blob: 175192ebaa773a7eeb7622d222ba907c69c51b17 [file] [log] [blame]
/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2014-2016 Broadcom Corporation
* Copyright (c) 2016-2018 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <linux/ethtool.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/etherdevice.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_hwrm.h"
#include "bnxt_ulp.h"
#include "bnxt_sriov.h"
#include "bnxt_vfr.h"
#include "bnxt_ethtool.h"
#ifdef CONFIG_BNXT_SRIOV
static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
struct bnxt_vf_info *vf, u16 event_id)
{
struct hwrm_fwd_async_event_cmpl_input *req;
struct hwrm_async_event_cmpl *async_cmpl;
int rc = 0;
rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL);
if (rc)
goto exit;
if (vf)
req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
else
/* broadcast this async event to all VFs */
req->encap_async_event_target_id = cpu_to_le16(0xffff);
async_cmpl =
(struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl;
async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
async_cmpl->event_id = cpu_to_le16(event_id);
rc = hwrm_req_send(bp, req);
exit:
if (rc)
netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
rc);
return rc;
}
static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
{
if (!bp->pf.active_vfs) {
netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
return -EINVAL;
}
if (vf_id >= bp->pf.active_vfs) {
netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
return -EINVAL;
}
return 0;
}
int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
{
struct bnxt *bp = netdev_priv(dev);
struct hwrm_func_cfg_input *req;
bool old_setting = false;
struct bnxt_vf_info *vf;
u32 func_flags;
int rc;
if (bp->hwrm_spec_code < 0x10701)
return -ENOTSUPP;
rc = bnxt_vf_ndo_prep(bp, vf_id);
if (rc)
return rc;
vf = &bp->pf.vf[vf_id];
if (vf->flags & BNXT_VF_SPOOFCHK)
old_setting = true;
if (old_setting == setting)
return 0;
if (setting)
func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
else
func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
/*TODO: if the driver supports VLAN filter on guest VLAN,
* the spoof check should also include vlan anti-spoofing
*/
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (!rc) {
req->fid = cpu_to_le16(vf->fw_fid);
req->flags = cpu_to_le32(func_flags);
rc = hwrm_req_send(bp, req);
if (!rc) {
if (setting)
vf->flags |= BNXT_VF_SPOOFCHK;
else
vf->flags &= ~BNXT_VF_SPOOFCHK;
}
}
return rc;
}
static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
{
struct hwrm_func_qcfg_output *resp;
struct hwrm_func_qcfg_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
if (rc)
return rc;
req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff);
resp = hwrm_req_hold(bp, req);
rc = hwrm_req_send(bp, req);
if (!rc)
vf->func_qcfg_flags = le16_to_cpu(resp->flags);
hwrm_req_drop(bp, req);
return rc;
}
bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
{
if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
return !!(vf->flags & BNXT_VF_TRUST);
bnxt_hwrm_func_qcfg_flags(bp, vf);
return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
}
static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
{
struct hwrm_func_cfg_input *req;
int rc;
if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
return 0;
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (rc)
return rc;
req->fid = cpu_to_le16(vf->fw_fid);
if (vf->flags & BNXT_VF_TRUST)
req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
else
req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
return hwrm_req_send(bp, req);
}
int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_vf_info *vf;
if (bnxt_vf_ndo_prep(bp, vf_id))
return -EINVAL;
vf = &bp->pf.vf[vf_id];
if (trusted)
vf->flags |= BNXT_VF_TRUST;
else
vf->flags &= ~BNXT_VF_TRUST;
bnxt_hwrm_set_trusted_vf(bp, vf);
return 0;
}
int bnxt_get_vf_config(struct net_device *dev, int vf_id,
struct ifla_vf_info *ivi)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_vf_info *vf;
int rc;
rc = bnxt_vf_ndo_prep(bp, vf_id);
if (rc)
return rc;
ivi->vf = vf_id;
vf = &bp->pf.vf[vf_id];
if (is_valid_ether_addr(vf->mac_addr))
memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
else
memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
ivi->max_tx_rate = vf->max_tx_rate;
ivi->min_tx_rate = vf->min_tx_rate;
ivi->vlan = vf->vlan;
if (vf->flags & BNXT_VF_QOS)
ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
else
ivi->qos = 0;
ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
ivi->trusted = bnxt_is_trusted_vf(bp, vf);
if (!(vf->flags & BNXT_VF_LINK_FORCED))
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
else if (vf->flags & BNXT_VF_LINK_UP)
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
else
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
return 0;
}
int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
{
struct bnxt *bp = netdev_priv(dev);
struct hwrm_func_cfg_input *req;
struct bnxt_vf_info *vf;
int rc;
rc = bnxt_vf_ndo_prep(bp, vf_id);
if (rc)
return rc;
/* reject bc or mc mac addr, zero mac addr means allow
* VF to use its own mac addr
*/
if (is_multicast_ether_addr(mac)) {
netdev_err(dev, "Invalid VF ethernet address\n");
return -EINVAL;
}
vf = &bp->pf.vf[vf_id];
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (rc)
return rc;
memcpy(vf->mac_addr, mac, ETH_ALEN);
req->fid = cpu_to_le16(vf->fw_fid);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
return hwrm_req_send(bp, req);
}
int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
__be16 vlan_proto)
{
struct bnxt *bp = netdev_priv(dev);
struct hwrm_func_cfg_input *req;
struct bnxt_vf_info *vf;
u16 vlan_tag;
int rc;
if (bp->hwrm_spec_code < 0x10201)
return -ENOTSUPP;
if (vlan_proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
rc = bnxt_vf_ndo_prep(bp, vf_id);
if (rc)
return rc;
/* TODO: needed to implement proper handling of user priority,
* currently fail the command if there is valid priority
*/
if (vlan_id > 4095 || qos)
return -EINVAL;
vf = &bp->pf.vf[vf_id];
vlan_tag = vlan_id;
if (vlan_tag == vf->vlan)
return 0;
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (!rc) {
req->fid = cpu_to_le16(vf->fw_fid);
req->dflt_vlan = cpu_to_le16(vlan_tag);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
rc = hwrm_req_send(bp, req);
if (!rc)
vf->vlan = vlan_tag;
}
return rc;
}
int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
int max_tx_rate)
{
struct bnxt *bp = netdev_priv(dev);
struct hwrm_func_cfg_input *req;
struct bnxt_vf_info *vf;
u32 pf_link_speed;
int rc;
rc = bnxt_vf_ndo_prep(bp, vf_id);
if (rc)
return rc;
vf = &bp->pf.vf[vf_id];
pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
if (max_tx_rate > pf_link_speed) {
netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
max_tx_rate, vf_id);
return -EINVAL;
}
if (min_tx_rate > pf_link_speed) {
netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
min_tx_rate, vf_id);
return -EINVAL;
}
if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
return 0;
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (!rc) {
req->fid = cpu_to_le16(vf->fw_fid);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
FUNC_CFG_REQ_ENABLES_MIN_BW);
req->max_bw = cpu_to_le32(max_tx_rate);
req->min_bw = cpu_to_le32(min_tx_rate);
rc = hwrm_req_send(bp, req);
if (!rc) {
vf->min_tx_rate = min_tx_rate;
vf->max_tx_rate = max_tx_rate;
}
}
return rc;
}
int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
{
struct bnxt *bp = netdev_priv(dev);
struct bnxt_vf_info *vf;
int rc;
rc = bnxt_vf_ndo_prep(bp, vf_id);
if (rc)
return rc;
vf = &bp->pf.vf[vf_id];
vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
switch (link) {
case IFLA_VF_LINK_STATE_AUTO:
vf->flags |= BNXT_VF_LINK_UP;
break;
case IFLA_VF_LINK_STATE_DISABLE:
vf->flags |= BNXT_VF_LINK_FORCED;
break;
case IFLA_VF_LINK_STATE_ENABLE:
vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
break;
default:
netdev_err(bp->dev, "Invalid link option\n");
rc = -EINVAL;
break;
}
if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
return rc;
}
static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
{
int i;
struct bnxt_vf_info *vf;
for (i = 0; i < num_vfs; i++) {
vf = &bp->pf.vf[i];
memset(vf, 0, sizeof(*vf));
}
return 0;
}
static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
{
struct hwrm_func_vf_resc_free_input *req;
struct bnxt_pf_info *pf = &bp->pf;
int i, rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE);
