| // SPDX-License-Identifier: GPL-2.0-only |
| /******************************************************************************* |
| This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. |
| ST Ethernet IPs are built around a Synopsys IP Core. |
| |
| Copyright(C) 2007-2011 STMicroelectronics Ltd |
| |
| |
| Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> |
| |
| Documentation available at: |
| http://www.stlinux.com |
| Support available at: |
| https://bugzilla.stlinux.com/ |
| *******************************************************************************/ |
| |
| #include <linux/clk.h> |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/skbuff.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_ether.h> |
| #include <linux/crc32.h> |
| #include <linux/mii.h> |
| #include <linux/if.h> |
| #include <linux/if_vlan.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/prefetch.h> |
| #include <linux/pinctrl/consumer.h> |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #endif /* CONFIG_DEBUG_FS */ |
| #include <linux/net_tstamp.h> |
| #include <linux/phylink.h> |
| #include <linux/udp.h> |
| #include <linux/bpf_trace.h> |
| #include <net/page_pool/helpers.h> |
| #include <net/pkt_cls.h> |
| #include <net/xdp_sock_drv.h> |
| #include "stmmac_ptp.h" |
| #include "stmmac.h" |
| #include "stmmac_xdp.h" |
| #include <linux/reset.h> |
| #include <linux/of_mdio.h> |
| #include "dwmac1000.h" |
| #include "dwxgmac2.h" |
| #include "hwif.h" |
| |
| /* As long as the interface is active, we keep the timestamping counter enabled |
| * with fine resolution and binary rollover. This avoid non-monotonic behavior |
| * (clock jumps) when changing timestamping settings at runtime. |
| */ |
| #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ |
| PTP_TCR_TSCTRLSSR) |
| |
| #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) |
| #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) |
| |
| /* Module parameters */ |
| #define TX_TIMEO 5000 |
| static int watchdog = TX_TIMEO; |
| module_param(watchdog, int, 0644); |
| MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); |
| |
| static int debug = -1; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); |
| |
| static int phyaddr = -1; |
| module_param(phyaddr, int, 0444); |
| MODULE_PARM_DESC(phyaddr, "Physical device address"); |
| |
| #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) |
| #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) |
| |
| /* Limit to make sure XDP TX and slow path can coexist */ |
| #define STMMAC_XSK_TX_BUDGET_MAX 256 |
| #define STMMAC_TX_XSK_AVAIL 16 |
| #define STMMAC_RX_FILL_BATCH 16 |
| |
| #define STMMAC_XDP_PASS 0 |
| #define STMMAC_XDP_CONSUMED BIT(0) |
| #define STMMAC_XDP_TX BIT(1) |
| #define STMMAC_XDP_REDIRECT BIT(2) |
| |
| static int flow_ctrl = FLOW_AUTO; |
| module_param(flow_ctrl, int, 0644); |
| MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); |
| |
| static int pause = PAUSE_TIME; |
| module_param(pause, int, 0644); |
| MODULE_PARM_DESC(pause, "Flow Control Pause Time"); |
| |
| #define TC_DEFAULT 64 |
| static int tc = TC_DEFAULT; |
| module_param(tc, int, 0644); |
| MODULE_PARM_DESC(tc, "DMA threshold control value"); |
| |
| #define DEFAULT_BUFSIZE 1536 |
| static int buf_sz = DEFAULT_BUFSIZE; |
| module_param(buf_sz, int, 0644); |
| MODULE_PARM_DESC(buf_sz, "DMA buffer size"); |
| |
| #define STMMAC_RX_COPYBREAK 256 |
| |
| static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
| NETIF_MSG_LINK | NETIF_MSG_IFUP | |
| NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); |
| |
| #define STMMAC_DEFAULT_LPI_TIMER 1000 |
| static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; |
| module_param(eee_timer, int, 0644); |
| MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); |
| #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) |
| |
| /* By default the driver will use the ring mode to manage tx and rx descriptors, |
| * but allow user to force to use the chain instead of the ring |
| */ |
| static unsigned int chain_mode; |
| module_param(chain_mode, int, 0444); |
| MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); |
| |
| static irqreturn_t stmmac_interrupt(int irq, void *dev_id); |
| /* For MSI interrupts handling */ |
| static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); |
| static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); |
| static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); |
| static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); |
| static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); |
| static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); |
| static void stmmac_reset_queues_param(struct stmmac_priv *priv); |
| static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); |
| static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); |
| static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, |
| u32 rxmode, u32 chan); |
| |
| #ifdef CONFIG_DEBUG_FS |
| static const struct net_device_ops stmmac_netdev_ops; |
| static void stmmac_init_fs(struct net_device *dev); |
| static void stmmac_exit_fs(struct net_device *dev); |
| #endif |
| |
| #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) |
| |
| int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) |
| { |
| int ret = 0; |
| |
| if (enabled) { |
| ret = clk_prepare_enable(priv->plat->stmmac_clk); |
| if (ret) |
| return ret; |
| ret = clk_prepare_enable(priv->plat->pclk); |
| if (ret) { |
| clk_disable_unprepare(priv->plat->stmmac_clk); |
| return ret; |
| } |
| if (priv->plat->clks_config) { |
| ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); |
| if (ret) { |
| clk_disable_unprepare(priv->plat->stmmac_clk); |
| clk_disable_unprepare(priv->plat->pclk); |
| return ret; |
| } |
| } |
| } else { |
| clk_disable_unprepare(priv->plat->stmmac_clk); |
| clk_disable_unprepare(priv->plat->pclk); |
| if (priv->plat->clks_config) |
| priv->plat->clks_config(priv->plat->bsp_priv, enabled); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); |
| |
| /** |
| * stmmac_verify_args - verify the driver parameters. |
| * Description: it checks the driver parameters and set a default in case of |
| * errors. |
| */ |
| static void stmmac_verify_args(void) |
| { |
| if (unlikely(watchdog < 0)) |
| watchdog = TX_TIMEO; |
| if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) |
| buf_sz = DEFAULT_BUFSIZE; |
| if (unlikely(flow_ctrl > 1)) |
| flow_ctrl = FLOW_AUTO; |
| else if (likely(flow_ctrl < 0)) |
| flow_ctrl = FLOW_OFF; |
| if (unlikely((pause < 0) || (pause > 0xffff))) |
| pause = PAUSE_TIME; |
| if (eee_timer < 0) |
| eee_timer = STMMAC_DEFAULT_LPI_TIMER; |
| } |
| |
| static void __stmmac_disable_all_queues(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_queues_cnt = priv->plat->tx_queues_to_use; |
