| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Nuvoton NPCM7xx I2C Controller driver |
| * |
| * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com |
| */ |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/debugfs.h> |
| #include <linux/errno.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/irq.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| |
| enum i2c_mode { |
| I2C_MASTER, |
| I2C_SLAVE, |
| }; |
| |
| /* |
| * External I2C Interface driver xfer indication values, which indicate status |
| * of the bus. |
| */ |
| enum i2c_state_ind { |
| I2C_NO_STATUS_IND = 0, |
| I2C_SLAVE_RCV_IND, |
| I2C_SLAVE_XMIT_IND, |
| I2C_SLAVE_XMIT_MISSING_DATA_IND, |
| I2C_SLAVE_RESTART_IND, |
| I2C_SLAVE_DONE_IND, |
| I2C_MASTER_DONE_IND, |
| I2C_NACK_IND, |
| I2C_BUS_ERR_IND, |
| I2C_WAKE_UP_IND, |
| I2C_BLOCK_BYTES_ERR_IND, |
| I2C_SLAVE_RCV_MISSING_DATA_IND, |
| }; |
| |
| /* |
| * Operation type values (used to define the operation currently running) |
| * module is interrupt driven, on each interrupt the current operation is |
| * checked to see if the module is currently reading or writing. |
| */ |
| enum i2c_oper { |
| I2C_NO_OPER = 0, |
| I2C_WRITE_OPER, |
| I2C_READ_OPER, |
| }; |
| |
| /* I2C Bank (module had 2 banks of registers) */ |
| enum i2c_bank { |
| I2C_BANK_0 = 0, |
| I2C_BANK_1, |
| }; |
| |
| /* Internal I2C states values (for the I2C module state machine). */ |
| enum i2c_state { |
| I2C_DISABLE = 0, |
| I2C_IDLE, |
| I2C_MASTER_START, |
| I2C_SLAVE_MATCH, |
| I2C_OPER_STARTED, |
| I2C_STOP_PENDING, |
| }; |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| /* Module supports setting multiple own slave addresses */ |
| enum i2c_addr { |
| I2C_SLAVE_ADDR1 = 0, |
| I2C_SLAVE_ADDR2, |
| I2C_SLAVE_ADDR3, |
| I2C_SLAVE_ADDR4, |
| I2C_SLAVE_ADDR5, |
| I2C_SLAVE_ADDR6, |
| I2C_SLAVE_ADDR7, |
| I2C_SLAVE_ADDR8, |
| I2C_SLAVE_ADDR9, |
| I2C_SLAVE_ADDR10, |
| I2C_GC_ADDR, |
| I2C_ARP_ADDR, |
| }; |
| #endif |
| |
| /* init register and default value required to enable module */ |
| #define NPCM_I2CSEGCTL 0xE4 |
| |
| /* Common regs */ |
| #define NPCM_I2CSDA 0x00 |
| #define NPCM_I2CST 0x02 |
| #define NPCM_I2CCST 0x04 |
| #define NPCM_I2CCTL1 0x06 |
| #define NPCM_I2CADDR1 0x08 |
| #define NPCM_I2CCTL2 0x0A |
| #define NPCM_I2CADDR2 0x0C |
| #define NPCM_I2CCTL3 0x0E |
| #define NPCM_I2CCST2 0x18 |
| #define NPCM_I2CCST3 0x19 |
| #define I2C_VER 0x1F |
| |
| /* BANK 0 regs */ |
| #define NPCM_I2CADDR3 0x10 |
| #define NPCM_I2CADDR7 0x11 |
| #define NPCM_I2CADDR4 0x12 |
| #define NPCM_I2CADDR8 0x13 |
| #define NPCM_I2CADDR5 0x14 |
| #define NPCM_I2CADDR9 0x15 |
| #define NPCM_I2CADDR6 0x16 |
| #define NPCM_I2CADDR10 0x17 |
| #define NPCM_I2CCTL4 0x1A |
| #define NPCM_I2CCTL5 0x1B |
| #define NPCM_I2CSCLLT 0x1C /* SCL Low Time */ |
| #define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */ |
| #define NPCM_I2CSCLHT 0x1E /* SCL High Time */ |
| |
| /* BANK 1 regs */ |
| #define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */ |
| #define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */ |
| #define NPCM_I2CT_OUT 0x14 /* Bus T.O. */ |
| #define NPCM_I2CPEC 0x16 /* PEC Data */ |
| #define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */ |
| #define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */ |
| #define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */ |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| /* |
| * npcm_i2caddr array: |
| * The module supports having multiple own slave addresses. |
| * Since the addr regs are sprinkled all over the address space, |
| * use this array to get the address or each register. |
| */ |
| #define I2C_NUM_OWN_ADDR 2 |
| #define I2C_NUM_OWN_ADDR_SUPPORTED 2 |
| |
| static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = { |
| NPCM_I2CADDR1, NPCM_I2CADDR2, |
| }; |
| #endif |
| |
| /* NPCM_I2CST reg fields */ |
| #define NPCM_I2CST_XMIT BIT(0) /* Transmit mode */ |
| #define NPCM_I2CST_MASTER BIT(1) /* Master mode */ |
| #define NPCM_I2CST_NMATCH BIT(2) /* New match */ |
| #define NPCM_I2CST_STASTR BIT(3) /* Stall after start */ |
| #define NPCM_I2CST_NEGACK BIT(4) /* Negative ACK */ |
| #define NPCM_I2CST_BER BIT(5) /* Bus error */ |
| #define NPCM_I2CST_SDAST BIT(6) /* SDA status */ |
| #define NPCM_I2CST_SLVSTP BIT(7) /* Slave stop */ |
| |
| /* NPCM_I2CCST reg fields */ |
| #define NPCM_I2CCST_BUSY BIT(0) /* Busy */ |
| #define NPCM_I2CCST_BB BIT(1) /* Bus busy */ |
| #define NPCM_I2CCST_MATCH BIT(2) /* Address match */ |
| #define NPCM_I2CCST_GCMATCH BIT(3) /* Global call match */ |
| #define NPCM_I2CCST_TSDA BIT(4) /* Test SDA line */ |
| #define NPCM_I2CCST_TGSCL BIT(5) /* Toggle SCL line */ |
| #define NPCM_I2CCST_MATCHAF BIT(6) /* Match address field */ |
| #define NPCM_I2CCST_ARPMATCH BIT(7) /* ARP address match */ |
| |
| /* NPCM_I2CCTL1 reg fields */ |
| #define NPCM_I2CCTL1_START BIT(0) /* Generate start condition */ |
| #define NPCM_I2CCTL1_STOP BIT(1) /* Generate stop condition */ |
| #define NPCM_I2CCTL1_INTEN BIT(2) /* Interrupt enable */ |
| #define NPCM_I2CCTL1_EOBINTE BIT(3) |
| #define NPCM_I2CCTL1_ACK BIT(4) |
| #define NPCM_I2CCTL1_GCMEN BIT(5) /* Global call match enable */ |
| #define NPCM_I2CCTL1_NMINTE BIT(6) /* New match interrupt enable */ |
| #define NPCM_I2CCTL1_STASTRE BIT(7) /* Stall after start enable */ |
| |
| /* RW1S fields (inside a RW reg): */ |
| #define NPCM_I2CCTL1_RWS \ |
| (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK) |
| |
| /* npcm_i2caddr reg fields */ |
| #define NPCM_I2CADDR_A GENMASK(6, 0) /* Address */ |
| #define NPCM_I2CADDR_SAEN BIT(7) /* Slave address enable */ |
| |
| /* NPCM_I2CCTL2 reg fields */ |
| #define I2CCTL2_ENABLE BIT(0) /* Module enable */ |
| #define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1) /* Bits 0:6 of frequency divisor */ |
| |
| /* NPCM_I2CCTL3 reg fields */ |
| #define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0) /* Bits 7:8 of frequency divisor */ |
| #define I2CCTL3_ARPMEN BIT(2) /* ARP match enable */ |
| #define I2CCTL3_IDL_START BIT(3) |
| #define I2CCTL3_400K_MODE BIT(4) |
| #define I2CCTL3_BNK_SEL BIT(5) |
| #define I2CCTL3_SDA_LVL BIT(6) |
| #define I2CCTL3_SCL_LVL BIT(7) |
| |
| /* NPCM_I2CCST2 reg fields */ |
| #define NPCM_I2CCST2_MATCHA1F BIT(0) |
| #define NPCM_I2CCST2_MATCHA2F BIT(1) |
| #define NPCM_I2CCST2_MATCHA3F BIT(2) |
| #define NPCM_I2CCST2_MATCHA4F BIT(3) |
| #define NPCM_I2CCST2_MATCHA5F BIT(4) |
| #define NPCM_I2CCST2_MATCHA6F BIT(5) |
| #define NPCM_I2CCST2_MATCHA7F BIT(5) |
| #define NPCM_I2CCST2_INTSTS BIT(7) |
| |
| /* NPCM_I2CCST3 reg fields */ |
| #define NPCM_I2CCST3_MATCHA8F BIT(0) |
| #define NPCM_I2CCST3_MATCHA9F BIT(1) |
| #define NPCM_I2CCST3_MATCHA10F BIT(2) |
| #define NPCM_I2CCST3_EO_BUSY BIT(7) |
| |
| /* NPCM_I2CCTL4 reg fields */ |
| #define I2CCTL4_HLDT GENMASK(5, 0) |
| #define I2CCTL4_LVL_WE BIT(7) |
| |
| /* NPCM_I2CCTL5 reg fields */ |
| #define I2CCTL5_DBNCT GENMASK(3, 0) |
| |
| /* NPCM_I2CFIF_CTS reg fields */ |
| #define NPCM_I2CFIF_CTS_RXF_TXE BIT(1) |
| #define NPCM_I2CFIF_CTS_RFTE_IE BIT(3) |
| #define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6) |
| #define NPCM_I2CFIF_CTS_SLVRSTR BIT(7) |
| |
| /* NPCM_I2CTXF_CTL reg field */ |
| #define NPCM_I2CTXF_CTL_THR_TXIE BIT(6) |
| |
| /* NPCM_I2CT_OUT reg fields */ |
| #define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0) |
| #define NPCM_I2CT_OUT_T_OUTIE BIT(6) |
| #define NPCM_I2CT_OUT_T_OUTST BIT(7) |
| |
| /* NPCM_I2CTXF_STS reg fields */ |
| #define NPCM_I2CTXF_STS_TX_THST BIT(6) |
| |
| /* NPCM_I2CRXF_STS reg fields */ |
| #define NPCM_I2CRXF_STS_RX_THST BIT(6) |
| |
| /* NPCM_I2CFIF_CTL reg fields */ |
| #define NPCM_I2CFIF_CTL_FIFO_EN BIT(4) |
| |
| /* NPCM_I2CRXF_CTL reg fields */ |
| #define NPCM_I2CRXF_CTL_THR_RXIE BIT(6) |
| |
| #define MAX_I2C_HW_FIFO_SIZE 32 |
| |
| /* I2C_VER reg fields */ |
| #define I2C_VER_VERSION GENMASK(6, 0) |
| #define I2C_VER_FIFO_EN BIT(7) |
| |
| /* stall/stuck timeout in us */ |
| #define DEFAULT_STALL_COUNT 25 |
| |
| /* SCLFRQ field position */ |
| #define SCLFRQ_0_TO_6 GENMASK(6, 0) |
| #define SCLFRQ_7_TO_8 GENMASK(8, 7) |
| |
| /* supported clk settings. values in Hz. */ |
| #define I2C_FREQ_MIN_HZ 10000 |
| #define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ |
| |
| struct npcm_i2c_data { |
| u8 fifo_size; |
| u32 segctl_init_val; |
| u8 txf_sts_tx_bytes; |
| u8 rxf_sts_rx_bytes; |
| u8 rxf_ctl_last_pec; |
| }; |
| |
| static const struct npcm_i2c_data npxm7xx_i2c_data = { |
| .fifo_size = 16, |
| .segctl_init_val = 0x0333F000, |
| .txf_sts_tx_bytes = GENMASK(4, 0), |
| .rxf_sts_rx_bytes = GENMASK(4, 0), |
| .rxf_ctl_last_pec = BIT(5), |