if (rc)
return rc;
hwrm_req_hold(bp, req);
for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
req->vf_id = cpu_to_le16(i);
rc = hwrm_req_send(bp, req);
if (rc)
break;
}
hwrm_req_drop(bp, req);
return rc;
}
static void bnxt_free_vf_resources(struct bnxt *bp)
{
struct pci_dev *pdev = bp->pdev;
int i;
kfree(bp->pf.vf_event_bmap);
bp->pf.vf_event_bmap = NULL;
for (i = 0; i < 4; i++) {
if (bp->pf.hwrm_cmd_req_addr[i]) {
dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
bp->pf.hwrm_cmd_req_addr[i],
bp->pf.hwrm_cmd_req_dma_addr[i]);
bp->pf.hwrm_cmd_req_addr[i] = NULL;
}
}
bp->pf.active_vfs = 0;
kfree(bp->pf.vf);
bp->pf.vf = NULL;
}
static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
{
struct pci_dev *pdev = bp->pdev;
u32 nr_pages, size, i, j, k = 0;
bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
if (!bp->pf.vf)
return -ENOMEM;
bnxt_set_vf_attr(bp, num_vfs);
size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
nr_pages = size / BNXT_PAGE_SIZE;
if (size & (BNXT_PAGE_SIZE - 1))
nr_pages++;
for (i = 0; i < nr_pages; i++) {
bp->pf.hwrm_cmd_req_addr[i] =
dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
&bp->pf.hwrm_cmd_req_dma_addr[i],
GFP_KERNEL);
if (!bp->pf.hwrm_cmd_req_addr[i])
return -ENOMEM;
for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
struct bnxt_vf_info *vf = &bp->pf.vf[k];
vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
j * BNXT_HWRM_REQ_MAX_SIZE;
vf->hwrm_cmd_req_dma_addr =
bp->pf.hwrm_cmd_req_dma_addr[i] + j *
BNXT_HWRM_REQ_MAX_SIZE;
k++;
}
}
/* Max 128 VF's */
bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
if (!bp->pf.vf_event_bmap)
return -ENOMEM;
bp->pf.hwrm_cmd_req_pages = nr_pages;
return 0;
}
static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
{
struct hwrm_func_buf_rgtr_input *req;
int rc;
rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR);
if (rc)
return rc;
req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
return hwrm_req_send(bp, req);
}
static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
{
struct hwrm_func_cfg_input *req;
struct bnxt_vf_info *vf;
int rc;
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (rc)
return rc;
vf = &bp->pf.vf[vf_id];
req->fid = cpu_to_le16(vf->fw_fid);
if (is_valid_ether_addr(vf->mac_addr)) {
req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN);
}
if (vf->vlan) {
req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
req->dflt_vlan = cpu_to_le16(vf->vlan);
}
if (vf->max_tx_rate) {
req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
FUNC_CFG_REQ_ENABLES_MIN_BW);
req->max_bw = cpu_to_le32(vf->max_tx_rate);
req->min_bw = cpu_to_le32(vf->min_tx_rate);
}
if (vf->flags & BNXT_VF_TRUST)
req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
return hwrm_req_send(bp, req);
}
/* Only called by PF to reserve resources for VFs, returns actual number of
* VFs configured, or < 0 on error.
*/
static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
{
struct hwrm_func_vf_resource_cfg_input *req;
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
struct bnxt_pf_info *pf = &bp->pf;
int i, rc = 0, min = 1;
u16 vf_msix = 0;
u16 vf_rss;
rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG);
if (rc)
return rc;
if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
vf_ring_grps = 0;
} else {
vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
}
vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
if (bp->flags & BNXT_FLAG_AGG_RINGS)
vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
else
vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
min = 0;
req->min_rsscos_ctx = cpu_to_le16(min);
}
if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
req->min_cmpl_rings = cpu_to_le16(min);
req->min_tx_rings = cpu_to_le16(min);
req->min_rx_rings = cpu_to_le16(min);
req->min_l2_ctxs = cpu_to_le16(min);
req->min_vnics = cpu_to_le16(min);
req->min_stat_ctx = cpu_to_le16(min);
if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
req->min_hw_ring_grps = cpu_to_le16(min);
} else {
vf_cp_rings /= num_vfs;
vf_tx_rings /= num_vfs;
vf_rx_rings /= num_vfs;
if ((bp->fw_cap & BNXT_FW_CAP_PRE_RESV_VNICS) &&
vf_vnics >= pf->max_vfs) {
/* Take into account that FW has pre-reserved 1 VNIC for
* each pf->max_vfs.