| u32 maxq = max(rx_queues_cnt, tx_queues_cnt); |
| u32 queue; |
| |
| for (queue = 0; queue < maxq; queue++) { |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| |
| if (stmmac_xdp_is_enabled(priv) && |
| test_bit(queue, priv->af_xdp_zc_qps)) { |
| napi_disable(&ch->rxtx_napi); |
| continue; |
| } |
| |
| if (queue < rx_queues_cnt) |
| napi_disable(&ch->rx_napi); |
| if (queue < tx_queues_cnt) |
| napi_disable(&ch->tx_napi); |
| } |
| } |
| |
| /** |
| * stmmac_disable_all_queues - Disable all queues |
| * @priv: driver private structure |
| */ |
| static void stmmac_disable_all_queues(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_cnt = priv->plat->rx_queues_to_use; |
| struct stmmac_rx_queue *rx_q; |
| u32 queue; |
| |
| /* synchronize_rcu() needed for pending XDP buffers to drain */ |
| for (queue = 0; queue < rx_queues_cnt; queue++) { |
| rx_q = &priv->dma_conf.rx_queue[queue]; |
| if (rx_q->xsk_pool) { |
| synchronize_rcu(); |
| break; |
| } |
| } |
| |
| __stmmac_disable_all_queues(priv); |
| } |
| |
| /** |
| * stmmac_enable_all_queues - Enable all queues |
| * @priv: driver private structure |
| */ |
| static void stmmac_enable_all_queues(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_queues_cnt = priv->plat->tx_queues_to_use; |
| u32 maxq = max(rx_queues_cnt, tx_queues_cnt); |
| u32 queue; |
| |
| for (queue = 0; queue < maxq; queue++) { |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| |
| if (stmmac_xdp_is_enabled(priv) && |
| test_bit(queue, priv->af_xdp_zc_qps)) { |
| napi_enable(&ch->rxtx_napi); |
| continue; |
| } |
| |
| if (queue < rx_queues_cnt) |
| napi_enable(&ch->rx_napi); |
| if (queue < tx_queues_cnt) |
| napi_enable(&ch->tx_napi); |
| } |
| } |
| |
| static void stmmac_service_event_schedule(struct stmmac_priv *priv) |
| { |
| if (!test_bit(STMMAC_DOWN, &priv->state) && |
| !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) |
| queue_work(priv->wq, &priv->service_task); |
| } |
| |
| static void stmmac_global_err(struct stmmac_priv *priv) |
| { |
| netif_carrier_off(priv->dev); |
| set_bit(STMMAC_RESET_REQUESTED, &priv->state); |
| stmmac_service_event_schedule(priv); |
| } |
| |
| /** |
| * stmmac_clk_csr_set - dynamically set the MDC clock |
| * @priv: driver private structure |
| * Description: this is to dynamically set the MDC clock according to the csr |
| * clock input. |
| * Note: |
| * If a specific clk_csr value is passed from the platform |
| * this means that the CSR Clock Range selection cannot be |
| * changed at run-time and it is fixed (as reported in the driver |
| * documentation). Viceversa the driver will try to set the MDC |
| * clock dynamically according to the actual clock input. |
| */ |
| static void stmmac_clk_csr_set(struct stmmac_priv *priv) |
| { |
| u32 clk_rate; |
| |
| clk_rate = clk_get_rate(priv->plat->stmmac_clk); |
| |
| /* Platform provided default clk_csr would be assumed valid |
| * for all other cases except for the below mentioned ones. |
| * For values higher than the IEEE 802.3 specified frequency |
| * we can not estimate the proper divider as it is not known |
| * the frequency of clk_csr_i. So we do not change the default |
| * divider. |
| */ |
| if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { |
| if (clk_rate < CSR_F_35M) |
| priv->clk_csr = STMMAC_CSR_20_35M; |
| else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) |
| priv->clk_csr = STMMAC_CSR_35_60M; |
| else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) |
| priv->clk_csr = STMMAC_CSR_60_100M; |
| else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) |
| priv->clk_csr = STMMAC_CSR_100_150M; |
| else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) |
| priv->clk_csr = STMMAC_CSR_150_250M; |
| else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) |
| priv->clk_csr = STMMAC_CSR_250_300M; |
| } |
| |
| if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) { |
| if (clk_rate > 160000000) |
| priv->clk_csr = 0x03; |
| else if (clk_rate > 80000000) |
| priv->clk_csr = 0x02; |
| else if (clk_rate > 40000000) |
| priv->clk_csr = 0x01; |
| else |
| priv->clk_csr = 0; |
| } |
| |
| if (priv->plat->has_xgmac) { |
| if (clk_rate > 400000000) |
| priv->clk_csr = 0x5; |
| else if (clk_rate > 350000000) |
| priv->clk_csr = 0x4; |
| else if (clk_rate > 300000000) |
| priv->clk_csr = 0x3; |
| else if (clk_rate > 250000000) |
| priv->clk_csr = 0x2; |
| else if (clk_rate > 150000000) |
| priv->clk_csr = 0x1; |
| else |
| priv->clk_csr = 0x0; |
| } |
| } |
| |
| static void print_pkt(unsigned char *buf, int len) |
| { |
| pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); |
| print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); |
| } |
| |
| static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| u32 avail; |
| |
| if (tx_q->dirty_tx > tx_q->cur_tx) |
| avail = tx_q->dirty_tx - tx_q->cur_tx - 1; |
| else |
| avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; |
| |
| return avail; |
| } |
| |
| /** |
| * stmmac_rx_dirty - Get RX queue dirty |
| * @priv: driver private structure |
| * @queue: RX queue index |
| */ |
| static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| u32 dirty; |
| |
| if (rx_q->dirty_rx <= rx_q->cur_rx) |
| dirty = rx_q->cur_rx - rx_q->dirty_rx; |
| else |
| dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; |
| |
| return dirty; |
| } |
| |
| static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) |
| { |
| int tx_lpi_timer; |
| |
| /* Clear/set the SW EEE timer flag based on LPI ET enablement */ |
| priv->eee_sw_timer_en = en ? 0 : 1; |
| tx_lpi_timer = en ? priv->tx_lpi_timer : 0; |
| stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); |
| } |
| |
| /** |
| * stmmac_enable_eee_mode - check and enter in LPI mode |
| * @priv: driver private structure |
| * Description: this function is to verify and enter in LPI mode in case of |
| * EEE. |
| */ |
| static int stmmac_enable_eee_mode(struct stmmac_priv *priv) |
| { |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| u32 queue; |
| |
| /* check if all TX queues have the work finished */ |
| for (queue = 0; queue < tx_cnt; queue++) { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| |
| if (tx_q->dirty_tx != tx_q->cur_tx) |
| return -EBUSY; /* still unfinished work */ |
| } |
| |
| /* Check and enter in LPI mode */ |
| if (!priv->tx_path_in_lpi_mode) |
| stmmac_set_eee_mode(priv, priv->hw, |
| priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING); |
| return 0; |
| } |
| |
| /** |
| * stmmac_disable_eee_mode - disable and exit from LPI mode |
| * @priv: driver private structure |
| * Description: this function is to exit and disable EEE in case of |
| * LPI state is true. This is called by the xmit. |
