill = sec_skcipher_bd_fill_v3, |
| .bd_send = sec_bd_send, |
| .callback = sec_skcipher_callback, |
| .process = sec_process, |
| }; |
| |
| static const struct sec_req_op sec_aead_req_ops_v3 = { |
| .buf_map = sec_aead_sgl_map, |
| .buf_unmap = sec_aead_sgl_unmap, |
| .do_transfer = sec_aead_set_iv, |
| .bd_fill = sec_aead_bd_fill_v3, |
| .bd_send = sec_bd_send, |
| .callback = sec_aead_callback, |
| .process = sec_process, |
| }; |
| |
| static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm) |
| { |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int ret; |
| |
| ret = sec_skcipher_init(tfm); |
| if (ret) |
| return ret; |
| |
| if (ctx->sec->qm.ver < QM_HW_V3) { |
| ctx->type_supported = SEC_BD_TYPE2; |
| ctx->req_op = &sec_skcipher_req_ops; |
| } else { |
| ctx->type_supported = SEC_BD_TYPE3; |
| ctx->req_op = &sec_skcipher_req_ops_v3; |
| } |
| |
| return ret; |
| } |
| |
| static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm) |
| { |
| sec_skcipher_uninit(tfm); |
| } |
| |
| static int sec_aead_init(struct crypto_aead *tfm) |
| { |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| int ret; |
| |
| crypto_aead_set_reqsize(tfm, sizeof(struct sec_req)); |
| ctx->alg_type = SEC_AEAD; |
| ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm); |
| if (ctx->c_ctx.ivsize < SEC_AIV_SIZE || |
| ctx->c_ctx.ivsize > SEC_IV_SIZE) { |
| pr_err("get error aead iv size!\n"); |
| return -EINVAL; |
| } |
| |
| ret = sec_ctx_base_init(ctx); |
| if (ret) |
| return ret; |
| if (ctx->sec->qm.ver < QM_HW_V3) { |
| ctx->type_supported = SEC_BD_TYPE2; |
| ctx->req_op = &sec_aead_req_ops; |
| } else { |
| ctx->type_supported = SEC_BD_TYPE3; |
| ctx->req_op = &sec_aead_req_ops_v3; |
| } |
| |
| ret = sec_auth_init(ctx); |
| if (ret) |
| goto err_auth_init; |
| |
| ret = sec_cipher_init(ctx); |
| if (ret) |
| goto err_cipher_init; |
| |
| return ret; |
| |
| err_cipher_init: |
| sec_auth_uninit(ctx); |
| err_auth_init: |
| sec_ctx_base_uninit(ctx); |
| return ret; |
| } |
| |
| static void sec_aead_exit(struct crypto_aead *tfm) |
| { |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| |
| sec_cipher_uninit(ctx); |
| sec_auth_uninit(ctx); |
| sec_ctx_base_uninit(ctx); |
| } |
| |
| static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name) |
| { |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; |
| int ret; |
| |
| ret = sec_aead_init(tfm); |
| if (ret) { |
| pr_err("hisi_sec2: aead init error!\n"); |
| return ret; |
| } |
| |
| auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); |
| if (IS_ERR(auth_ctx->hash_tfm)) { |
| dev_err(ctx->dev, "aead alloc shash error!\n"); |
| sec_aead_exit(tfm); |
| return PTR_ERR(auth_ctx->hash_tfm); |
| } |
| |
| return 0; |
| } |
| |
| static void sec_aead_ctx_exit(struct crypto_aead *tfm) |
| { |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| |
| crypto_free_shash(ctx->a_ctx.hash_tfm); |
| sec_aead_exit(tfm); |
| } |
| |
| static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm) |
| { |
| struct aead_alg *alg = crypto_aead_alg(tfm); |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| struct sec_auth_ctx *a_ctx = &ctx->a_ctx; |
| const char *aead_name = alg->base.cra_name; |
| int ret; |
| |
| ret = sec_aead_init(tfm); |
| if (ret) { |
| dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n"); |
| return ret; |
| } |
| |
| a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0, |
| CRYPTO_ALG_NEED_FALLBACK | |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(a_ctx->fallback_aead_tfm)) { |
| dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n"); |
| sec_aead_exit(tfm); |
| return PTR_ERR(a_ctx->fallback_aead_tfm); |
| } |
| a_ctx->fallback = false; |
| |
| return 0; |
| } |