*/
vf_vnics = (vf_vnics - pf->max_vfs + num_vfs) / num_vfs;
} else {
vf_vnics /= num_vfs;
}
vf_stat_ctx /= num_vfs;
vf_ring_grps /= num_vfs;
vf_rss /= num_vfs;
vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
req->min_cmpl_rings = cpu_to_le16(vf_cp_rings);
req->min_tx_rings = cpu_to_le16(vf_tx_rings);
req->min_rx_rings = cpu_to_le16(vf_rx_rings);
req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
req->min_vnics = cpu_to_le16(vf_vnics);
req->min_stat_ctx = cpu_to_le16(vf_stat_ctx);
req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
req->min_rsscos_ctx = cpu_to_le16(vf_rss);
}
req->max_cmpl_rings = cpu_to_le16(vf_cp_rings);
req->max_tx_rings = cpu_to_le16(vf_tx_rings);
req->max_rx_rings = cpu_to_le16(vf_rx_rings);
req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
req->max_vnics = cpu_to_le16(vf_vnics);
req->max_stat_ctx = cpu_to_le16(vf_stat_ctx);
req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
req->max_rsscos_ctx = cpu_to_le16(vf_rss);
if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
req->max_msix = cpu_to_le16(vf_msix / num_vfs);
hwrm_req_hold(bp, req);
for (i = 0; i < num_vfs; i++) {
if (reset)
__bnxt_set_vf_params(bp, i);
req->vf_id = cpu_to_le16(pf->first_vf_id + i);
rc = hwrm_req_send(bp, req);
if (rc)
break;
pf->active_vfs = i + 1;
pf->vf[i].fw_fid = pf->first_vf_id + i;
}
if (pf->active_vfs) {
u16 n = pf->active_vfs;
hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n;
hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n;
hw_resc->max_hw_ring_grps -=
le16_to_cpu(req->min_hw_ring_grps) * n;
hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n;
hw_resc->max_rsscos_ctxs -=
le16_to_cpu(req->min_rsscos_ctx) * n;
hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n;
hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n;
if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
hw_resc->max_nqs -= vf_msix;
rc = pf->active_vfs;
}
hwrm_req_drop(bp, req);
return rc;
}
/* Only called by PF to reserve resources for VFs, returns actual number of
* VFs configured, or < 0 on error.
*/
static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
{
u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
struct bnxt_pf_info *pf = &bp->pf;
struct hwrm_func_cfg_input *req;
int total_vf_tx_rings = 0;
u16 vf_ring_grps;
u32 mtu, i;
int rc;
rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
if (rc)
return rc;
/* Remaining rings are distributed equally amongs VF's for now */
vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
if (bp->flags & BNXT_FLAG_AGG_RINGS)
vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
num_vfs;
else
vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
num_vfs;
vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU |
FUNC_CFG_REQ_ENABLES_MRU |
FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
FUNC_CFG_REQ_ENABLES_NUM_VNICS |
FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
req->mru = cpu_to_le16(mtu);
req->admin_mtu = cpu_to_le16(mtu);
req->num_rsscos_ctxs = cpu_to_le16(1);
req->num_cmpl_rings = cpu_to_le16(vf_cp_rings);
req->num_tx_rings = cpu_to_le16(vf_tx_rings);
req->num_rx_rings = cpu_to_le16(vf_rx_rings);
req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
req->num_l2_ctxs = cpu_to_le16(4);
req->num_vnics = cpu_to_le16(vf_vnics);
/* FIXME spec currently uses 1 bit for stats ctx */
req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
hwrm_req_hold(bp, req);
for (i = 0; i < num_vfs; i++) {
int vf_tx_rsvd = vf_tx_rings;
req->fid = cpu_to_le16(pf->first_vf_id + i);
rc = hwrm_req_send(bp, req);
if (rc)
break;
pf->active_vfs = i + 1;
pf->vf[i].fw_fid = le16_to_cpu(req->fid);
rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
&vf_tx_rsvd);
if (rc)
break;
total_vf_tx_rings += vf_tx_rsvd;
}