| */ |
| void stmmac_disable_eee_mode(struct stmmac_priv *priv) |
| { |
| if (!priv->eee_sw_timer_en) { |
| stmmac_lpi_entry_timer_config(priv, 0); |
| return; |
| } |
| |
| stmmac_reset_eee_mode(priv, priv->hw); |
| del_timer_sync(&priv->eee_ctrl_timer); |
| priv->tx_path_in_lpi_mode = false; |
| } |
| |
| /** |
| * stmmac_eee_ctrl_timer - EEE TX SW timer. |
| * @t: timer_list struct containing private info |
| * Description: |
| * if there is no data transfer and if we are not in LPI state, |
| * then MAC Transmitter can be moved to LPI state. |
| */ |
| static void stmmac_eee_ctrl_timer(struct timer_list *t) |
| { |
| struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); |
| |
| if (stmmac_enable_eee_mode(priv)) |
| mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); |
| } |
| |
| /** |
| * stmmac_eee_init - init EEE |
| * @priv: driver private structure |
| * Description: |
| * if the GMAC supports the EEE (from the HW cap reg) and the phy device |
| * can also manage EEE, this function enable the LPI state and start related |
| * timer. |
| */ |
| bool stmmac_eee_init(struct stmmac_priv *priv) |
| { |
| int eee_tw_timer = priv->eee_tw_timer; |
| |
| /* Using PCS we cannot dial with the phy registers at this stage |
| * so we do not support extra feature like EEE. |
| */ |
| if (priv->hw->pcs == STMMAC_PCS_TBI || |
| priv->hw->pcs == STMMAC_PCS_RTBI) |
| return false; |
| |
| /* Check if MAC core supports the EEE feature. */ |
| if (!priv->dma_cap.eee) |
| return false; |
| |
| mutex_lock(&priv->lock); |
| |
| /* Check if it needs to be deactivated */ |
| if (!priv->eee_active) { |
| if (priv->eee_enabled) { |
| netdev_dbg(priv->dev, "disable EEE\n"); |
| stmmac_lpi_entry_timer_config(priv, 0); |
| del_timer_sync(&priv->eee_ctrl_timer); |
| stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); |
| if (priv->hw->xpcs) |
| xpcs_config_eee(priv->hw->xpcs, |
| priv->plat->mult_fact_100ns, |
| false); |
| } |
| mutex_unlock(&priv->lock); |
| return false; |
| } |
| |
| if (priv->eee_active && !priv->eee_enabled) { |
| timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); |
| stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, |
| eee_tw_timer); |
| if (priv->hw->xpcs) |
| xpcs_config_eee(priv->hw->xpcs, |
| priv->plat->mult_fact_100ns, |
| true); |
| } |
| |
| if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { |
| del_timer_sync(&priv->eee_ctrl_timer); |
| priv->tx_path_in_lpi_mode = false; |
| stmmac_lpi_entry_timer_config(priv, 1); |
| } else { |
| stmmac_lpi_entry_timer_config(priv, 0); |
| mod_timer(&priv->eee_ctrl_timer, |
| STMMAC_LPI_T(priv->tx_lpi_timer)); |
| } |
| |
| mutex_unlock(&priv->lock); |
| netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); |
| return true; |
| } |
| |
| /* stmmac_get_tx_hwtstamp - get HW TX timestamps |
| * @priv: driver private structure |
| * @p : descriptor pointer |
| * @skb : the socket buffer |
| * Description : |
| * This function will read timestamp from the descriptor & pass it to stack. |
| * and also perform some sanity checks. |
| */ |
| static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, |
| struct dma_desc *p, struct sk_buff *skb) |
| { |
| struct skb_shared_hwtstamps shhwtstamp; |
| bool found = false; |
| u64 ns = 0; |
| |
| if (!priv->hwts_tx_en) |
| return; |
| |
| /* exit if skb doesn't support hw tstamp */ |
| if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) |
| return; |
| |
| /* check tx tstamp status */ |
| if (stmmac_get_tx_timestamp_status(priv, p)) { |
| stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); |
| found = true; |
| } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { |
| found = true; |
| } |
| |
| if (found) { |
| ns -= priv->plat->cdc_error_adj; |
| |
| memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); |
| shhwtstamp.hwtstamp = ns_to_ktime(ns); |
| |
| netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); |
| /* pass tstamp to stack */ |
| skb_tstamp_tx(skb, &shhwtstamp); |
| } |
| } |
| |
| /* stmmac_get_rx_hwtstamp - get HW RX timestamps |
| * @priv: driver private structure |
| * @p : descriptor pointer |
| * @np : next descriptor pointer |
| * @skb : the socket buffer |
| * Description : |
| * This function will read received packet's timestamp from the descriptor |
| * and pass it to stack. It also perform some sanity checks. |
| */ |
| static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, |
| struct dma_desc *np, struct sk_buff *skb) |
| { |
| struct skb_shared_hwtstamps *shhwtstamp = NULL; |
| struct dma_desc *desc = p; |
| u64 ns = 0; |
| |
| if (!priv->hwts_rx_en) |
| return; |
| /* For GMAC4, the valid timestamp is from CTX next desc. */ |
| if (priv->plat->has_gmac4 || priv->plat->has_xgmac) |
| desc = np; |
| |
| /* Check if timestamp is available */ |
| if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { |
| stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); |
| |
| ns -= priv->plat->cdc_error_adj; |
| |
| netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); |
| shhwtstamp = skb_hwtstamps(skb); |
| memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); |
| shhwtstamp->hwtstamp = ns_to_ktime(ns); |
| } else { |
| netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); |
| } |
| } |
| |
| /** |
| * stmmac_hwtstamp_set - control hardware timestamping. |
| * @dev: device pointer. |
| * @ifr: An IOCTL specific structure, that can contain a pointer to |
| * a proprietary structure used to pass information to the driver. |
| * Description: |
| * This function configures the MAC to enable/disable both outgoing(TX) |
| * and incoming(RX) packets time stamping based on user input. |
| * Return Value: |
| * 0 on success and an appropriate -ve integer on failure. |
| */ |
| static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| struct hwtstamp_config config; |
| u32 ptp_v2 = 0; |
| u32 tstamp_all = 0; |
| u32 ptp_over_ipv4_udp = 0; |
| u32 ptp_over_ipv6_udp = 0; |
| u32 ptp_over_ethernet = 0; |
| u32 snap_type_sel = 0; |
| u32 ts_master_en = 0; |
| u32 ts_event_en = 0; |
| |
| if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { |
| netdev_alert(priv->dev, "No support for HW time stamping\n"); |
| priv->hwts_tx_en = 0; |
| priv->hwts_rx_en = 0; |
| |
| return -EOPNOTSUPP; |
| } |
| |
| if (copy_from_user(&config, ifr->ifr_data, |
| sizeof(config))) |
| return -EFAULT; |
| |
| netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", |
| __func__, config.flags, config.tx_type, config.rx_filter); |
| |
| if (config.tx_type != HWTSTAMP_TX_OFF && |
| config.tx_type != HWTSTAMP_TX_ON) |
| return -ERANGE; |
| |
| if (priv->adv_ts) { |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| /* time stamp no incoming packet at all */ |