| |
| static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm) |
| { |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| |
| crypto_free_aead(ctx->a_ctx.fallback_aead_tfm); |
| sec_aead_exit(tfm); |
| } |
| |
| static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm) |
| { |
| return sec_aead_ctx_init(tfm, "sha1"); |
| } |
| |
| static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm) |
| { |
| return sec_aead_ctx_init(tfm, "sha256"); |
| } |
| |
| static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm) |
| { |
| return sec_aead_ctx_init(tfm, "sha512"); |
| } |
| |
| static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx, |
| struct sec_req *sreq) |
| { |
| u32 cryptlen = sreq->c_req.sk_req->cryptlen; |
| struct device *dev = ctx->dev; |
| u8 c_mode = ctx->c_ctx.c_mode; |
| int ret = 0; |
| |
| switch (c_mode) { |
| case SEC_CMODE_XTS: |
| if (unlikely(cryptlen < AES_BLOCK_SIZE)) { |
| dev_err(dev, "skcipher XTS mode input length error!\n"); |
| ret = -EINVAL; |
| } |
| break; |
| case SEC_CMODE_ECB: |
| case SEC_CMODE_CBC: |
| if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) { |
| dev_err(dev, "skcipher AES input length error!\n"); |
| ret = -EINVAL; |
| } |
| break; |
| case SEC_CMODE_CTR: |
| if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) { |
| dev_err(dev, "skcipher HW version error!\n"); |
| ret = -EINVAL; |
| } |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq) |
| { |
| struct skcipher_request *sk_req = sreq->c_req.sk_req; |
| struct device *dev = ctx->dev; |
| u8 c_alg = ctx->c_ctx.c_alg; |
| |
| if (unlikely(!sk_req->src || !sk_req->dst || |
| sk_req->cryptlen > MAX_INPUT_DATA_LEN)) { |
| dev_err(dev, "skcipher input param error!\n"); |
| return -EINVAL; |
| } |
| sreq->c_req.c_len = sk_req->cryptlen; |
| |
| if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ) |
| sreq->use_pbuf = true; |
| else |
| sreq->use_pbuf = false; |
| |
| if (c_alg == SEC_CALG_3DES) { |
| if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) { |
| dev_err(dev, "skcipher 3des input length error!\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) { |
| return sec_skcipher_cryptlen_check(ctx, sreq); |
| } |
| |
| dev_err(dev, "skcipher algorithm error!\n"); |
| |
| return -EINVAL; |
| } |
| |
| static int sec_skcipher_soft_crypto(struct sec_ctx *ctx, |
| struct skcipher_request *sreq, bool encrypt) |
| { |
| struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm); |
| struct device *dev = ctx->dev; |
| int ret; |
| |
| if (!c_ctx->fbtfm) { |
| dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n"); |
| return -EINVAL; |
| } |
| |
| skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm); |
| |
| /* software need sync mode to do crypto */ |
| skcipher_request_set_callback(subreq, sreq->base.flags, |
| NULL, NULL); |
| skcipher_request_set_crypt(subreq, sreq->src, sreq->dst, |
| sreq->cryptlen, sreq->iv); |
| if (encrypt) |
| ret = crypto_skcipher_encrypt(subreq); |
| else |
| ret = crypto_skcipher_decrypt(subreq); |
| |
| skcipher_request_zero(subreq); |
| |
| return ret; |
| } |
| |
| static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req); |
| struct sec_req *req = skcipher_request_ctx(sk_req); |
| struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int ret; |
| |
| if (!sk_req->cryptlen) { |
| if (ctx->c_ctx.c_mode == SEC_CMODE_XTS) |
| return -EINVAL; |
| return 0; |
| } |
| |
| req->flag = sk_req->base.flags; |
| req->c_req.sk_req = sk_req; |
| req->c_req.encrypt = encrypt; |
| req->ctx = ctx; |
| |
| ret = sec_skcipher_param_check(ctx, req); |
| if (unlikely(ret)) |
| return -EINVAL; |
| |
| if (unlikely(ctx->c_ctx.fallback)) |
| return sec_skcipher_soft_crypto(ctx, sk_req, encrypt); |