| }; |
| |
| static const struct npcm_i2c_data npxm8xx_i2c_data = { |
| .fifo_size = 32, |
| .segctl_init_val = 0x9333F000, |
| .txf_sts_tx_bytes = GENMASK(5, 0), |
| .rxf_sts_rx_bytes = GENMASK(5, 0), |
| .rxf_ctl_last_pec = BIT(7), |
| }; |
| |
| /* Status of one I2C module */ |
| struct npcm_i2c { |
| struct i2c_adapter adap; |
| struct device *dev; |
| unsigned char __iomem *reg; |
| const struct npcm_i2c_data *data; |
| spinlock_t lock; /* IRQ synchronization */ |
| struct completion cmd_complete; |
| int cmd_err; |
| struct i2c_msg *msgs; |
| int msgs_num; |
| int num; |
| u32 apb_clk; |
| struct i2c_bus_recovery_info rinfo; |
| enum i2c_state state; |
| enum i2c_oper operation; |
| enum i2c_mode master_or_slave; |
| enum i2c_state_ind stop_ind; |
| u8 dest_addr; |
| u8 *rd_buf; |
| u16 rd_size; |
| u16 rd_ind; |
| u8 *wr_buf; |
| u16 wr_size; |
| u16 wr_ind; |
| bool fifo_use; |
| u16 PEC_mask; /* PEC bit mask per slave address */ |
| bool PEC_use; |
| bool read_block_use; |
| unsigned long int_time_stamp; |
| unsigned long bus_freq; /* in Hz */ |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| u8 own_slave_addr; |
| struct i2c_client *slave; |
| int slv_rd_size; |
| int slv_rd_ind; |
| int slv_wr_size; |
| int slv_wr_ind; |
| u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE]; |
| u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE]; |
| #endif |
| u64 ber_cnt; |
| u64 rec_succ_cnt; |
| u64 rec_fail_cnt; |
| u64 nack_cnt; |
| u64 timeout_cnt; |
| u64 tx_complete_cnt; |
| }; |
| |
| static inline void npcm_i2c_select_bank(struct npcm_i2c *bus, |
| enum i2c_bank bank) |
| { |
| u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3); |
| |
| if (bank == I2C_BANK_0) |
| i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL; |
| else |
| i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL; |
| iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3); |
| } |
| |
| static void npcm_i2c_init_params(struct npcm_i2c *bus) |
| { |
| bus->stop_ind = I2C_NO_STATUS_IND; |
| bus->rd_size = 0; |
| bus->wr_size = 0; |
| bus->rd_ind = 0; |
| bus->wr_ind = 0; |
| bus->read_block_use = false; |
| bus->int_time_stamp = 0; |
| bus->PEC_use = false; |
| bus->PEC_mask = 0; |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| if (bus->slave) |
| bus->master_or_slave = I2C_SLAVE; |
| #endif |
| } |
| |
| static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data) |
| { |
| iowrite8(data, bus->reg + NPCM_I2CSDA); |
| } |
| |
| static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus) |
| { |
| return ioread8(bus->reg + NPCM_I2CSDA); |
| } |
| |
| static int npcm_i2c_get_SCL(struct i2c_adapter *_adap) |
| { |
| struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap); |
| |
| return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3)); |
| } |
| |
| static int npcm_i2c_get_SDA(struct i2c_adapter *_adap) |
| { |
| struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap); |
| |
| return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3)); |
| } |
| |
| static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus) |
| { |
| if (bus->operation == I2C_READ_OPER) |
| return bus->rd_ind; |
| if (bus->operation == I2C_WRITE_OPER) |
| return bus->wr_ind; |
| return 0; |
| } |
| |
| /* quick protocol (just address) */ |
| static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus) |
| { |
| return bus->wr_size == 0 && bus->rd_size == 0; |
| } |
| |
| static void npcm_i2c_disable(struct npcm_i2c *bus) |
| { |
| u8 i2cctl2; |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| int i; |
| |
| /* Slave addresses removal */ |
| for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) |
| iowrite8(0, bus->reg + npcm_i2caddr[i]); |
| |
| #endif |
| /* Disable module */ |
| i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2); |
| i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE; |
| iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2); |
| |
| bus->state = I2C_DISABLE; |
| } |
| |
| static void npcm_i2c_enable(struct npcm_i2c *bus) |
| { |
| u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2); |
| |
| i2cctl2 = i2cctl2 | I2CCTL2_ENABLE; |
| iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2); |
| bus->state = I2C_IDLE; |
| } |
| |
| /* enable\disable end of busy (EOB) interrupts */ |
| static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable) |
| { |
| u8 val; |
| |
| /* Clear EO_BUSY pending bit: */ |
| val = ioread8(bus->reg + NPCM_I2CCST3); |
| val = val | NPCM_I2CCST3_EO_BUSY; |
| iowrite8(val, bus->reg + NPCM_I2CCST3); |
| |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val &= ~NPCM_I2CCTL1_RWS; |
| if (enable) |
| val |= NPCM_I2CCTL1_EOBINTE; |
| else |
| val &= ~NPCM_I2CCTL1_EOBINTE; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| } |
| |
| static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus) |
| { |
| u8 tx_fifo_sts; |
| |
| tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS); |
| /* check if TX FIFO is not empty */ |
| if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0) |
| return false; |
| |
| /* check if TX FIFO status bit is set: */ |
| return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts); |
| } |
| |
| static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus) |
| { |
| u8 rx_fifo_sts; |
| |
| rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS); |
| /* check if RX FIFO is not empty: */ |
| if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0) |
| return false; |
| |
| /* check if rx fifo full status is set: */ |
| return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts); |
| } |
| |
| static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CFIF_CTS); |
| val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE; |
| iowrite8(val, bus->reg + NPCM_I2CFIF_CTS); |
| } |
| |
| static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CTXF_STS); |
| val = val | NPCM_I2CTXF_STS_TX_THST; |
| iowrite8(val, bus->reg + NPCM_I2CTXF_STS); |
| } |
| |
| static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CRXF_STS); |
| val = val | NPCM_I2CRXF_STS_RX_THST; |
| iowrite8(val, bus->reg + NPCM_I2CRXF_STS); |
| } |
| |
| static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val &= ~NPCM_I2CCTL1_RWS; |
| if (enable) |
| val |= NPCM_I2CCTL1_INTEN; |
| else |
| val &= ~NPCM_I2CCTL1_INTEN; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| } |
| |
| static inline void npcm_i2c_master_start(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK); |
| val |= NPCM_I2CCTL1_START; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| } |
| |
| static inline void npcm_i2c_master_stop(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| /* |
| * override HW issue: I2C may fail to supply stop condition in Master |
| * Write operation. |
| * Need to delay at least 5 us from the last int, before issueing a stop |
| */ |
| udelay(10); /* function called from interrupt, can't sleep */ |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK); |
| val |= NPCM_I2CCTL1_STOP; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| |
| if (!bus->fifo_use) |
| return; |
| |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| |
| if (bus->operation == I2C_READ_OPER) |
| npcm_i2c_clear_rx_fifo(bus); |
| else |
| npcm_i2c_clear_tx_fifo(bus); |
| npcm_i2c_clear_fifo_int(bus); |
| iowrite8(0, bus->reg + NPCM_I2CTXF_CTL); |
| } |
| |
| static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val &= ~NPCM_I2CCTL1_RWS; |
| if (stall) |
| val |= NPCM_I2CCTL1_STASTRE; |
| else |
| val &= ~NPCM_I2CCTL1_STASTRE; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| } |
| |
| static inline void npcm_i2c_nack(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START); |
| val |= NPCM_I2CCTL1_ACK; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| } |
| |
| static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| /* Clear NEGACK, STASTR and BER bits */ |
| val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR; |
| iowrite8(val, bus->reg + NPCM_I2CST); |
| } |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable) |
| { |
| u8 i2cctl1; |
| |
| /* enable interrupt on slave match: */ |
| i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1); |
| i2cctl1 &= ~NPCM_I2CCTL1_RWS; |
| if (enable) |
| i2cctl1 |= NPCM_I2CCTL1_NMINTE; |
| else |
| i2cctl1 &= ~NPCM_I2CCTL1_NMINTE; |
| iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1); |
| } |
| |
| static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type, |
| u8 addr, bool enable) |
| { |
| u8 i2cctl1; |
| u8 i2cctl3; |
| u8 sa_reg; |
| |
| sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable); |
| if (addr_type == I2C_GC_ADDR) { |