hwrm_req_drop(bp, req);
if (pf->active_vfs) {
hw_resc->max_tx_rings -= total_vf_tx_rings;
hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
hw_resc->max_rsscos_ctxs -= num_vfs;
hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
hw_resc->max_vnics -= vf_vnics * num_vfs;
rc = pf->active_vfs;
}
return rc;
}
static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
{
if (BNXT_NEW_RM(bp))
return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
else
return bnxt_hwrm_func_cfg(bp, num_vfs);
}
int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
{
int rc;
/* Register buffers for VFs */
rc = bnxt_hwrm_func_buf_rgtr(bp);
if (rc)
return rc;
/* Reserve resources for VFs */
rc = bnxt_func_cfg(bp, *num_vfs, reset);
if (rc != *num_vfs) {
if (rc <= 0) {
netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
*num_vfs = 0;
return rc;
}
netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
rc);
*num_vfs = rc;
}
return 0;
}
static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
{
int rc = 0, vfs_supported;
int min_rx_rings, min_tx_rings, min_rss_ctxs;
struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
int tx_ok = 0, rx_ok = 0, rss_ok = 0;
int avail_cp, avail_stat;
/* Check if we can enable requested num of vf's. At a mininum
* we require 1 RX 1 TX rings for each VF. In this minimum conf
* features like TPA will not be available.
*/
vfs_supported = *num_vfs;
avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
avail_cp = min_t(int, avail_cp, avail_stat);
while (vfs_supported) {
min_rx_rings = vfs_supported;
min_tx_rings = vfs_supported;
min_rss_ctxs = vfs_supported;
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
min_rx_rings)
rx_ok = 1;
} else {
if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
min_rx_rings)
rx_ok = 1;
}
if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
avail_cp < min_rx_rings)
rx_ok = 0;
if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
avail_cp >= min_tx_rings)
tx_ok = 1;
if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
min_rss_ctxs)
rss_ok = 1;
if (tx_ok && rx_ok && rss_ok)
break;
vfs_supported--;
}
if (!vfs_supported) {
netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
return -EINVAL;
}
if (vfs_supported != *num_vfs) {
netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
*num_vfs, vfs_supported);
*num_vfs = vfs_supported;
}
rc = bnxt_alloc_vf_resources(bp, *num_vfs);
if (rc)
goto err_out1;
rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
if (rc)
goto err_out2;
rc = pci_enable_sriov(bp->pdev, *num_vfs);
if (rc)
goto err_out2;
if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
return 0;
/* Create representors for VFs in switchdev mode */
devl_lock(bp->dl);
rc = bnxt_vf_reps_create(bp);
devl_unlock(bp->dl);
if (rc) {
netdev_info(bp->dev, "Cannot enable VFS as representors cannot be created\n");
goto err_out3;
}
return 0;
err_out3:
/* Disable SR-IOV */
pci_disable_sriov(bp->pdev);
err_out2:
/* Free the resources reserved for various VF's */
bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
/* Restore the max resources */
bnxt_hwrm_func_qcaps(bp);
err_out1:
bnxt_free_vf_resources(bp);
return rc;
}
void bnxt_sriov_disable(struct bnxt *bp)
{
u16 num_vfs = pci_num_vf(bp->pdev);
if (!num_vfs)
return;
/* synchronize VF and VF-rep create and destroy */
devl_lock(bp->dl);
bnxt_vf_reps_destroy(bp);
if (pci_vfs_assigned(bp->pdev)) {
bnxt_hwrm_fwd_async_event_cmpl(
bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
num_vfs);
} else {
pci_disable_sriov(bp->pdev);
/* Free the HW resources reserved for various VF's */
bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
}
devl_unlock(bp->dl);
bnxt_free_vf_resources(bp);
/* Reclaim all resources for the PF. */
rtnl_lock();
bnxt_restore_pf_fw_resources(bp);
rtnl_unlock();