| |
| return ctx->req_op->process(ctx, req); |
| } |
| |
| static int sec_skcipher_encrypt(struct skcipher_request *sk_req) |
| { |
| return sec_skcipher_crypto(sk_req, true); |
| } |
| |
| static int sec_skcipher_decrypt(struct skcipher_request *sk_req) |
| { |
| return sec_skcipher_crypto(sk_req, false); |
| } |
| |
| #define SEC_SKCIPHER_ALG(sec_cra_name, sec_set_key, \ |
| sec_min_key_size, sec_max_key_size, blk_size, iv_size)\ |
| {\ |
| .base = {\ |
| .cra_name = sec_cra_name,\ |
| .cra_driver_name = "hisi_sec_"sec_cra_name,\ |
| .cra_priority = SEC_PRIORITY,\ |
| .cra_flags = CRYPTO_ALG_ASYNC |\ |
| CRYPTO_ALG_NEED_FALLBACK,\ |
| .cra_blocksize = blk_size,\ |
| .cra_ctxsize = sizeof(struct sec_ctx),\ |
| .cra_module = THIS_MODULE,\ |
| },\ |
| .init = sec_skcipher_ctx_init,\ |
| .exit = sec_skcipher_ctx_exit,\ |
| .setkey = sec_set_key,\ |
| .decrypt = sec_skcipher_decrypt,\ |
| .encrypt = sec_skcipher_encrypt,\ |
| .min_keysize = sec_min_key_size,\ |
| .max_keysize = sec_max_key_size,\ |
| .ivsize = iv_size,\ |
| } |
| |
| static struct sec_skcipher sec_skciphers[] = { |
| { |
| .alg_msk = BIT(0), |
| .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE, |
| AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0), |
| }, |
| { |
| .alg_msk = BIT(1), |
| .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE, |
| AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(2), |
| .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE, |
| AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(3), |
| .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE, |
| SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(12), |
| .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE, |
| AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(13), |
| .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE, |
| AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(14), |
| .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE, |
| SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(23), |
| .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE, |
| SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0), |
| }, |
| { |
| .alg_msk = BIT(24), |
| .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE, |
| SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, |
| DES3_EDE_BLOCK_SIZE), |
| }, |
| }; |
| |
| static int aead_iv_demension_check(struct aead_request *aead_req) |
| { |
| u8 cl; |
| |
| cl = aead_req->iv[0] + 1; |
| if (cl < IV_CL_MIN || cl > IV_CL_MAX) |
| return -EINVAL; |
| |
| if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl)) |
| return -EOVERFLOW; |
| |
| return 0; |
| } |
| |
| static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq) |
| { |
| struct aead_request *req = sreq->aead_req.aead_req; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| size_t authsize = crypto_aead_authsize(tfm); |
| u8 c_mode = ctx->c_ctx.c_mode; |
| struct device *dev = ctx->dev; |
| int ret; |
| |
| if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN || |
| req->assoclen > SEC_MAX_AAD_LEN)) { |
| dev_err(dev, "aead input spec error!\n"); |
| return -EINVAL; |
| } |
| |
| if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) || |
| (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN || |
| authsize & MAC_LEN_MASK)))) { |
| dev_err(dev, "aead input mac length error!\n"); |
| return -EINVAL; |
| } |
| |
| if (c_mode == SEC_CMODE_CCM) { |
| if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) { |
| dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n"); |
| return -EINVAL; |
| } |
| ret = aead_iv_demension_check(req); |
| if (ret) { |
| dev_err(dev, "aead input iv param error!\n"); |
| return ret; |
| } |
| } |