| i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1); |
| if (enable) |
| i2cctl1 |= NPCM_I2CCTL1_GCMEN; |
| else |
| i2cctl1 &= ~NPCM_I2CCTL1_GCMEN; |
| iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1); |
| return 0; |
| } else if (addr_type == I2C_ARP_ADDR) { |
| i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3); |
| if (enable) |
| i2cctl3 |= I2CCTL3_ARPMEN; |
| else |
| i2cctl3 &= ~I2CCTL3_ARPMEN; |
| iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3); |
| return 0; |
| } |
| if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10) |
| dev_err(bus->dev, "try to enable more than 2 SA not supported\n"); |
| |
| if (addr_type >= I2C_ARP_ADDR) |
| return -EFAULT; |
| |
| /* Set and enable the address */ |
| iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]); |
| npcm_i2c_slave_int_enable(bus, enable); |
| |
| return 0; |
| } |
| #endif |
| |
| static void npcm_i2c_reset(struct npcm_i2c *bus) |
| { |
| /* |
| * Save I2CCTL1 relevant bits. It is being cleared when the module |
| * is disabled. |
| */ |
| u8 i2cctl1; |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| u8 addr; |
| #endif |
| |
| i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1); |
| |
| npcm_i2c_disable(bus); |
| npcm_i2c_enable(bus); |
| |
| /* Restore NPCM_I2CCTL1 Status */ |
| i2cctl1 &= ~NPCM_I2CCTL1_RWS; |
| iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1); |
| |
| /* Clear BB (BUS BUSY) bit */ |
| iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST); |
| iowrite8(0xFF, bus->reg + NPCM_I2CST); |
| |
| /* Clear and disable EOB */ |
| npcm_i2c_eob_int(bus, false); |
| |
| /* Clear all fifo bits: */ |
| iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS); |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| if (bus->slave) { |
| addr = bus->slave->addr; |
| npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true); |
| } |
| #endif |
| |
| /* Clear status bits for spurious interrupts */ |
| npcm_i2c_clear_master_status(bus); |
| |
| bus->state = I2C_IDLE; |
| } |
| |
| static inline bool npcm_i2c_is_master(struct npcm_i2c *bus) |
| { |
| return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST)); |
| } |
| |
| static void npcm_i2c_callback(struct npcm_i2c *bus, |
| enum i2c_state_ind op_status, u16 info) |
| { |
| struct i2c_msg *msgs; |
| int msgs_num; |
| bool do_complete = false; |
| |
| msgs = bus->msgs; |
| msgs_num = bus->msgs_num; |
| /* |
| * check that transaction was not timed-out, and msgs still |
| * holds a valid value. |
| */ |
| if (!msgs) |
| return; |
| |
| if (completion_done(&bus->cmd_complete)) |
| return; |
| |
| switch (op_status) { |
| case I2C_MASTER_DONE_IND: |
| bus->cmd_err = bus->msgs_num; |
| if (bus->tx_complete_cnt < ULLONG_MAX) |
| bus->tx_complete_cnt++; |
| fallthrough; |
| case I2C_BLOCK_BYTES_ERR_IND: |
| /* Master tx finished and all transmit bytes were sent */ |
| if (bus->msgs) { |
| if (msgs[0].flags & I2C_M_RD) |
| msgs[0].len = info; |
| else if (msgs_num == 2 && |
| msgs[1].flags & I2C_M_RD) |
| msgs[1].len = info; |
| } |
| do_complete = true; |
| break; |
| case I2C_NACK_IND: |
| /* MASTER transmit got a NACK before tx all bytes */ |
| bus->cmd_err = -ENXIO; |
| do_complete = true; |
| break; |
| case I2C_BUS_ERR_IND: |
| /* Bus error */ |
| bus->cmd_err = -EAGAIN; |
| do_complete = true; |
| break; |
| case I2C_WAKE_UP_IND: |
| /* I2C wake up */ |
| break; |
| default: |
| break; |
| } |
| |
| bus->operation = I2C_NO_OPER; |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| if (bus->slave) |
| bus->master_or_slave = I2C_SLAVE; |
| #endif |
| if (do_complete) |
| complete(&bus->cmd_complete); |
| } |
| |
| static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus) |
| { |
| if (bus->operation == I2C_WRITE_OPER) |
| return (bus->data->txf_sts_tx_bytes & |
| ioread8(bus->reg + NPCM_I2CTXF_STS)); |
| if (bus->operation == I2C_READ_OPER) |
| return (bus->data->rxf_sts_rx_bytes & |
| ioread8(bus->reg + NPCM_I2CRXF_STS)); |
| return 0; |
| } |
| |
| static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes) |
| { |
| u8 size_free_fifo; |
| |
| /* |
| * Fill the FIFO, while the FIFO is not full and there are more bytes |
| * to write |
| */ |
| size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus); |
| while (max_bytes-- && size_free_fifo) { |
| if (bus->wr_ind < bus->wr_size) |
| npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]); |
| else |
| npcm_i2c_wr_byte(bus, 0xFF); |
| size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus); |
| } |
| } |
| |
| /* |
| * npcm_i2c_set_fifo: |
| * configure the FIFO before using it. If nread is -1 RX FIFO will not be |
| * configured. same for nwrite |
| */ |
| static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite) |
| { |
| u8 rxf_ctl = 0; |
| |
| if (!bus->fifo_use) |
| return; |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| npcm_i2c_clear_tx_fifo(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| |
| /* configure RX FIFO */ |
| if (nread > 0) { |
| rxf_ctl = min_t(int, nread, bus->data->fifo_size); |
| |
| /* set LAST bit. if LAST is set next FIFO packet is nacked */ |
| if (nread <= bus->data->fifo_size) |
| rxf_ctl |= bus->data->rxf_ctl_last_pec; |
| |
| /* |
| * if we are about to read the first byte in blk rd mode, |
| * don't NACK it. If slave returns zero size HW can't NACK |
| * it immediately, it will read extra byte and then NACK. |
| */ |
| if (bus->rd_ind == 0 && bus->read_block_use) { |
| /* set fifo to read one byte, no last: */ |
| rxf_ctl = 1; |
| } |
| |
| /* set fifo size: */ |
| iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL); |
| } |
| |
| /* configure TX FIFO */ |
| if (nwrite > 0) { |
| if (nwrite > bus->data->fifo_size) |
| /* data to send is more then FIFO size. */ |
| iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL); |
| else |
| iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL); |
| |
| npcm_i2c_clear_tx_fifo(bus); |
| } |
| } |
| |
| static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo) |
| { |
| u8 data; |
| |
| while (bytes_in_fifo--) { |
| data = npcm_i2c_rd_byte(bus); |
| if (bus->rd_ind < bus->rd_size) |
| bus->rd_buf[bus->rd_ind++] = data; |
| } |
| } |
| |
| static void npcm_i2c_master_abort(struct npcm_i2c *bus) |
| { |
| /* Only current master is allowed to issue a stop condition */ |
| if (!npcm_i2c_is_master(bus)) |
| return; |
| |
| npcm_i2c_eob_int(bus, true); |
| npcm_i2c_master_stop(bus); |
| npcm_i2c_clear_master_status(bus); |
| } |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type) |
| { |
| u8 slave_add; |
| |
| if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10) |
| dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n"); |
| |
| slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]); |
| |
| return slave_add; |
| } |
| |
| static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add) |
| { |
| int i; |
| |
| /* Set the enable bit */ |
| slave_add |= 0x80; |
| |
| for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) { |
| if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add) |
| iowrite8(0, bus->reg + npcm_i2caddr[i]); |
| } |
| |
| return 0; |
| } |
| |
| static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes) |
| { |
| /* |
| * Fill the FIFO, while the FIFO is not full and there are more bytes |
| * to write |
| */ |
| npcm_i2c_clear_fifo_int(bus); |
| npcm_i2c_clear_tx_fifo(bus); |
| iowrite8(0, bus->reg + NPCM_I2CTXF_CTL); |
| while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) { |
| if (bus->slv_wr_size <= 0) |
| break; |
| bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1); |
| npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]); |
| bus->slv_wr_ind++; |
| bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1); |
| bus->slv_wr_size--; |
| } |
| } |
| |
| static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo) |
| { |
| u8 data; |
| |
| if (!bus->slave) |
| return; |
| |
| while (bytes_in_fifo--) { |
| data = npcm_i2c_rd_byte(bus); |
| |
| bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1); |
| bus->slv_rd_buf[bus->slv_rd_ind] = data; |
| bus->slv_rd_ind++; |
| |
| /* 1st byte is length in block protocol: */ |
| if (bus->slv_rd_ind == 1 && bus->read_block_use) |
| bus->slv_rd_size = data + bus->PEC_use + 1; |
| } |
| } |
| |
| static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus) |
| { |
| int i; |
| u8 value; |
| int ind; |
| int ret = bus->slv_wr_ind; |
| |
| /* fill a cyclic buffer */ |
| for (i = 0; i < bus->data->fifo_size; i++) { |
| if (bus->slv_wr_size >= bus->data->fifo_size) |
| break; |
| if (bus->state == I2C_SLAVE_MATCH) { |
| i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value); |