}
int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnxt *bp = netdev_priv(dev);
if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
return 0;
}
rtnl_lock();
if (!netif_running(dev)) {
netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
rtnl_unlock();
return 0;
}
if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
rtnl_unlock();
return 0;
}
bp->sriov_cfg = true;
rtnl_unlock();
if (pci_vfs_assigned(bp->pdev)) {
netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
num_vfs = 0;
goto sriov_cfg_exit;
}
/* Check if enabled VFs is same as requested */
if (num_vfs && num_vfs == bp->pf.active_vfs)
goto sriov_cfg_exit;
/* if there are previous existing VFs, clean them up */
bnxt_sriov_disable(bp);
if (!num_vfs)
goto sriov_cfg_exit;
bnxt_sriov_enable(bp, &num_vfs);
sriov_cfg_exit:
bp->sriov_cfg = false;
wake_up(&bp->sriov_cfg_wait);
return num_vfs;
}
static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
void *encap_resp, __le64 encap_resp_addr,
__le16 encap_resp_cpr, u32 msg_size)
{
struct hwrm_fwd_resp_input *req;
int rc;
if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
return -EINVAL;
rc = hwrm_req_init(bp, req, HWRM_FWD_RESP);
if (!rc) {
/* Set the new target id */
req->target_id = cpu_to_le16(vf->fw_fid);
req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
req->encap_resp_len = cpu_to_le16(msg_size);
req->encap_resp_addr = encap_resp_addr;
req->encap_resp_cmpl_ring = encap_resp_cpr;
memcpy(req->encap_resp, encap_resp, msg_size);
rc = hwrm_req_send(bp, req);
}
if (rc)
netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
return rc;
}
static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
u32 msg_size)
{
struct hwrm_reject_fwd_resp_input *req;
int rc;
if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
return -EINVAL;
rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP);
if (!rc) {
/* Set the new target id */
req->target_id = cpu_to_le16(vf->fw_fid);
req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
rc = hwrm_req_send(bp, req);
}
if (rc)
netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
return rc;
}
static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
u32 msg_size)
{
struct hwrm_exec_fwd_resp_input *req;
int rc;
if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
return -EINVAL;
rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP);
if (!rc) {
/* Set the new target id */
req->target_id = cpu_to_le16(vf->fw_fid);
req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
rc = hwrm_req_send(bp, req);
}
if (rc)
netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
return rc;
}
static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
{
u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
struct hwrm_func_vf_cfg_input *req =
(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
/* Allow VF to set a valid MAC address, if trust is set to on or
* if the PF assigned MAC address is zero
*/
if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
bool trust = bnxt_is_trusted_vf(bp, vf);
if (is_valid_ether_addr(req->dflt_mac_addr) &&
(trust || !is_valid_ether_addr(vf->mac_addr) ||
ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
}
return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
}
return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
}
static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
{
u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
struct hwrm_cfa_l2_filter_alloc_input *req =
(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
bool mac_ok = false;
if (!is_valid_ether_addr((const u8 *)req->l2_addr))
return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
/* Allow VF to set a valid MAC address, if trust is set to on.
* Or VF MAC address must first match MAC address in PF's context.