| config.rx_filter = HWTSTAMP_FILTER_NONE; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| /* PTP v1, UDP, any kind of event packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
| /* 'xmac' hardware can support Sync, Pdelay_Req and |
| * Pdelay_resp by setting bit14 and bits17/16 to 01 |
| * This leaves Delay_Req timestamps out. |
| * Enable all events *and* general purpose message |
| * timestamping |
| */ |
| snap_type_sel = PTP_TCR_SNAPTYPSEL_1; |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| /* PTP v1, UDP, Sync packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; |
| /* take time stamp for SYNC messages only */ |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| /* PTP v1, UDP, Delay_req packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; |
| /* take time stamp for Delay_Req messages only */ |
| ts_master_en = PTP_TCR_TSMSTRENA; |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| /* PTP v2, UDP, any kind of event packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; |
| ptp_v2 = PTP_TCR_TSVER2ENA; |
| /* take time stamp for all event messages */ |
| snap_type_sel = PTP_TCR_SNAPTYPSEL_1; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| /* PTP v2, UDP, Sync packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; |
| ptp_v2 = PTP_TCR_TSVER2ENA; |
| /* take time stamp for SYNC messages only */ |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| /* PTP v2, UDP, Delay_req packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; |
| ptp_v2 = PTP_TCR_TSVER2ENA; |
| /* take time stamp for Delay_Req messages only */ |
| ts_master_en = PTP_TCR_TSMSTRENA; |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| /* PTP v2/802.AS1 any layer, any kind of event packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| ptp_v2 = PTP_TCR_TSVER2ENA; |
| snap_type_sel = PTP_TCR_SNAPTYPSEL_1; |
| if (priv->synopsys_id < DWMAC_CORE_4_10) |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| ptp_over_ethernet = PTP_TCR_TSIPENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| /* PTP v2/802.AS1, any layer, Sync packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; |
| ptp_v2 = PTP_TCR_TSVER2ENA; |
| /* take time stamp for SYNC messages only */ |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| ptp_over_ethernet = PTP_TCR_TSIPENA; |
| break; |
| |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| /* PTP v2/802.AS1, any layer, Delay_req packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; |
| ptp_v2 = PTP_TCR_TSVER2ENA; |
| /* take time stamp for Delay_Req messages only */ |
| ts_master_en = PTP_TCR_TSMSTRENA; |
| ts_event_en = PTP_TCR_TSEVNTENA; |
| |
| ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
| ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
| ptp_over_ethernet = PTP_TCR_TSIPENA; |
| break; |
| |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| /* time stamp any incoming packet */ |
| config.rx_filter = HWTSTAMP_FILTER_ALL; |
| tstamp_all = PTP_TCR_TSENALL; |
| break; |
| |
| default: |
| return -ERANGE; |
| } |
| } else { |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| config.rx_filter = HWTSTAMP_FILTER_NONE; |
| break; |
| default: |
| /* PTP v1, UDP, any kind of event packet */ |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
| break; |
| } |
| } |
| priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); |
| priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; |
| |
| priv->systime_flags = STMMAC_HWTS_ACTIVE; |
| |
| if (priv->hwts_tx_en || priv->hwts_rx_en) { |
| priv->systime_flags |= tstamp_all | ptp_v2 | |
| ptp_over_ethernet | ptp_over_ipv6_udp | |
| ptp_over_ipv4_udp | ts_event_en | |
| ts_master_en | snap_type_sel; |
| } |
| |
| stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); |
| |
| memcpy(&priv->tstamp_config, &config, sizeof(config)); |
| |
| return copy_to_user(ifr->ifr_data, &config, |
| sizeof(config)) ? -EFAULT : 0; |
| } |
| |
| /** |
| * stmmac_hwtstamp_get - read hardware timestamping. |
| * @dev: device pointer. |
| * @ifr: An IOCTL specific structure, that can contain a pointer to |
| * a proprietary structure used to pass information to the driver. |
| * Description: |
| * This function obtain the current hardware timestamping settings |
| * as requested. |
| */ |
| static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| struct hwtstamp_config *config = &priv->tstamp_config; |
| |
| if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) |
| return -EOPNOTSUPP; |
| |
| return copy_to_user(ifr->ifr_data, config, |
| sizeof(*config)) ? -EFAULT : 0; |
| } |
| |
| /** |
| * stmmac_init_tstamp_counter - init hardware timestamping counter |
| * @priv: driver private structure |
| * @systime_flags: timestamping flags |
| * Description: |
| * Initialize hardware counter for packet timestamping. |
| * This is valid as long as the interface is open and not suspended. |
| * Will be rerun after resuming from suspend, case in which the timestamping |
| * flags updated by stmmac_hwtstamp_set() also need to be restored. |
| */ |
| int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) |
| { |
| bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; |
| struct timespec64 now; |
| u32 sec_inc = 0; |
| u64 temp = 0; |
| |
| if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) |
| return -EOPNOTSUPP; |
| |
| stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); |
| priv->systime_flags = systime_flags; |
| |
| /* program Sub Second Increment reg */ |
| stmmac_config_sub_second_increment(priv, priv->ptpaddr, |
| priv->plat->clk_ptp_rate, |
| xmac, &sec_inc); |
| temp = div_u64(1000000000ULL, sec_inc); |
| |
| /* Store sub second increment for later use */ |
| priv->sub_second_inc = sec_inc; |
| |
| /* calculate default added value: |
| * formula is : |
| * addend = (2^32)/freq_div_ratio; |
| * where, freq_div_ratio = 1e9ns/sec_inc |
| */ |
| temp = (u64)(temp << 32); |
| priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); |
| stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); |
| |
| /* initialize system time */ |
| ktime_get_real_ts64(&now); |
| |
| /* lower 32 bits of tv_sec are safe until y2106 */ |
| stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); |
| |
| /** |
| * stmmac_init_ptp - init PTP |
| * @priv: driver private structure |
| * Description: this is to verify if the HW supports the PTPv1 or PTPv2. |
| * This is done by looking at the HW cap. register. |
| * This function also registers the ptp driver. |
| */ |
| static int stmmac_init_ptp(struct stmmac_priv *priv) |
| { |
| bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; |
| int ret; |
| |
| if (priv->plat->ptp_clk_freq_config) |
| priv->plat->ptp_clk_freq_config(priv); |
| |
| ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); |
| if (ret) |
| return ret; |
| |
| priv->adv_ts = 0; |
| /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ |
| if (xmac && priv->dma_cap.atime_stamp) |
| priv->adv_ts = 1; |
| /* Dwmac 3.x core with extend_desc can support adv_ts */ |
| else if (priv->extend_desc && priv->dma_cap.atime_stamp) |
| priv->adv_ts = 1; |
| |
| if (priv->dma_cap.time_stamp) |
| netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); |
| |
| if (priv->adv_ts) |
| netdev_info(priv->dev, |
| "IEEE 1588-2008 Advanced Timestamp supported\n"); |
| |
| priv->hwts_tx_en = 0; |
| priv->hwts_rx_en = 0; |
| |
| if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY) |
| stmmac_hwtstamp_correct_latency(priv, priv); |
| |
| return 0; |
| } |
| |
| static void stmmac_release_ptp(struct stmmac_priv *priv) |
| { |
| clk_disable_unprepare(priv->plat->clk_ptp_ref); |
| stmmac_ptp_unregister(priv); |
| } |
| |
| /** |
| * stmmac_mac_flow_ctrl - Configure flow control in all queues |
| * @priv: driver private structure |
| * @duplex: duplex passed to the next function |
| * Description: It is used for configuring the flow control in all queues |
| */ |
| static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) |
| { |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| |
| stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, |
| priv->pause, tx_cnt); |
| } |
| |
| static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, |
| phy_interface_t interface) |
| { |
| struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
| |
| if (priv->hw->xpcs) |
| return &priv->hw->xpcs->pcs; |
| |
| if (priv->hw->lynx_pcs) |
| return priv->hw->lynx_pcs; |
| |
| return NULL; |
| } |
| |
| static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, |
| const struct phylink_link_state *state) |
| { |
| /* Nothing to do, xpcs_config() handles everything */ |
| } |
| |
| static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) |
| { |
| struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; |
| enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; |
| enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; |
| bool *hs_enable = &fpe_cfg->hs_enable; |
| |
| if (is_up && *hs_enable) { |
| stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg, |
| MPACKET_VERIFY); |
| } else { |
| *lo_state = FPE_STATE_OFF; |
| *lp_state = FPE_STATE_OFF; |
| } |
| } |
| |
| static void stmmac_mac_link_down(struct phylink_config *config, |
| unsigned int mode, phy_interface_t interface) |
| { |
| struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
| |
| stmmac_mac_set(priv, priv->ioaddr, false); |
| priv->eee_active = false; |
| priv->tx_lpi_enabled = false; |
| priv->eee_enabled = stmmac_eee_init(priv); |
| stmmac_set_eee_pls(priv, priv->hw, false); |
| |
| if (priv->dma_cap.fpesel) |
| stmmac_fpe_link_state_handle(priv, false); |
| } |
| |
| static void stmmac_mac_link_up(struct phylink_config *config, |
| struct phy_device *phy, |
| unsigned int mode, phy_interface_t interface, |
| int speed, int duplex, |
| bool tx_pause, bool rx_pause) |
| { |
| struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
| u32 old_ctrl, ctrl; |
| |
| if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && |
| priv->plat->serdes_powerup) |
| priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv); |
| |
| old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); |
| ctrl = old_ctrl & ~priv->hw->link.speed_mask; |
| |
| if (interface == PHY_INTERFACE_MODE_USXGMII) { |
| switch (speed) { |
| case SPEED_10000: |
| ctrl |= priv->hw->link.xgmii.speed10000; |
| break; |
| case SPEED_5000: |
| ctrl |= priv->hw->link.xgmii.speed5000; |
| break; |
| case SPEED_2500: |
| ctrl |= priv->hw->link.xgmii.speed2500; |
| break; |
| default: |
| return; |
| } |
| } else if (interface == PHY_INTERFACE_MODE_XLGMII) { |
| switch (speed) { |
| case SPEED_100000: |
| ctrl |= priv->hw->link.xlgmii.speed100000; |
| break; |
| case SPEED_50000: |
| ctrl |= priv->hw->link.xlgmii.speed50000; |
| break; |
| case SPEED_40000: |
| ctrl |= priv->hw->link.xlgmii.speed40000; |
| break; |
| case SPEED_25000: |
| ctrl |= priv->hw->link.xlgmii.speed25000; |
| break; |
| case SPEED_10000: |
| ctrl |= priv->hw->link.xgmii.speed10000; |
| break; |
| case SPEED_2500: |
| ctrl |= priv->hw->link.speed2500; |
| break; |
| case SPEED_1000: |
| ctrl |= priv->hw->link.speed1000; |
| break; |
| default: |
| return; |
| } |
| } else { |
| switch (speed) { |
| case SPEED_2500: |
| ctrl |= priv->hw->link.speed2500; |
| break; |
| case SPEED_1000: |
| ctrl |= priv->hw->link.speed1000; |
| break; |
| case SPEED_100: |
| ctrl |= priv->hw->link.speed100; |
| break; |
| case SPEED_10: |
| ctrl |= priv->hw->link.speed10; |
| break; |
| default: |
| return; |
| } |
| } |
| |
| priv->speed = speed; |
| |
| if (priv->plat->fix_mac_speed) |
| priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode); |
| |
| if (!duplex) |
| ctrl &= ~priv->hw->link.duplex; |
| else |
| ctrl |= priv->hw->link.duplex; |
| |
| /* Flow Control operation */ |
| if (rx_pause && tx_pause) |
| priv->flow_ctrl = FLOW_AUTO; |
| else if (rx_pause && !tx_pause) |
| priv->flow_ctrl = FLOW_RX; |
| else if (!rx_pause && tx_pause) |
| priv->flow_ctrl = FLOW_TX; |
| else |
| priv->flow_ctrl = FLOW_OFF; |
| |
| stmmac_mac_flow_ctrl(priv, duplex); |
| |
| if (ctrl != old_ctrl) |
| writel(ctrl, priv->ioaddr + MAC_CTRL_REG); |
| |
| stmmac_mac_set(priv, priv->ioaddr, true); |
| if (phy && priv->dma_cap.eee) { |
| priv->eee_active = |
| phy_init_eee(phy, !(priv->plat->flags & |
| STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0; |
| priv->eee_enabled = stmmac_eee_init(priv); |
| priv->tx_lpi_enabled = priv->eee_enabled; |
| stmmac_set_eee_pls(priv, priv->hw, true); |
| } |
| |
| if (priv->dma_cap.fpesel) |
| stmmac_fpe_link_state_handle(priv, true); |
| |
| if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY) |
| stmmac_hwtstamp_correct_latency(priv, priv); |
| } |
| |
| static const struct phylink_mac_ops stmmac_phylink_mac_ops = { |
| .mac_select_pcs = stmmac_mac_select_pcs, |
| .mac_config = stmmac_mac_config, |
| .mac_link_down = stmmac_mac_link_down, |
| .mac_link_up = stmmac_mac_link_up, |
| }; |
| |
| /** |
| * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported |
| * @priv: driver private structure |
| * Description: this is to verify if the HW supports the PCS. |
| * Physical Coding Sublayer (PCS) interface that can be used when the MAC is |
| * configured for the TBI, RTBI, or SGMII PHY interface. |
| */ |
| static void stmmac_check_pcs_mode(struct stmmac_priv *priv) |
| { |
| int interface = priv->plat->mac_interface; |
| |
| if (priv->dma_cap.pcs) { |
| if ((interface == PHY_INTERFACE_MODE_RGMII) || |