| |
| if (sreq->c_req.encrypt) |
| sreq->c_req.c_len = req->cryptlen; |
| else |
| sreq->c_req.c_len = req->cryptlen - authsize; |
| if (c_mode == SEC_CMODE_CBC) { |
| if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) { |
| dev_err(dev, "aead crypto length error!\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq) |
| { |
| struct aead_request *req = sreq->aead_req.aead_req; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| size_t authsize = crypto_aead_authsize(tfm); |
| struct device *dev = ctx->dev; |
| u8 c_alg = ctx->c_ctx.c_alg; |
| |
| if (unlikely(!req->src || !req->dst)) { |
| dev_err(dev, "aead input param error!\n"); |
| return -EINVAL; |
| } |
| |
| if (ctx->sec->qm.ver == QM_HW_V2) { |
| if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt && |
| req->cryptlen <= authsize))) { |
| ctx->a_ctx.fallback = true; |
| return -EINVAL; |
| } |
| } |
| |
| /* Support AES or SM4 */ |
| if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) { |
| dev_err(dev, "aead crypto alg error!\n"); |
| return -EINVAL; |
| } |
| |
| if (unlikely(sec_aead_spec_check(ctx, sreq))) |
| return -EINVAL; |
| |
| if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <= |
| SEC_PBUF_SZ) |
| sreq->use_pbuf = true; |
| else |
| sreq->use_pbuf = false; |
| |
| return 0; |
| } |
| |
| static int sec_aead_soft_crypto(struct sec_ctx *ctx, |
| struct aead_request *aead_req, |
| bool encrypt) |
| { |
| struct sec_auth_ctx *a_ctx = &ctx->a_ctx; |
| struct device *dev = ctx->dev; |
| struct aead_request *subreq; |
| int ret; |
| |
| /* Kunpeng920 aead mode not support input 0 size */ |
| if (!a_ctx->fallback_aead_tfm) { |
| dev_err(dev, "aead fallback tfm is NULL!\n"); |
| return -EINVAL; |
| } |
| |
| subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL); |
| if (!subreq) |
| return -ENOMEM; |
| |
| aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm); |
| aead_request_set_callback(subreq, aead_req->base.flags, |
| aead_req->base.complete, aead_req->base.data); |
| aead_request_set_crypt(subreq, aead_req->src, aead_req->dst, |
| aead_req->cryptlen, aead_req->iv); |
| aead_request_set_ad(subreq, aead_req->assoclen); |
| |
| if (encrypt) |
| ret = crypto_aead_encrypt(subreq); |
| else |
| ret = crypto_aead_decrypt(subreq); |
| aead_request_free(subreq); |
| |
| return ret; |
| } |
| |
| static int sec_aead_crypto(struct aead_request *a_req, bool encrypt) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); |
| struct sec_req *req = aead_request_ctx(a_req); |
| struct sec_ctx *ctx = crypto_aead_ctx(tfm); |
| int ret; |
| |
| req->flag = a_req->base.flags; |
| req->aead_req.aead_req = a_req; |
| req->c_req.encrypt = encrypt; |
| req->ctx = ctx; |
| |
| ret = sec_aead_param_check(ctx, req); |
| if (unlikely(ret)) { |
| if (ctx->a_ctx.fallback) |
| return sec_aead_soft_crypto(ctx, a_req, encrypt); |
| return -EINVAL; |
| } |
| |
| return ctx->req_op->process(ctx, req); |
| } |
| |
| static int sec_aead_encrypt(struct aead_request *a_req) |
| { |
| return sec_aead_crypto(a_req, true); |
| } |
| |
| static int sec_aead_decrypt(struct aead_request *a_req) |
| { |
| return sec_aead_crypto(a_req, false); |
| } |
| |
| #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\ |
| ctx_exit, blk_size, iv_size, max_authsize)\ |
| {\ |
| .base = {\ |
| .cra_name = sec_cra_name,\ |
| .cra_driver_name = "hisi_sec_"sec_cra_name,\ |
| .cra_priority = SEC_PRIORITY,\ |
| .cra_flags = CRYPTO_ALG_ASYNC |\ |
| CRYPTO_ALG_NEED_FALLBACK,\ |
| .cra_blocksize = blk_size,\ |
| .cra_ctxsize = sizeof(struct sec_ctx),\ |
| .cra_module = THIS_MODULE,\ |
| },\ |
| .init = ctx_init,\ |
| .exit = ctx_exit,\ |
| .setkey = sec_set_key,\ |
| .setauthsize = sec_aead_setauthsize,\ |