| bus->state = I2C_OPER_STARTED; |
| } else { |
| i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value); |
| } |
| ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1); |
| bus->slv_wr_buf[ind] = value; |
| bus->slv_wr_size++; |
| } |
| return bus->data->fifo_size - ret; |
| } |
| |
| static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus) |
| { |
| int i; |
| |
| for (i = 0; i < bus->slv_rd_ind; i++) |
| i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED, |
| &bus->slv_rd_buf[i]); |
| /* |
| * once we send bytes up, need to reset the counter of the wr buf |
| * got data from master (new offset in device), ignore wr fifo: |
| */ |
| if (bus->slv_rd_ind) { |
| bus->slv_wr_size = 0; |
| bus->slv_wr_ind = 0; |
| } |
| |
| bus->slv_rd_ind = 0; |
| bus->slv_rd_size = bus->adap.quirks->max_read_len; |
| |
| npcm_i2c_clear_fifo_int(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| } |
| |
| static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread, |
| u8 *read_data) |
| { |
| bus->state = I2C_OPER_STARTED; |
| bus->operation = I2C_READ_OPER; |
| bus->slv_rd_size = nread; |
| bus->slv_rd_ind = 0; |
| |
| iowrite8(0, bus->reg + NPCM_I2CTXF_CTL); |
| iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL); |
| npcm_i2c_clear_tx_fifo(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| } |
| |
| static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite, |
| u8 *write_data) |
| { |
| if (nwrite == 0) |
| return; |
| |
| bus->operation = I2C_WRITE_OPER; |
| |
| /* get the next buffer */ |
| npcm_i2c_slave_get_wr_buf(bus); |
| npcm_i2c_write_fifo_slave(bus, nwrite); |
| } |
| |
| /* |
| * npcm_i2c_slave_wr_buf_sync: |
| * currently slave IF only supports single byte operations. |
| * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes |
| * at a time, pack them in buffer, and then transmit them all together |
| * to the FIFO and onward to the bus. |
| * NACK on read will be once reached to bus->adap->quirks->max_read_len. |
| * sending a NACK wherever the backend requests for it is not supported. |
| * the next two functions allow reading to local buffer before writing it all |
| * to the HW FIFO. |
| */ |
| static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus) |
| { |
| int left_in_fifo; |
| |
| left_in_fifo = bus->data->txf_sts_tx_bytes & |
| ioread8(bus->reg + NPCM_I2CTXF_STS); |
| |
| /* fifo already full: */ |
| if (left_in_fifo >= bus->data->fifo_size || |
| bus->slv_wr_size >= bus->data->fifo_size) |
| return; |
| |
| /* update the wr fifo index back to the untransmitted bytes: */ |
| bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo; |
| bus->slv_wr_size = bus->slv_wr_size + left_in_fifo; |
| |
| if (bus->slv_wr_ind < 0) |
| bus->slv_wr_ind += bus->data->fifo_size; |
| } |
| |
| static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus) |
| { |
| if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) { |
| /* |
| * Slave got an address match with direction bit 1 so it should |
| * transmit data. Write till the master will NACK |
| */ |
| bus->operation = I2C_WRITE_OPER; |
| npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len, |
| bus->slv_wr_buf); |
| } else { |
| /* |
| * Slave got an address match with direction bit 0 so it should |
| * receive data. |
| * this module does not support saying no to bytes. |
| * it will always ACK. |
| */ |
| bus->operation = I2C_READ_OPER; |
| npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus)); |
| bus->stop_ind = I2C_SLAVE_RCV_IND; |
| npcm_i2c_slave_send_rd_buf(bus); |
| npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len, |
| bus->slv_rd_buf); |
| } |
| } |
| |
| static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus) |
| { |
| u8 val; |
| irqreturn_t ret = IRQ_NONE; |
| u8 i2cst = ioread8(bus->reg + NPCM_I2CST); |
| |
| /* Slave: A NACK has occurred */ |
| if (NPCM_I2CST_NEGACK & i2cst) { |
| bus->stop_ind = I2C_NACK_IND; |
| npcm_i2c_slave_wr_buf_sync(bus); |
| if (bus->fifo_use) |
| /* clear the FIFO */ |
| iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, |
| bus->reg + NPCM_I2CFIF_CTS); |
| |
| /* In slave write, NACK is OK, otherwise it is a problem */ |
| bus->stop_ind = I2C_NO_STATUS_IND; |
| bus->operation = I2C_NO_OPER; |
| bus->own_slave_addr = 0xFF; |
| |
| /* |
| * Slave has to wait for STOP to decide this is the end |
| * of the transaction. tx is not yet considered as done |
| */ |
| iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST); |
| |
| ret = IRQ_HANDLED; |
| } |
| |
| /* Slave mode: a Bus Error (BER) has been identified */ |
| if (NPCM_I2CST_BER & i2cst) { |
| /* |
| * Check whether bus arbitration or Start or Stop during data |
| * xfer bus arbitration problem should not result in recovery |
| */ |
| bus->stop_ind = I2C_BUS_ERR_IND; |
| |
| /* wait for bus busy before clear fifo */ |
| iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS); |
| |
| bus->state = I2C_IDLE; |
| |
| /* |
| * in BER case we might get 2 interrupts: one for slave one for |
| * master ( for a channel which is master\slave switching) |
| */ |
| if (completion_done(&bus->cmd_complete) == false) { |
| bus->cmd_err = -EIO; |
| complete(&bus->cmd_complete); |
| } |
| bus->own_slave_addr = 0xFF; |
| iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST); |
| ret = IRQ_HANDLED; |
| } |
| |
| /* A Slave Stop Condition has been identified */ |
| if (NPCM_I2CST_SLVSTP & i2cst) { |
| u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus); |
| |
| bus->stop_ind = I2C_SLAVE_DONE_IND; |
| |
| if (bus->operation == I2C_READ_OPER) |
| npcm_i2c_read_fifo_slave(bus, bytes_in_fifo); |
| |
| /* if the buffer is empty nothing will be sent */ |
| npcm_i2c_slave_send_rd_buf(bus); |
| |
| /* Slave done transmitting or receiving */ |
| bus->stop_ind = I2C_NO_STATUS_IND; |
| |
| /* |
| * Note, just because we got here, it doesn't mean we through |
| * away the wr buffer. |
| * we keep it until the next received offset. |
| */ |
| bus->operation = I2C_NO_OPER; |
| bus->own_slave_addr = 0xFF; |
| i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0); |
| iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST); |
| if (bus->fifo_use) { |
| npcm_i2c_clear_fifo_int(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| npcm_i2c_clear_tx_fifo(bus); |
| |
| iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, |
| bus->reg + NPCM_I2CFIF_CTS); |
| } |
| bus->state = I2C_IDLE; |
| ret = IRQ_HANDLED; |
| } |
| |
| /* restart condition occurred and Rx-FIFO was not empty */ |
| if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR, |
| ioread8(bus->reg + NPCM_I2CFIF_CTS))) { |
| bus->stop_ind = I2C_SLAVE_RESTART_IND; |
| bus->master_or_slave = I2C_SLAVE; |
| if (bus->operation == I2C_READ_OPER) |
| npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus)); |
| bus->operation = I2C_WRITE_OPER; |
| iowrite8(0, bus->reg + NPCM_I2CRXF_CTL); |
| val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR | |
| NPCM_I2CFIF_CTS_RXF_TXE; |
| iowrite8(val, bus->reg + NPCM_I2CFIF_CTS); |
| npcm_i2c_slave_rd_wr(bus); |
| ret = IRQ_HANDLED; |
| } |
| |
| /* A Slave Address Match has been identified */ |
| if (NPCM_I2CST_NMATCH & i2cst) { |
| u8 info = 0; |
| |
| /* Address match automatically implies slave mode */ |
| bus->master_or_slave = I2C_SLAVE; |
| npcm_i2c_clear_fifo_int(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| npcm_i2c_clear_tx_fifo(bus); |
| iowrite8(0, bus->reg + NPCM_I2CTXF_CTL); |
| iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL); |
| if (NPCM_I2CST_XMIT & i2cst) { |
| bus->operation = I2C_WRITE_OPER; |
| } else { |
| i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED, |
| &info); |
| bus->operation = I2C_READ_OPER; |
| } |
| if (bus->own_slave_addr == 0xFF) { |
| /* Check which type of address match */ |
| val = ioread8(bus->reg + NPCM_I2CCST); |
| if (NPCM_I2CCST_MATCH & val) { |
| u16 addr; |
| enum i2c_addr eaddr; |
| u8 i2ccst2; |
| u8 i2ccst3; |
| |
| i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3); |
| i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2); |
| |
| /* |
| * the i2c module can response to 10 own SA. |
| * check which one was addressed by the master. |
| * respond to the first one. |
| */ |
| addr = ((i2ccst3 & 0x07) << 7) | |
| (i2ccst2 & 0x7F); |
| info = ffs(addr); |
| eaddr = (enum i2c_addr)info; |
| addr = npcm_i2c_get_slave_addr(bus, eaddr); |
| addr &= 0x7F; |
| bus->own_slave_addr = addr; |
| if (bus->PEC_mask & BIT(info)) |
| bus->PEC_use = true; |
| else |
| bus->PEC_use = false; |
| } else { |
| if (NPCM_I2CCST_GCMATCH & val) |
| bus->own_slave_addr = 0; |
| if (NPCM_I2CCST_ARPMATCH & val) |
| bus->own_slave_addr = 0x61; |
| } |
| } else { |