* Otherwise, it must match the VF MAC address if firmware spec >=
* 1.2.2
*/
if (bnxt_is_trusted_vf(bp, vf)) {
mac_ok = true;
} else if (is_valid_ether_addr(vf->mac_addr)) {
if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
mac_ok = true;
} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
mac_ok = true;
} else {
/* There are two cases:
* 1.If firmware spec < 0x10202,VF MAC address is not forwarded
* to the PF and so it doesn't have to match
* 2.Allow VF to modify it's own MAC when PF has not assigned a
* valid MAC address and firmware spec >= 0x10202
*/
mac_ok = true;
}
if (mac_ok)
return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
}
static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
{
int rc = 0;
if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
/* real link */
rc = bnxt_hwrm_exec_fwd_resp(
bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
} else {
struct hwrm_port_phy_qcfg_output phy_qcfg_resp = {0};
struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
phy_qcfg_req =
(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
mutex_lock(&bp->link_lock);
memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
sizeof(phy_qcfg_resp));
mutex_unlock(&bp->link_lock);
phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
phy_qcfg_resp.valid = 1;
if (vf->flags & BNXT_VF_LINK_UP) {
/* if physical link is down, force link up on VF */
if (phy_qcfg_resp.link !=
PORT_PHY_QCFG_RESP_LINK_LINK) {
phy_qcfg_resp.link =
PORT_PHY_QCFG_RESP_LINK_LINK;
phy_qcfg_resp.link_speed = cpu_to_le16(
PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
phy_qcfg_resp.duplex_cfg =
PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
phy_qcfg_resp.duplex_state =
PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
phy_qcfg_resp.pause =
(PORT_PHY_QCFG_RESP_PAUSE_TX |
PORT_PHY_QCFG_RESP_PAUSE_RX);
}
} else {
/* force link down */
phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
phy_qcfg_resp.link_speed = 0;
phy_qcfg_resp.duplex_state =
PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
phy_qcfg_resp.pause = 0;
}
rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
phy_qcfg_req->resp_addr,
phy_qcfg_req->cmpl_ring,
sizeof(phy_qcfg_resp));
}
return rc;
}
static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
{
int rc = 0;
struct input *encap_req = vf->hwrm_cmd_req_addr;
u32 req_type = le16_to_cpu(encap_req->req_type);
switch (req_type) {
case HWRM_FUNC_VF_CFG:
rc = bnxt_vf_configure_mac(bp, vf);
break;
case HWRM_CFA_L2_FILTER_ALLOC:
rc = bnxt_vf_validate_set_mac(bp, vf);
break;
case HWRM_FUNC_CFG:
/* TODO Validate if VF is allowed to change mac address,
* mtu, num of rings etc
*/
rc = bnxt_hwrm_exec_fwd_resp(
bp, vf, sizeof(struct hwrm_func_cfg_input));
break;
case HWRM_PORT_PHY_QCFG:
rc = bnxt_vf_set_link(bp, vf);
break;
default:
break;
}
return rc;
}
void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
{
u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
/* Scan through VF's and process commands */
while (1) {
vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
if (vf_id >= active_vfs)
break;
clear_bit(vf_id, bp->pf.vf_event_bmap);
bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
i = vf_id + 1;
}
}
int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
{
struct hwrm_func_vf_cfg_input *req;
int rc = 0;
if (!BNXT_VF(bp))
return 0;
if (bp->hwrm_spec_code < 0x10202) {
if (is_valid_ether_addr(bp->vf.mac_addr))
rc = -EADDRNOTAVAIL;
goto mac_done;
}
rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
if (rc)
goto mac_done;
req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
if (!strict)
hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
rc = hwrm_req_send(bp, req);
mac_done:
if (rc && strict) {
rc = -EADDRNOTAVAIL;
netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
mac);
return rc;
}
return 0;
}
void bnxt_update_vf_mac(struct bnxt *bp)
{
struct hwrm_func_qcaps_output *resp;
struct hwrm_func_qcaps_input *req;
bool inform_pf = false;
if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS))
return;
req->fid = cpu_to_le16(0xffff);
resp = hwrm_req_hold(bp, req);
if (hwrm_req_send(bp, req))
goto update_vf_mac_exit;
/* Store MAC address from the firmware. There are 2 cases:
* 1. MAC address is valid. It is assigned from the PF and we
* need to override the current VF MAC address with it.
* 2. MAC address is zero. The VF will use a random MAC address by
* default but the stored zero MAC will allow the VF user to change
* the random MAC address using ndo_set_mac_address() if he wants.
*/
if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) {
memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
/* This means we are now using our own MAC address, let
* the PF know about this MAC address.
*/
if (!is_valid_ether_addr(bp->vf.mac_addr))
inform_pf = true;
}
/* overwrite netdev dev_addr with admin VF MAC */
if (is_valid_ether_addr(bp->vf.mac_addr))
eth_hw_addr_set(bp->dev, bp->vf.mac_addr);
update_vf_mac_exit:
hwrm_req_drop(bp, req);
if (inform_pf)
bnxt_approve_mac(bp, bp->dev->dev_addr, false);
}
#else
int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
{
if (*num_vfs)
return -EOPNOTSUPP;
return 0;
}
void bnxt_sriov_disable(struct bnxt *bp)
{
}
void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
{
netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
}
void bnxt_update_vf_mac(struct bnxt *bp)
{
}
int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
{
return 0;
}
#endif