| .decrypt = sec_aead_decrypt,\ |
| .encrypt = sec_aead_encrypt,\ |
| .ivsize = iv_size,\ |
| .maxauthsize = max_authsize,\ |
| } |
| |
| static struct sec_aead sec_aeads[] = { |
| { |
| .alg_msk = BIT(6), |
| .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init, |
| sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(7), |
| .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init, |
| sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, |
| AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(17), |
| .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init, |
| sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(18), |
| .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init, |
| sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, |
| AES_BLOCK_SIZE), |
| }, |
| { |
| .alg_msk = BIT(43), |
| .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1, |
| sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE, SHA1_DIGEST_SIZE), |
| }, |
| { |
| .alg_msk = BIT(44), |
| .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256, |
| sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE, SHA256_DIGEST_SIZE), |
| }, |
| { |
| .alg_msk = BIT(45), |
| .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512, |
| sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE, SHA512_DIGEST_SIZE), |
| }, |
| }; |
| |
| static void sec_unregister_skcipher(u64 alg_mask, int end) |
| { |
| int i; |
| |
| for (i = 0; i < end; i++) |
| if (sec_skciphers[i].alg_msk & alg_mask) |
| crypto_unregister_skcipher(&sec_skciphers[i].alg); |
| } |
| |
| static int sec_register_skcipher(u64 alg_mask) |
| { |
| int i, ret, count; |
| |
| count = ARRAY_SIZE(sec_skciphers); |
| |
| for (i = 0; i < count; i++) { |
| if (!(sec_skciphers[i].alg_msk & alg_mask)) |
| continue; |
| |
| ret = crypto_register_skcipher(&sec_skciphers[i].alg); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| sec_unregister_skcipher(alg_mask, i); |
| |
| return ret; |
| } |
| |
| static void sec_unregister_aead(u64 alg_mask, int end) |
| { |
| int i; |
| |
| for (i = 0; i < end; i++) |
| if (sec_aeads[i].alg_msk & alg_mask) |
| crypto_unregister_aead(&sec_aeads[i].alg); |
| } |
| |
| static int sec_register_aead(u64 alg_mask) |
| { |
| int i, ret, count; |
| |
| count = ARRAY_SIZE(sec_aeads); |
| |
| for (i = 0; i < count; i++) { |
| if (!(sec_aeads[i].alg_msk & alg_mask)) |
| continue; |
| |
| ret = crypto_register_aead(&sec_aeads[i].alg); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| sec_unregister_aead(alg_mask, i); |
| |
| return ret; |
| } |
| |
| int sec_register_to_crypto(struct hisi_qm *qm) |
| { |
| u64 alg_mask; |
| int ret = 0; |
| |
| alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX, |
| SEC_DRV_ALG_BITMAP_LOW_IDX); |
| |
| mutex_lock(&sec_algs_lock); |
| if (sec_available_devs) { |
| sec_available_devs++; |
| goto unlock; |
| } |
| |
| ret = sec_register_skcipher(alg_mask); |
| if (ret) |
| goto unlock; |
| |
| ret = sec_register_aead(alg_mask); |
| if (ret) |
| goto unreg_skcipher; |
| |
| sec_available_devs++; |
| mutex_unlock(&sec_algs_lock); |
| |
| return 0; |
| |
| unreg_skcipher: |
| sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); |
| unlock: |
| mutex_unlock(&sec_algs_lock); |
| return ret; |
| } |
| |
| void sec_unregister_from_crypto(struct hisi_qm *qm) |
| { |
| u64 alg_mask; |
| |
| alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX, |
| SEC_DRV_ALG_BITMAP_LOW_IDX); |
| |
| mutex_lock(&sec_algs_lock); |
| if (--sec_available_devs) |
| goto unlock; |
| |
| sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads)); |
| sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); |
| |
| unlock: |
| mutex_unlock(&sec_algs_lock); |
| } |