| /* |
| * Slave match can happen in two options: |
| * 1. Start, SA, read (slave read without further ado) |
| * 2. Start, SA, read, data, restart, SA, read, ... |
| * (slave read in fragmented mode) |
| * 3. Start, SA, write, data, restart, SA, read, .. |
| * (regular write-read mode) |
| */ |
| if ((bus->state == I2C_OPER_STARTED && |
| bus->operation == I2C_READ_OPER && |
| bus->stop_ind == I2C_SLAVE_XMIT_IND) || |
| bus->stop_ind == I2C_SLAVE_RCV_IND) { |
| /* slave tx after slave rx w/o STOP */ |
| bus->stop_ind = I2C_SLAVE_RESTART_IND; |
| } |
| } |
| |
| if (NPCM_I2CST_XMIT & i2cst) |
| bus->stop_ind = I2C_SLAVE_XMIT_IND; |
| else |
| bus->stop_ind = I2C_SLAVE_RCV_IND; |
| bus->state = I2C_SLAVE_MATCH; |
| npcm_i2c_slave_rd_wr(bus); |
| iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST); |
| ret = IRQ_HANDLED; |
| } |
| |
| /* Slave SDA status is set - tx or rx */ |
| if ((NPCM_I2CST_SDAST & i2cst) || |
| (bus->fifo_use && |
| (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) { |
| npcm_i2c_slave_rd_wr(bus); |
| iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST); |
| ret = IRQ_HANDLED; |
| } /* SDAST */ |
| |
| /* |
| * If irq is not one of the above, make sure EOB is disabled and all |
| * status bits are cleared. |
| */ |
| if (ret == IRQ_NONE) { |
| npcm_i2c_eob_int(bus, false); |
| npcm_i2c_clear_master_status(bus); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int npcm_i2c_reg_slave(struct i2c_client *client) |
| { |
| unsigned long lock_flags; |
| struct npcm_i2c *bus = i2c_get_adapdata(client->adapter); |
| |
| bus->slave = client; |
| |
| if (client->flags & I2C_CLIENT_TEN) |
| return -EAFNOSUPPORT; |
| |
| spin_lock_irqsave(&bus->lock, lock_flags); |
| |
| npcm_i2c_init_params(bus); |
| bus->slv_rd_size = 0; |
| bus->slv_wr_size = 0; |
| bus->slv_rd_ind = 0; |
| bus->slv_wr_ind = 0; |
| if (client->flags & I2C_CLIENT_PEC) |
| bus->PEC_use = true; |
| |
| dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num, |
| client->addr, bus->PEC_use); |
| |
| npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true); |
| npcm_i2c_clear_fifo_int(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| npcm_i2c_clear_tx_fifo(bus); |
| npcm_i2c_slave_int_enable(bus, true); |
| |
| spin_unlock_irqrestore(&bus->lock, lock_flags); |
| return 0; |
| } |
| |
| static int npcm_i2c_unreg_slave(struct i2c_client *client) |
| { |
| struct npcm_i2c *bus = client->adapter->algo_data; |
| unsigned long lock_flags; |
| |
| spin_lock_irqsave(&bus->lock, lock_flags); |
| if (!bus->slave) { |
| spin_unlock_irqrestore(&bus->lock, lock_flags); |
| return -EINVAL; |
| } |
| npcm_i2c_slave_int_enable(bus, false); |
| npcm_i2c_remove_slave_addr(bus, client->addr); |
| bus->slave = NULL; |
| spin_unlock_irqrestore(&bus->lock, lock_flags); |
| return 0; |
| } |
| #endif /* CONFIG_I2C_SLAVE */ |
| |
| static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus) |
| { |
| int rcount; |
| int fifo_bytes; |
| enum i2c_state_ind ind = I2C_MASTER_DONE_IND; |
| |
| fifo_bytes = npcm_i2c_fifo_usage(bus); |
| rcount = bus->rd_size - bus->rd_ind; |
| |
| /* |
| * In order not to change the RX_TRH during transaction (we found that |
| * this might be problematic if it takes too much time to read the FIFO) |
| * we read the data in the following way. If the number of bytes to |
| * read == FIFO Size + C (where C < FIFO Size)then first read C bytes |
| * and in the next int we read rest of the data. |
| */ |
| if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size) |
| fifo_bytes = rcount - bus->data->fifo_size; |
| |
| if (rcount <= fifo_bytes) { |
| /* last bytes are about to be read - end of tx */ |
| bus->state = I2C_STOP_PENDING; |
| bus->stop_ind = ind; |
| npcm_i2c_eob_int(bus, true); |
| /* Stop should be set before reading last byte. */ |
| npcm_i2c_master_stop(bus); |
| npcm_i2c_read_fifo(bus, fifo_bytes); |
| } else { |
| npcm_i2c_read_fifo(bus, fifo_bytes); |
| rcount = bus->rd_size - bus->rd_ind; |
| npcm_i2c_set_fifo(bus, rcount, -1); |
| } |
| } |
| |
| static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus) |
| { |
| u16 wcount; |
| |
| if (bus->fifo_use) |
| npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */ |
| |
| /* Master write operation - last byte handling */ |
| if (bus->wr_ind == bus->wr_size) { |
| if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0) |
| /* |
| * No more bytes to send (to add to the FIFO), |
| * however the FIFO is not empty yet. It is |
| * still in the middle of tx. Currently there's nothing |
| * to do except for waiting to the end of the tx |
| * We will get an int when the FIFO will get empty. |
| */ |
| return; |
| |
| if (bus->rd_size == 0) { |
| /* all bytes have been written, in wr only operation */ |
| npcm_i2c_eob_int(bus, true); |
| bus->state = I2C_STOP_PENDING; |
| bus->stop_ind = I2C_MASTER_DONE_IND; |
| npcm_i2c_master_stop(bus); |
| /* Clear SDA Status bit (by writing dummy byte) */ |
| npcm_i2c_wr_byte(bus, 0xFF); |
| |
| } else { |
| /* last write-byte written on previous int - restart */ |
| npcm_i2c_set_fifo(bus, bus->rd_size, -1); |
| /* Generate repeated start upon next write to SDA */ |
| npcm_i2c_master_start(bus); |
| |
| /* |
| * Receiving one byte only - stall after successful |
| * completion of send address byte. If we NACK here, and |
| * slave doesn't ACK the address, we might |
| * unintentionally NACK the next multi-byte read. |
| */ |
| if (bus->rd_size == 1) |
| npcm_i2c_stall_after_start(bus, true); |
| |
| /* Next int will occur on read */ |
| bus->operation = I2C_READ_OPER; |
| /* send the slave address in read direction */ |
| npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1); |
| } |
| } else { |
| /* write next byte not last byte and not slave address */ |
| if (!bus->fifo_use || bus->wr_size == 1) { |
| npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]); |
| } else { |
| wcount = bus->wr_size - bus->wr_ind; |
| npcm_i2c_set_fifo(bus, -1, wcount); |
| if (wcount) |
| npcm_i2c_write_to_fifo_master(bus, wcount); |
| } |
| } |
| } |
| |
| static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus) |
| { |
| u16 block_extra_bytes_size; |
| u8 data; |
| |
| /* added bytes to the packet: */ |
| block_extra_bytes_size = bus->read_block_use + bus->PEC_use; |
| |
| /* |
| * Perform master read, distinguishing between last byte and the rest of |
| * the bytes. The last byte should be read when the clock is stopped |
| */ |
| if (bus->rd_ind == 0) { /* first byte handling: */ |
| if (bus->read_block_use) { |
| /* first byte in block protocol is the size: */ |
| data = npcm_i2c_rd_byte(bus); |
| data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX); |
| bus->rd_size = data + block_extra_bytes_size; |
| bus->rd_buf[bus->rd_ind++] = data; |
| |
| /* clear RX FIFO interrupt status: */ |
| if (bus->fifo_use) { |
| data = ioread8(bus->reg + NPCM_I2CFIF_CTS); |
| data = data | NPCM_I2CFIF_CTS_RXF_TXE; |
| iowrite8(data, bus->reg + NPCM_I2CFIF_CTS); |
| } |
| |
| npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1); |
| npcm_i2c_stall_after_start(bus, false); |
| } else { |
| npcm_i2c_clear_tx_fifo(bus); |
| npcm_i2c_master_fifo_read(bus); |
| } |
| } else { |
| if (bus->rd_size == block_extra_bytes_size && |
| bus->read_block_use) { |
| bus->state = I2C_STOP_PENDING; |
| bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND; |
| bus->cmd_err = -EIO; |
| npcm_i2c_eob_int(bus, true); |
| npcm_i2c_master_stop(bus); |
| npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus)); |
| } else { |
| npcm_i2c_master_fifo_read(bus); |
| } |
| } |
| } |
| |
| static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus) |
| { |
| iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST); |
| npcm_i2c_nack(bus); |
| bus->stop_ind = I2C_BUS_ERR_IND; |
| npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus)); |
| } |
| |
| /* A NACK has occurred */ |
| static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus) |
| { |
| u8 val; |
| |
| if (bus->nack_cnt < ULLONG_MAX) |
| bus->nack_cnt++; |
| |
| if (bus->fifo_use) { |
| /* |
| * if there are still untransmitted bytes in TX FIFO |
| * reduce them from wr_ind |
| */ |
| if (bus->operation == I2C_WRITE_OPER) |
| bus->wr_ind -= npcm_i2c_fifo_usage(bus); |
| |
| /* clear the FIFO */ |
| iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS); |
| } |
| |
| /* In master write operation, got unexpected NACK */ |
| bus->stop_ind = I2C_NACK_IND; |
| /* Only current master is allowed to issue Stop Condition */ |
| if (npcm_i2c_is_master(bus)) { |
| /* stopping in the middle */ |
| npcm_i2c_eob_int(bus, false); |
| npcm_i2c_master_stop(bus); |
| |