| (interface == PHY_INTERFACE_MODE_RGMII_ID) || |
| (interface == PHY_INTERFACE_MODE_RGMII_RXID) || |
| (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { |
| netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); |
| priv->hw->pcs = STMMAC_PCS_RGMII; |
| } else if (interface == PHY_INTERFACE_MODE_SGMII) { |
| netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); |
| priv->hw->pcs = STMMAC_PCS_SGMII; |
| } |
| } |
| } |
| |
| /** |
| * stmmac_init_phy - PHY initialization |
| * @dev: net device structure |
| * Description: it initializes the driver's PHY state, and attaches the PHY |
| * to the mac driver. |
| * Return value: |
| * 0 on success |
| */ |
| static int stmmac_init_phy(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| struct fwnode_handle *phy_fwnode; |
| struct fwnode_handle *fwnode; |
| int ret; |
| |
| if (!phylink_expects_phy(priv->phylink)) |
| return 0; |
| |
| fwnode = priv->plat->port_node; |
| if (!fwnode) |
| fwnode = dev_fwnode(priv->device); |
| |
| if (fwnode) |
| phy_fwnode = fwnode_get_phy_node(fwnode); |
| else |
| phy_fwnode = NULL; |
| |
| /* Some DT bindings do not set-up the PHY handle. Let's try to |
| * manually parse it |
| */ |
| if (!phy_fwnode || IS_ERR(phy_fwnode)) { |
| int addr = priv->plat->phy_addr; |
| struct phy_device *phydev; |
| |
| if (addr < 0) { |
| netdev_err(priv->dev, "no phy found\n"); |
| return -ENODEV; |
| } |
| |
| phydev = mdiobus_get_phy(priv->mii, addr); |
| if (!phydev) { |
| netdev_err(priv->dev, "no phy at addr %d\n", addr); |
| return -ENODEV; |
| } |
| |
| ret = phylink_connect_phy(priv->phylink, phydev); |
| } else { |
| fwnode_handle_put(phy_fwnode); |
| ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); |
| } |
| |
| if (!priv->plat->pmt) { |
| struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; |
| |
| phylink_ethtool_get_wol(priv->phylink, &wol); |
| device_set_wakeup_capable(priv->device, !!wol.supported); |
| device_set_wakeup_enable(priv->device, !!wol.wolopts); |
| } |
| |
| return ret; |
| } |
| |
| static void stmmac_set_half_duplex(struct stmmac_priv *priv) |
| { |
| /* Half-Duplex can only work with single tx queue */ |
| if (priv->plat->tx_queues_to_use > 1) |
| priv->phylink_config.mac_capabilities &= |
| ~(MAC_10HD | MAC_100HD | MAC_1000HD); |
| else |
| priv->phylink_config.mac_capabilities |= |
| (MAC_10HD | MAC_100HD | MAC_1000HD); |
| } |
| |
| static int stmmac_phy_setup(struct stmmac_priv *priv) |
| { |
| struct stmmac_mdio_bus_data *mdio_bus_data; |
| int mode = priv->plat->phy_interface; |
| struct fwnode_handle *fwnode; |
| struct phylink *phylink; |
| int max_speed; |
| |
| priv->phylink_config.dev = &priv->dev->dev; |
| priv->phylink_config.type = PHYLINK_NETDEV; |
| priv->phylink_config.mac_managed_pm = true; |
| |
| mdio_bus_data = priv->plat->mdio_bus_data; |
| if (mdio_bus_data) |
| priv->phylink_config.ovr_an_inband = |
| mdio_bus_data->xpcs_an_inband; |
| |
| /* Set the platform/firmware specified interface mode. Note, phylink |
| * deals with the PHY interface mode, not the MAC interface mode. |
| */ |
| __set_bit(mode, priv->phylink_config.supported_interfaces); |
| |
| /* If we have an xpcs, it defines which PHY interfaces are supported. */ |
| if (priv->hw->xpcs) |
| xpcs_get_interfaces(priv->hw->xpcs, |
| priv->phylink_config.supported_interfaces); |
| |
| priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | |
| MAC_10FD | MAC_100FD | |
| MAC_1000FD; |
| |
| stmmac_set_half_duplex(priv); |
| |
| /* Get the MAC specific capabilities */ |
| stmmac_mac_phylink_get_caps(priv); |
| |
| max_speed = priv->plat->max_speed; |
| if (max_speed) |
| phylink_limit_mac_speed(&priv->phylink_config, max_speed); |
| |
| fwnode = priv->plat->port_node; |
| if (!fwnode) |
| fwnode = dev_fwnode(priv->device); |
| |
| phylink = phylink_create(&priv->phylink_config, fwnode, |
| mode, &stmmac_phylink_mac_ops); |
| if (IS_ERR(phylink)) |
| return PTR_ERR(phylink); |
| |
| priv->phylink = phylink; |
| return 0; |
| } |
| |
| static void stmmac_display_rx_rings(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 rx_cnt = priv->plat->rx_queues_to_use; |
| unsigned int desc_size; |
| void *head_rx; |
| u32 queue; |
| |
| /* Display RX rings */ |
| for (queue = 0; queue < rx_cnt; queue++) { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| |
| pr_info("\tRX Queue %u rings\n", queue); |
| |
| if (priv->extend_desc) { |
| head_rx = (void *)rx_q->dma_erx; |
| desc_size = sizeof(struct dma_extended_desc); |
| } else { |
| head_rx = (void *)rx_q->dma_rx; |
| desc_size = sizeof(struct dma_desc); |
| } |
| |
| /* Display RX ring */ |
| stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, |
| rx_q->dma_rx_phy, desc_size); |
| } |
| } |
| |
| static void stmmac_display_tx_rings(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| unsigned int desc_size; |
| void *head_tx; |
| u32 queue; |
| |
| /* Display TX rings */ |
| for (queue = 0; queue < tx_cnt; queue++) { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| |
| pr_info("\tTX Queue %d rings\n", queue); |
| |
| if (priv->extend_desc) { |
| head_tx = (void *)tx_q->dma_etx; |
| desc_size = sizeof(struct dma_extended_desc); |
| } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { |
| head_tx = (void *)tx_q->dma_entx; |
| desc_size = sizeof(struct dma_edesc); |
| } else { |
| head_tx = (void *)tx_q->dma_tx; |
| desc_size = sizeof(struct dma_desc); |
| } |
| |
| stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, |
| tx_q->dma_tx_phy, desc_size); |
| } |
| } |
| |
| static void stmmac_display_rings(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| /* Display RX ring */ |
| stmmac_display_rx_rings(priv, dma_conf); |
| |
| /* Display TX ring */ |
| stmmac_display_tx_rings(priv, dma_conf); |
| } |
| |
| static int stmmac_set_bfsize(int mtu, int bufsize) |
| { |
| int ret = bufsize; |
| |
| if (mtu >= BUF_SIZE_8KiB) |
| ret = BUF_SIZE_16KiB; |
| else if (mtu >= BUF_SIZE_4KiB) |
| ret = BUF_SIZE_8KiB; |
| else if (mtu >= BUF_SIZE_2KiB) |
| ret = BUF_SIZE_4KiB; |
| else if (mtu > DEFAULT_BUFSIZE) |
| ret = BUF_SIZE_2KiB; |
| else |
| ret = DEFAULT_BUFSIZE; |
| |
| return ret; |
| } |
| |
| /** |
| * stmmac_clear_rx_descriptors - clear RX descriptors |
| * @priv: driver private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| * Description: this function is called to clear the RX descriptors |
| * in case of both basic and extended descriptors are used. |
| */ |
| static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| int i; |
| |
| /* Clear the RX descriptors */ |
| for (i = 0; i < dma_conf->dma_rx_size; i++) |
| if (priv->extend_desc) |
| stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, |
| priv->use_riwt, priv->mode, |
| (i == dma_conf->dma_rx_size - 1), |