| /* Clear SDA Status bit (by reading dummy byte) */ |
| npcm_i2c_rd_byte(bus); |
| |
| /* |
| * The bus is released from stall only after the SW clears |
| * NEGACK bit. Then a Stop condition is sent. |
| */ |
| npcm_i2c_clear_master_status(bus); |
| readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val, |
| !(val & NPCM_I2CCST_BUSY), 10, 200); |
| /* Verify no status bits are still set after bus is released */ |
| npcm_i2c_clear_master_status(bus); |
| } |
| bus->state = I2C_IDLE; |
| |
| /* |
| * In Master mode, NACK should be cleared only after STOP. |
| * In such case, the bus is released from stall only after the |
| * software clears NACK bit. Then a Stop condition is sent. |
| */ |
| npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind); |
| } |
| |
| /* Master mode: a Bus Error has been identified */ |
| static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus) |
| { |
| if (bus->ber_cnt < ULLONG_MAX) |
| bus->ber_cnt++; |
| bus->stop_ind = I2C_BUS_ERR_IND; |
| if (npcm_i2c_is_master(bus)) { |
| npcm_i2c_master_abort(bus); |
| } else { |
| npcm_i2c_clear_master_status(bus); |
| |
| /* Clear BB (BUS BUSY) bit */ |
| iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST); |
| |
| bus->cmd_err = -EAGAIN; |
| npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus)); |
| } |
| bus->state = I2C_IDLE; |
| } |
| |
| /* EOB: a master End Of Busy (meaning STOP completed) */ |
| static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus) |
| { |
| npcm_i2c_eob_int(bus, false); |
| bus->state = I2C_IDLE; |
| npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind); |
| } |
| |
| /* Address sent and requested stall occurred (Master mode) */ |
| static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus) |
| { |
| if (npcm_i2c_is_quick(bus)) { |
| bus->state = I2C_STOP_PENDING; |
| bus->stop_ind = I2C_MASTER_DONE_IND; |
| npcm_i2c_eob_int(bus, true); |
| npcm_i2c_master_stop(bus); |
| } else if ((bus->rd_size == 1) && !bus->read_block_use) { |
| /* |
| * Receiving one byte only - set NACK after ensuring |
| * slave ACKed the address byte. |
| */ |
| npcm_i2c_nack(bus); |
| } |
| |
| /* Reset stall-after-address-byte */ |
| npcm_i2c_stall_after_start(bus, false); |
| |
| /* Clear stall only after setting STOP */ |
| iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST); |
| } |
| |
| /* SDA status is set - TX or RX, master */ |
| static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst) |
| { |
| u8 fif_cts; |
| |
| if (!npcm_i2c_is_master(bus)) |
| return; |
| |
| if (bus->state == I2C_IDLE) { |
| bus->stop_ind = I2C_WAKE_UP_IND; |
| |
| if (npcm_i2c_is_quick(bus) || bus->read_block_use) |
| /* |
| * Need to stall after successful |
| * completion of sending address byte |
| */ |
| npcm_i2c_stall_after_start(bus, true); |
| else |
| npcm_i2c_stall_after_start(bus, false); |
| |
| /* |
| * Receiving one byte only - stall after successful completion |
| * of sending address byte If we NACK here, and slave doesn't |
| * ACK the address, we might unintentionally NACK the next |
| * multi-byte read |
| */ |
| if (bus->wr_size == 0 && bus->rd_size == 1) |
| npcm_i2c_stall_after_start(bus, true); |
| |
| /* Initiate I2C master tx */ |
| |
| /* select bank 1 for FIFO regs */ |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| |
| fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS); |
| fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR; |
| |
| /* clear FIFO and relevant status bits. */ |
| fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO; |
| iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS); |
| |
| /* re-enable */ |
| fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE; |
| iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS); |
| |
| /* |
| * Configure the FIFO threshold: |
| * according to the needed # of bytes to read. |
| * Note: due to HW limitation can't config the rx fifo before it |
| * got and ACK on the restart. LAST bit will not be reset unless |
| * RX completed. It will stay set on the next tx. |
| */ |
| if (bus->wr_size) |
| npcm_i2c_set_fifo(bus, -1, bus->wr_size); |
| else |
| npcm_i2c_set_fifo(bus, bus->rd_size, -1); |
| |
| bus->state = I2C_OPER_STARTED; |
| |
| if (npcm_i2c_is_quick(bus) || bus->wr_size) |
| npcm_i2c_wr_byte(bus, bus->dest_addr); |
| else |
| npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0)); |
| /* SDA interrupt, after start\restart */ |
| } else { |
| if (NPCM_I2CST_XMIT & i2cst) { |
| bus->operation = I2C_WRITE_OPER; |
| npcm_i2c_irq_master_handler_write(bus); |
| } else { |
| bus->operation = I2C_READ_OPER; |
| npcm_i2c_irq_master_handler_read(bus); |
| } |
| } |
| } |
| |
| static int npcm_i2c_int_master_handler(struct npcm_i2c *bus) |
| { |
| u8 i2cst; |
| int ret = -EIO; |
| |
| i2cst = ioread8(bus->reg + NPCM_I2CST); |
| |
| if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) { |
| npcm_i2c_irq_handle_nmatch(bus); |
| return 0; |
| } |
| /* A NACK has occurred */ |
| if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) { |
| npcm_i2c_irq_handle_nack(bus); |
| return 0; |
| } |
| |
| /* Master mode: a Bus Error has been identified */ |
| if (FIELD_GET(NPCM_I2CST_BER, i2cst)) { |
| npcm_i2c_irq_handle_ber(bus); |
| return 0; |
| } |
| |
| /* EOB: a master End Of Busy (meaning STOP completed) */ |
| if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE, |
| ioread8(bus->reg + NPCM_I2CCTL1)) == 1) && |
| (FIELD_GET(NPCM_I2CCST3_EO_BUSY, |
| ioread8(bus->reg + NPCM_I2CCST3)))) { |
| npcm_i2c_irq_handle_eob(bus); |
| return 0; |
| } |
| |
| /* Address sent and requested stall occurred (Master mode) */ |
| if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) { |
| npcm_i2c_irq_handle_stall_after_start(bus); |
| ret = 0; |
| } |
| |
| /* SDA status is set - TX or RX, master */ |
| if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) || |
| (bus->fifo_use && |
| (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) { |
| npcm_i2c_irq_handle_sda(bus, i2cst); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* recovery using TGCLK functionality of the module */ |
| static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap) |
| { |
| u8 val; |
| u8 fif_cts; |
| bool done = false; |
| int status = -ENOTRECOVERABLE; |
| struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap); |
| /* Allow 3 bytes (27 toggles) to be read from the slave: */ |
| int iter = 27; |
| |
| if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) { |
| dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck", |
| bus->num, bus->dest_addr); |
| npcm_i2c_reset(bus); |
| return 0; |
| } |
| |
| npcm_i2c_int_enable(bus, false); |
| npcm_i2c_disable(bus); |
| npcm_i2c_enable(bus); |
| iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST); |
| npcm_i2c_clear_tx_fifo(bus); |
| npcm_i2c_clear_rx_fifo(bus); |
| iowrite8(0, bus->reg + NPCM_I2CRXF_CTL); |
| iowrite8(0, bus->reg + NPCM_I2CTXF_CTL); |
| npcm_i2c_stall_after_start(bus, false); |
| |
| /* select bank 1 for FIFO regs */ |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| |
| /* clear FIFO and relevant status bits. */ |
| fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS); |
| fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR; |
| fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO; |
| iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS); |
| npcm_i2c_set_fifo(bus, -1, 0); |
| |
| /* Repeat the following sequence until SDA is released */ |
| do { |
| /* Issue a single SCL toggle */ |
| iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST); |
| usleep_range(20, 30); |
| /* If SDA line is inactive (high), stop */ |
| if (npcm_i2c_get_SDA(_adap)) { |
| done = true; |
| status = 0; |
| } |
| } while (!done && iter--); |
| |
| /* If SDA line is released: send start-addr-stop, to re-sync. */ |
| if (npcm_i2c_get_SDA(_adap)) { |
| /* Send an address byte in write direction: */ |
| npcm_i2c_wr_byte(bus, bus->dest_addr); |
| npcm_i2c_master_start(bus); |
| /* Wait until START condition is sent */ |
| status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val, |
| 20, 200); |
| /* If START condition was sent */ |
| if (npcm_i2c_is_master(bus) > 0) { |
| usleep_range(20, 30); |
| npcm_i2c_master_stop(bus); |
| usleep_range(200, 500); |
| } |
| } |
| npcm_i2c_reset(bus); |
| npcm_i2c_int_enable(bus, true); |
| |
| if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) |
| status = 0; |
| else |
| status = -ENOTRECOVERABLE; |
| if (status) { |
| if (bus->rec_fail_cnt < ULLONG_MAX) |
| bus->rec_fail_cnt++; |
| } else { |
| if (bus->rec_succ_cnt < ULLONG_MAX) |
| bus->rec_succ_cnt++; |
| } |
| return status; |
| } |
| |
| /* recovery using bit banging functionality of the module */ |
| static void npcm_i2c_recovery_init(struct i2c_adapter *_adap) |
| { |
| struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap); |
| struct i2c_bus_recovery_info *rinfo = &bus->rinfo; |
| |
| rinfo->recover_bus = npcm_i2c_recovery_tgclk; |
| |
| /* |
| * npcm i2c HW allows direct reading of SCL and SDA. |
| * However, it does not support setting SCL and SDA directly. |
| * The recovery function can toggle SCL when SDA is low (but not set) |
| * Getter functions used internally, and can be used externally. |
| */ |
| rinfo->get_scl = npcm_i2c_get_SCL; |
| rinfo->get_sda = npcm_i2c_get_SDA; |
| _adap->bus_recovery_info = rinfo; |
| } |
| |
| /* SCLFRQ min/max field values */ |
| #define SCLFRQ_MIN 10 |
| #define SCLFRQ_MAX 511 |
| #define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000) |
| |
| /* |
| * npcm_i2c_init_clk: init HW timing parameters. |
| * NPCM7XX i2c module timing parameters are dependent on module core clk (APB) |
| * and bus frequency. |
| * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric. |
| * 400kHz bus requires asymmetric HT and LT. A different equation is recommended |
| * by the HW designer, given core clock range (equations in comments below). |
| * |
| */ |
| static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz) |
| { |
| u32 k1 = 0; |
| u32 k2 = 0; |
| u8 dbnct = 0; |
| u32 sclfrq = 0; |
| u8 hldt = 7; |
| u8 fast_mode = 0; |
| u32 src_clk_khz; |
| u32 bus_freq_khz; |
| |
| src_clk_khz = bus->apb_clk / 1000; |
| bus_freq_khz = bus_freq_hz / 1000; |
| bus->bus_freq = bus_freq_hz; |
| |
| /* 100KHz and below: */ |
| if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) { |
| sclfrq = src_clk_khz / (bus_freq_khz * 4); |
| |
| if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX) |
| return -EDOM; |
| |
| if (src_clk_khz >= 40000) |
| hldt = 17; |
| else if (src_clk_khz >= 12500) |
| hldt = 15; |
| else |
| hldt = 7; |
| } |
| |
| /* 400KHz: */ |
| else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) { |
| sclfrq = 0; |
| fast_mode = I2CCTL3_400K_MODE; |
| |
| if (src_clk_khz < 7500) |
| /* 400KHZ cannot be supported for core clock < 7.5MHz */ |
| return -EDOM; |
| |
| else if (src_clk_khz >= 50000) { |
| k1 = 80; |
| k2 = 48; |
| hldt = 12; |
| dbnct = 7; |
| } |
| |
| /* Master or Slave with frequency > 25MHz */ |
| else if (src_clk_khz > 25000) { |
| hldt = clk_coef(src_clk_khz, 300) + 7; |
| k1 = clk_coef(src_clk_khz, 1600); |
| k2 = clk_coef(src_clk_khz, 900); |
| } |
| } |
| |
| /* 1MHz: */ |
| else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) { |
| sclfrq = 0; |
| fast_mode = I2CCTL3_400K_MODE; |
| |
| /* 1MHZ cannot be supported for core clock < 24 MHz */ |
| if (src_clk_khz < 24000) |
| return -EDOM; |
| |
| k1 = clk_coef(src_clk_khz, 620); |
| k2 = clk_coef(src_clk_khz, 380); |
| |
| /* Core clk > 40 MHz */ |
| if (src_clk_khz > 40000) { |
| /* |
| * Set HLDT: |
| * SDA hold time: (HLDT-7) * T(CLK) >= 120 |
| * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7 |
| */ |
| hldt = clk_coef(src_clk_khz, 120) + 7; |
| } else { |
| hldt = 7; |
| dbnct = 2; |
| } |
| } |
| |
| /* Frequency larger than 1 MHz is not supported */ |
| else |
| return -EINVAL; |
| |
| if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) { |
| k1 = round_up(k1, 2); |
| k2 = round_up(k2 + 1, 2); |
| if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX || |
| k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX) |
| return -EDOM; |
| } |
| |
| /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */ |
| iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F), |
| bus->reg + NPCM_I2CCTL2); |
| |
| /* bits [8:7] are in I2CCTL3 reg */ |
| iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3), |
| bus->reg + NPCM_I2CCTL3); |
| |
| /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */ |
| npcm_i2c_select_bank(bus, I2C_BANK_0); |
| |
| if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) { |
| /* |
| * Set SCL Low/High Time: |
| * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2 |
| * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2 |
| */ |
| iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT); |
| iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT); |
| |
| iowrite8(dbnct, bus->reg + NPCM_I2CCTL5); |
| } |
| |
| iowrite8(hldt, bus->reg + NPCM_I2CCTL4); |
| |
| /* Return to Bank 1, and stay there by default: */ |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| |
| return 0; |
| } |
| |
| static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode, |
| u32 bus_freq_hz) |
| { |
| u8 val; |
| int ret; |
| |
| /* Check whether module already enabled or frequency is out of bounds */ |
| if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) || |
| bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ) |
| return -EINVAL; |
| |
| npcm_i2c_int_enable(bus, false); |
| npcm_i2c_disable(bus); |
| |
| /* Configure FIFO mode : */ |
| if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) { |
| bus->fifo_use = true; |
| npcm_i2c_select_bank(bus, I2C_BANK_0); |
| val = ioread8(bus->reg + NPCM_I2CFIF_CTL); |
| val |= NPCM_I2CFIF_CTL_FIFO_EN; |
| iowrite8(val, bus->reg + NPCM_I2CFIF_CTL); |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| } else { |
| bus->fifo_use = false; |
| } |
| |
| /* Configure I2C module clock frequency */ |
| ret = npcm_i2c_init_clk(bus, bus_freq_hz); |
| if (ret) { |
| dev_err(bus->dev, "npcm_i2c_init_clk failed\n"); |
| return ret; |
| } |
| |
| /* Enable module (before configuring CTL1) */ |
| npcm_i2c_enable(bus); |
| bus->state = I2C_IDLE; |
| val = ioread8(bus->reg + NPCM_I2CCTL1); |
| val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS; |
| iowrite8(val, bus->reg + NPCM_I2CCTL1); |
| |
| npcm_i2c_reset(bus); |
| |
| /* Check HW is OK: SDA and SCL should be high at this point. */ |
| if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) { |
| dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num); |
| dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap), |
| npcm_i2c_get_SCL(&bus->adap)); |
| return -ENXIO; |
| } |
| |
| npcm_i2c_int_enable(bus, true); |
| return 0; |
| } |
| |
| static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev) |
| { |
| u32 clk_freq_hz; |
| int ret; |
| |
| /* Initialize the internal data structures */ |
| bus->state = I2C_DISABLE; |
| bus->master_or_slave = I2C_SLAVE; |
| bus->int_time_stamp = 0; |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| bus->slave = NULL; |
| #endif |
| |
| ret = device_property_read_u32(&pdev->dev, "clock-frequency", |
| &clk_freq_hz); |
| if (ret) { |
| dev_info(&pdev->dev, "Could not read clock-frequency property"); |
| clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ; |
| } |
| |
| ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz); |
| if (ret) { |
| dev_err(&pdev->dev, "npcm_i2c_init_module failed\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id) |
| { |
| struct npcm_i2c *bus = dev_id; |
| |
| if (npcm_i2c_is_master(bus)) |
| bus->master_or_slave = I2C_MASTER; |
| |
| if (bus->master_or_slave == I2C_MASTER) { |
| bus->int_time_stamp = jiffies; |
| if (!npcm_i2c_int_master_handler(bus)) |
| return IRQ_HANDLED; |
| } |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| if (bus->slave) { |
| bus->master_or_slave = I2C_SLAVE; |
| if (npcm_i2c_int_slave_handler(bus)) |
| return IRQ_HANDLED; |
| } |
| #endif |
| /* Clear status bits for spurious interrupts */ |
| npcm_i2c_clear_master_status(bus); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus, |
| u8 slave_addr, u16 nwrite, u16 nread, |
| u8 *write_data, u8 *read_data, |
| bool use_PEC, bool use_read_block) |
| { |
| if (bus->state != I2C_IDLE) { |
| bus->cmd_err = -EBUSY; |
| return false; |
| } |
| bus->dest_addr = slave_addr << 1; |
| bus->wr_buf = write_data; |
| bus->wr_size = nwrite; |
| bus->wr_ind = 0; |
| bus->rd_buf = read_data; |
| bus->rd_size = nread; |
| bus->rd_ind = 0; |
| bus->PEC_use = 0; |
| |
| /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */ |
| if (nread) |
| bus->PEC_use = use_PEC; |
| |
| bus->read_block_use = use_read_block; |
| if (nread && !nwrite) |
| bus->operation = I2C_READ_OPER; |
| else |
| bus->operation = I2C_WRITE_OPER; |
| if (bus->fifo_use) { |
| u8 i2cfif_cts; |
| |
| npcm_i2c_select_bank(bus, I2C_BANK_1); |
| /* clear FIFO and relevant status bits. */ |
| i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS); |
| i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR; |
| i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO; |
| iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS); |
| } |
| |
| bus->state = I2C_IDLE; |
| npcm_i2c_stall_after_start(bus, true); |