| dma_conf->dma_buf_sz); |
| else |
| stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], |
| priv->use_riwt, priv->mode, |
| (i == dma_conf->dma_rx_size - 1), |
| dma_conf->dma_buf_sz); |
| } |
| |
| /** |
| * stmmac_clear_tx_descriptors - clear tx descriptors |
| * @priv: driver private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: TX queue index. |
| * Description: this function is called to clear the TX descriptors |
| * in case of both basic and extended descriptors are used. |
| */ |
| static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| int i; |
| |
| /* Clear the TX descriptors */ |
| for (i = 0; i < dma_conf->dma_tx_size; i++) { |
| int last = (i == (dma_conf->dma_tx_size - 1)); |
| struct dma_desc *p; |
| |
| if (priv->extend_desc) |
| p = &tx_q->dma_etx[i].basic; |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| p = &tx_q->dma_entx[i].basic; |
| else |
| p = &tx_q->dma_tx[i]; |
| |
| stmmac_init_tx_desc(priv, p, priv->mode, last); |
| } |
| } |
| |
| /** |
| * stmmac_clear_descriptors - clear descriptors |
| * @priv: driver private structure |
| * @dma_conf: structure to take the dma data |
| * Description: this function is called to clear the TX and RX descriptors |
| * in case of both basic and extended descriptors are used. |
| */ |
| static void stmmac_clear_descriptors(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 rx_queue_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_queue_cnt = priv->plat->tx_queues_to_use; |
| u32 queue; |
| |
| /* Clear the RX descriptors */ |
| for (queue = 0; queue < rx_queue_cnt; queue++) |
| stmmac_clear_rx_descriptors(priv, dma_conf, queue); |
| |
| /* Clear the TX descriptors */ |
| for (queue = 0; queue < tx_queue_cnt; queue++) |
| stmmac_clear_tx_descriptors(priv, dma_conf, queue); |
| } |
| |
| /** |
| * stmmac_init_rx_buffers - init the RX descriptor buffer. |
| * @priv: driver private structure |
| * @dma_conf: structure to take the dma data |
| * @p: descriptor pointer |
| * @i: descriptor index |
| * @flags: gfp flag |
| * @queue: RX queue index |
| * Description: this function is called to allocate a receive buffer, perform |
| * the DMA mapping and init the descriptor. |
| */ |
| static int stmmac_init_rx_buffers(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| struct dma_desc *p, |
| int i, gfp_t flags, u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; |
| gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); |
| |
| if (priv->dma_cap.host_dma_width <= 32) |
| gfp |= GFP_DMA32; |
| |
| if (!buf->page) { |
| buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
| if (!buf->page) |
| return -ENOMEM; |
| buf->page_offset = stmmac_rx_offset(priv); |
| } |
| |
| if (priv->sph && !buf->sec_page) { |
| buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
| if (!buf->sec_page) |
| return -ENOMEM; |
| |
| buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); |
| stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); |
| } else { |
| buf->sec_page = NULL; |
| stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); |
| } |
| |
| buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; |
| |
| stmmac_set_desc_addr(priv, p, buf->addr); |
| if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) |
| stmmac_init_desc3(priv, p); |
| |
| return 0; |
| } |
| |
| /** |
| * stmmac_free_rx_buffer - free RX dma buffers |
| * @priv: private structure |
| * @rx_q: RX queue |
| * @i: buffer index. |
| */ |
| static void stmmac_free_rx_buffer(struct stmmac_priv *priv, |
| struct stmmac_rx_queue *rx_q, |
| int i) |
| { |
| struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; |
| |
| if (buf->page) |
| page_pool_put_full_page(rx_q->page_pool, buf->page, false); |
| buf->page = NULL; |
| |
| if (buf->sec_page) |
| page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); |
| buf->sec_page = NULL; |
| } |
| |
| /** |
| * stmmac_free_tx_buffer - free RX dma buffers |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| * @i: buffer index. |
| */ |
| static void stmmac_free_tx_buffer(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue, int i) |
| { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| |
| if (tx_q->tx_skbuff_dma[i].buf && |
| tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { |
| if (tx_q->tx_skbuff_dma[i].map_as_page) |
| dma_unmap_page(priv->device, |
| tx_q->tx_skbuff_dma[i].buf, |
| tx_q->tx_skbuff_dma[i].len, |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_single(priv->device, |
| tx_q->tx_skbuff_dma[i].buf, |
| tx_q->tx_skbuff_dma[i].len, |
| DMA_TO_DEVICE); |
| } |
| |
| if (tx_q->xdpf[i] && |
| (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || |
| tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { |
| xdp_return_frame(tx_q->xdpf[i]); |
| tx_q->xdpf[i] = NULL; |
| } |
| |
| if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) |
| tx_q->xsk_frames_done++; |
| |
| if (tx_q->tx_skbuff[i] && |
| tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { |
| dev_kfree_skb_any(tx_q->tx_skbuff[i]); |
| tx_q->tx_skbuff[i] = NULL; |
| } |
| |
| tx_q->tx_skbuff_dma[i].buf = 0; |
| tx_q->tx_skbuff_dma[i].map_as_page = false; |
| } |
| |
| /** |
| * dma_free_rx_skbufs - free RX dma buffers |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| */ |
| static void dma_free_rx_skbufs(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| int i; |
| |
| for (i = 0; i < dma_conf->dma_rx_size; i++) |
| stmmac_free_rx_buffer(priv, rx_q, i); |
| } |
| |
| static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue, gfp_t flags) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| int i; |
| |
| for (i = 0; i < dma_conf->dma_rx_size; i++) { |
| struct dma_desc *p; |
| int ret; |
| |
| if (priv->extend_desc) |
| p = &((rx_q->dma_erx + i)->basic); |
| else |
| p = rx_q->dma_rx + i; |
| |
| ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, |
| queue); |
| if (ret) |
| return ret; |
| |
| rx_q->buf_alloc_num++; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dma_free_rx_xskbufs - free RX dma buffers from XSK pool |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| */ |
| static void dma_free_rx_xskbufs(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| int i; |
| |
| for (i = 0; i < dma_conf->dma_rx_size; i++) { |
| struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; |
| |
| if (!buf->xdp) |
| continue; |
| |
| xsk_buff_free(buf->xdp); |
| buf->xdp = NULL; |
| } |
| } |
| |
| static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| int i; |
| |
| /* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes) |
| * in struct xdp_buff_xsk to stash driver specific information. Thus, |
| * use this macro to make sure no size violations. |
| */ |
| XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff); |