| npcm_i2c_master_start(bus); |
| return true; |
| } |
| |
| static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, |
| int num) |
| { |
| struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap); |
| struct i2c_msg *msg0, *msg1; |
| unsigned long time_left, flags; |
| u16 nwrite, nread; |
| u8 *write_data, *read_data; |
| u8 slave_addr; |
| unsigned long timeout; |
| bool read_block = false; |
| bool read_PEC = false; |
| u8 bus_busy; |
| unsigned long timeout_usec; |
| |
| if (bus->state == I2C_DISABLE) { |
| dev_err(bus->dev, "I2C%d module is disabled", bus->num); |
| return -EINVAL; |
| } |
| |
| msg0 = &msgs[0]; |
| slave_addr = msg0->addr; |
| if (msg0->flags & I2C_M_RD) { /* read */ |
| nwrite = 0; |
| write_data = NULL; |
| read_data = msg0->buf; |
| if (msg0->flags & I2C_M_RECV_LEN) { |
| nread = 1; |
| read_block = true; |
| if (msg0->flags & I2C_CLIENT_PEC) |
| read_PEC = true; |
| } else { |
| nread = msg0->len; |
| } |
| } else { /* write */ |
| nwrite = msg0->len; |
| write_data = msg0->buf; |
| nread = 0; |
| read_data = NULL; |
| if (num == 2) { |
| msg1 = &msgs[1]; |
| read_data = msg1->buf; |
| if (msg1->flags & I2C_M_RECV_LEN) { |
| nread = 1; |
| read_block = true; |
| if (msg1->flags & I2C_CLIENT_PEC) |
| read_PEC = true; |
| } else { |
| nread = msg1->len; |
| read_block = false; |
| } |
| } |
| } |
| |
| /* |
| * Adaptive TimeOut: estimated time in usec + 100% margin: |
| * 2: double the timeout for clock stretching case |
| * 9: bits per transaction (including the ack/nack) |
| */ |
| timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite); |
| timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec)); |
| if (nwrite >= 32 * 1024 || nread >= 32 * 1024) { |
| dev_err(bus->dev, "i2c%d buffer too big\n", bus->num); |
| return -EINVAL; |
| } |
| |
| time_left = jiffies + timeout + 1; |
| do { |
| /* |
| * we must clear slave address immediately when the bus is not |
| * busy, so we spinlock it, but we don't keep the lock for the |
| * entire while since it is too long. |
| */ |
| spin_lock_irqsave(&bus->lock, flags); |
| bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB; |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| if (!bus_busy && bus->slave) |
| iowrite8((bus->slave->addr & 0x7F), |
| bus->reg + NPCM_I2CADDR1); |
| #endif |
| spin_unlock_irqrestore(&bus->lock, flags); |
| |
| } while (time_is_after_jiffies(time_left) && bus_busy); |
| |
| if (bus_busy) { |
| iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST); |
| npcm_i2c_reset(bus); |
| i2c_recover_bus(adap); |
| return -EAGAIN; |
| } |
| |
| npcm_i2c_init_params(bus); |
| bus->dest_addr = slave_addr; |
| bus->msgs = msgs; |
| bus->msgs_num = num; |
| bus->cmd_err = 0; |
| bus->read_block_use = read_block; |
| |
| reinit_completion(&bus->cmd_complete); |
| |
| npcm_i2c_int_enable(bus, true); |
| |
| if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread, |
| write_data, read_data, read_PEC, |
| read_block)) { |
| time_left = wait_for_completion_timeout(&bus->cmd_complete, |
| timeout); |
| |
| if (time_left == 0) { |
| if (bus->timeout_cnt < ULLONG_MAX) |
| bus->timeout_cnt++; |
| if (bus->master_or_slave == I2C_MASTER) { |
| i2c_recover_bus(adap); |
| bus->cmd_err = -EIO; |
| bus->state = I2C_IDLE; |
| } |
| } |
| } |
| |
| /* if there was BER, check if need to recover the bus: */ |
| if (bus->cmd_err == -EAGAIN) |
| bus->cmd_err = i2c_recover_bus(adap); |
| |
| /* |
| * After any type of error, check if LAST bit is still set, |
| * due to a HW issue. |
| * It cannot be cleared without resetting the module. |
| */ |
| else if (bus->cmd_err && |
| (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL))) |
| npcm_i2c_reset(bus); |
| |
| /* After any xfer, successful or not, stall and EOB must be disabled */ |
| npcm_i2c_stall_after_start(bus, false); |
| npcm_i2c_eob_int(bus, false); |
| |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| /* reenable slave if it was enabled */ |
| if (bus->slave) |
| iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN, |
| bus->reg + NPCM_I2CADDR1); |
| #else |
| npcm_i2c_int_enable(bus, false); |
| #endif |
| return bus->cmd_err; |
| } |
| |
| static u32 npcm_i2c_functionality(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | |
| I2C_FUNC_SMBUS_EMUL | |
| I2C_FUNC_SMBUS_BLOCK_DATA | |
| I2C_FUNC_SMBUS_PEC | |
| I2C_FUNC_SLAVE; |
| } |
| |
| static const struct i2c_adapter_quirks npcm_i2c_quirks = { |
| .max_read_len = 32768, |
| .max_write_len = 32768, |
| .flags = I2C_AQ_COMB_WRITE_THEN_READ, |
| }; |
| |
| static const struct i2c_algorithm npcm_i2c_algo = { |
| .master_xfer = npcm_i2c_master_xfer, |
| .functionality = npcm_i2c_functionality, |
| #if IS_ENABLED(CONFIG_I2C_SLAVE) |
| .reg_slave = npcm_i2c_reg_slave, |
| .unreg_slave = npcm_i2c_unreg_slave, |
| #endif |
| }; |
| |
| static void npcm_i2c_init_debugfs(struct platform_device *pdev, |
| struct npcm_i2c *bus) |
| { |
| debugfs_create_u64("ber_cnt", 0444, bus->adap.debugfs, &bus->ber_cnt); |
| debugfs_create_u64("nack_cnt", 0444, bus->adap.debugfs, &bus->nack_cnt); |
| debugfs_create_u64("rec_succ_cnt", 0444, bus->adap.debugfs, &bus->rec_succ_cnt); |
| debugfs_create_u64("rec_fail_cnt", 0444, bus->adap.debugfs, &bus->rec_fail_cnt); |
| debugfs_create_u64("timeout_cnt", 0444, bus->adap.debugfs, &bus->timeout_cnt); |
| debugfs_create_u64("tx_complete_cnt", 0444, bus->adap.debugfs, &bus->tx_complete_cnt); |
| } |
| |
| static int npcm_i2c_probe_bus(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| static struct regmap *gcr_regmap; |
| struct device *dev = &pdev->dev; |
| struct i2c_adapter *adap; |
| struct npcm_i2c *bus; |
| struct clk *i2c_clk; |
| int irq; |
| int ret; |
| |
| bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL); |
| if (!bus) |
| return -ENOMEM; |
| |
| bus->dev = &pdev->dev; |
| |
| bus->data = of_device_get_match_data(dev); |
| if (!bus->data) { |
| dev_err(dev, "OF data missing\n"); |
| return -EINVAL; |
| } |
| |
| bus->num = of_alias_get_id(pdev->dev.of_node, "i2c"); |
| /* core clk must be acquired to calculate module timing settings */ |
| i2c_clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(i2c_clk)) |
| return PTR_ERR(i2c_clk); |
| bus->apb_clk = clk_get_rate(i2c_clk); |
| |
| gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr"); |
| if (IS_ERR(gcr_regmap)) |
| gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr"); |
| |
| if (IS_ERR(gcr_regmap)) |
| return PTR_ERR(gcr_regmap); |
| regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val); |
| |
| bus->reg = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(bus->reg)) |
| return PTR_ERR(bus->reg); |
| |
| spin_lock_init(&bus->lock); |
| init_completion(&bus->cmd_complete); |
| |
| adap = &bus->adap; |
| adap->owner = THIS_MODULE; |
| adap->retries = 3; |
| adap->timeout = msecs_to_jiffies(35); |
| adap->algo = &npcm_i2c_algo; |
| adap->quirks = &npcm_i2c_quirks; |
| adap->algo_data = bus; |
| adap->dev.parent = &pdev->dev; |
| adap->dev.of_node = pdev->dev.of_node; |
| adap->nr = pdev->id; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0, |
| dev_name(bus->dev), bus); |
| if (ret) |
| return ret; |
| |
| ret = __npcm_i2c_init(bus, pdev); |
| if (ret) |
| return ret; |
| |
| npcm_i2c_recovery_init(adap); |
| |
| i2c_set_adapdata(adap, bus); |
| |
| snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d", |
| bus->num); |
| ret = i2c_add_numbered_adapter(&bus->adap); |
| if (ret) |
| return ret; |
| |
| platform_set_drvdata(pdev, bus); |
| npcm_i2c_init_debugfs(pdev, bus); |
| return 0; |
| } |
| |
| static void npcm_i2c_remove_bus(struct platform_device *pdev) |
| { |
| unsigned long lock_flags; |
| struct npcm_i2c *bus = platform_get_drvdata(pdev); |
| |
| spin_lock_irqsave(&bus->lock, lock_flags); |
| npcm_i2c_disable(bus); |
| spin_unlock_irqrestore(&bus->lock, lock_flags); |
| i2c_del_adapter(&bus->adap); |
| } |
| |
| static const struct of_device_id npcm_i2c_bus_of_table[] = { |
| { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data }, |
| { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table); |
| |
| static struct platform_driver npcm_i2c_bus_driver = { |
| .probe = npcm_i2c_probe_bus, |
| .remove_new = npcm_i2c_remove_bus, |
| .driver = { |
| .name = "nuvoton-i2c", |
| .of_match_table = npcm_i2c_bus_of_table, |
| } |
| }; |
| |
| module_platform_driver(npcm_i2c_bus_driver); |
| |
| MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>"); |
| MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>"); |
| MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>"); |
| MODULE_DESCRIPTION("Nuvoton I2C Bus Driver"); |
| MODULE_LICENSE("GPL v2"); |