| |
| for (i = 0; i < dma_conf->dma_rx_size; i++) { |
| struct stmmac_rx_buffer *buf; |
| dma_addr_t dma_addr; |
| struct dma_desc *p; |
| |
| if (priv->extend_desc) |
| p = (struct dma_desc *)(rx_q->dma_erx + i); |
| else |
| p = rx_q->dma_rx + i; |
| |
| buf = &rx_q->buf_pool[i]; |
| |
| buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); |
| if (!buf->xdp) |
| return -ENOMEM; |
| |
| dma_addr = xsk_buff_xdp_get_dma(buf->xdp); |
| stmmac_set_desc_addr(priv, p, dma_addr); |
| rx_q->buf_alloc_num++; |
| } |
| |
| return 0; |
| } |
| |
| static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) |
| { |
| if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) |
| return NULL; |
| |
| return xsk_get_pool_from_qid(priv->dev, queue); |
| } |
| |
| /** |
| * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) |
| * @priv: driver private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| * @flags: gfp flag. |
| * Description: this function initializes the DMA RX descriptors |
| * and allocates the socket buffers. It supports the chained and ring |
| * modes. |
| */ |
| static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue, gfp_t flags) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| int ret; |
| |
| netif_dbg(priv, probe, priv->dev, |
| "(%s) dma_rx_phy=0x%08x\n", __func__, |
| (u32)rx_q->dma_rx_phy); |
| |
| stmmac_clear_rx_descriptors(priv, dma_conf, queue); |
| |
| xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); |
| |
| rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); |
| |
| if (rx_q->xsk_pool) { |
| WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, |
| MEM_TYPE_XSK_BUFF_POOL, |
| NULL)); |
| netdev_info(priv->dev, |
| "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", |
| rx_q->queue_index); |
| xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); |
| } else { |
| WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, |
| MEM_TYPE_PAGE_POOL, |
| rx_q->page_pool)); |
| netdev_info(priv->dev, |
| "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", |
| rx_q->queue_index); |
| } |
| |
| if (rx_q->xsk_pool) { |
| /* RX XDP ZC buffer pool may not be populated, e.g. |
| * xdpsock TX-only. |
| */ |
| stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); |
| } else { |
| ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); |
| if (ret < 0) |
| return -ENOMEM; |
| } |
| |
| /* Setup the chained descriptor addresses */ |
| if (priv->mode == STMMAC_CHAIN_MODE) { |
| if (priv->extend_desc) |
| stmmac_mode_init(priv, rx_q->dma_erx, |
| rx_q->dma_rx_phy, |
| dma_conf->dma_rx_size, 1); |
| else |
| stmmac_mode_init(priv, rx_q->dma_rx, |
| rx_q->dma_rx_phy, |
| dma_conf->dma_rx_size, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int init_dma_rx_desc_rings(struct net_device *dev, |
| struct stmmac_dma_conf *dma_conf, |
| gfp_t flags) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 rx_count = priv->plat->rx_queues_to_use; |
| int queue; |
| int ret; |
| |
| /* RX INITIALIZATION */ |
| netif_dbg(priv, probe, priv->dev, |
| "SKB addresses:\nskb\t\tskb data\tdma data\n"); |
| |
| for (queue = 0; queue < rx_count; queue++) { |
| ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); |
| if (ret) |
| goto err_init_rx_buffers; |
| } |
| |
| return 0; |
| |
| err_init_rx_buffers: |
| while (queue >= 0) { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| |
| if (rx_q->xsk_pool) |
| dma_free_rx_xskbufs(priv, dma_conf, queue); |
| else |
| dma_free_rx_skbufs(priv, dma_conf, queue); |
| |
| rx_q->buf_alloc_num = 0; |
| rx_q->xsk_pool = NULL; |
| |
| queue--; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) |
| * @priv: driver private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: TX queue index |
| * Description: this function initializes the DMA TX descriptors |
| * and allocates the socket buffers. It supports the chained and ring |
| * modes. |
| */ |
| static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| int i; |
| |
| netif_dbg(priv, probe, priv->dev, |
| "(%s) dma_tx_phy=0x%08x\n", __func__, |
| (u32)tx_q->dma_tx_phy); |
| |
| /* Setup the chained descriptor addresses */ |
| if (priv->mode == STMMAC_CHAIN_MODE) { |
| if (priv->extend_desc) |
| stmmac_mode_init(priv, tx_q->dma_etx, |
| tx_q->dma_tx_phy, |
| dma_conf->dma_tx_size, 1); |
| else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) |
| stmmac_mode_init(priv, tx_q->dma_tx, |
| tx_q->dma_tx_phy, |
| dma_conf->dma_tx_size, 0); |
| } |
| |
| tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); |
| |
| for (i = 0; i < dma_conf->dma_tx_size; i++) { |
| struct dma_desc *p; |
| |
| if (priv->extend_desc) |
| p = &((tx_q->dma_etx + i)->basic); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| p = &((tx_q->dma_entx + i)->basic); |
| else |
| p = tx_q->dma_tx + i; |
| |
| stmmac_clear_desc(priv, p); |
| |
| tx_q->tx_skbuff_dma[i].buf = 0; |
| tx_q->tx_skbuff_dma[i].map_as_page = false; |
| tx_q->tx_skbuff_dma[i].len = 0; |
| tx_q->tx_skbuff_dma[i].last_segment = false; |
| tx_q->tx_skbuff[i] = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static int init_dma_tx_desc_rings(struct net_device *dev, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 tx_queue_cnt; |
| u32 queue; |
| |
| tx_queue_cnt = priv->plat->tx_queues_to_use; |
| |
| for (queue = 0; queue < tx_queue_cnt; queue++) |
| __init_dma_tx_desc_rings(priv, dma_conf, queue); |
| |
| return 0; |
| } |
| |
| /** |
| * init_dma_desc_rings - init the RX/TX descriptor rings |
| * @dev: net device structure |
| * @dma_conf: structure to take the dma data |
| * @flags: gfp flag. |
| * Description: this function initializes the DMA RX/TX descriptors |
| * and allocates the socket buffers. It supports the chained and ring |
| * modes. |
| */ |
| static int init_dma_desc_rings(struct net_device *dev, |
| struct stmmac_dma_conf *dma_conf, |
| gfp_t flags) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int ret; |
| |
| ret = init_dma_rx_desc_rings(dev, dma_conf, flags); |
| if (ret) |
| return ret; |
| |
| ret = init_dma_tx_desc_rings(dev, dma_conf); |
| |
| stmmac_clear_descriptors(priv, dma_conf); |
| |
| if (netif_msg_hw(priv)) |
| stmmac_display_rings(priv, dma_conf); |
| |
| return ret; |
| } |
| |
| /** |
| * dma_free_tx_skbufs - free TX dma buffers |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: TX queue index |
| */ |
| static void dma_free_tx_skbufs(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| int i; |
| |
| tx_q->xsk_frames_done = 0; |
| |
| for (i = 0; i < dma_conf->dma_tx_size; i++) |
| stmmac_free_tx_buffer(priv, dma_conf, queue, i); |
| |
| if (tx_q->xsk_pool && tx_q->xsk_frames_done) { |
| xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); |
| tx_q->xsk_frames_done = 0; |
| tx_q->xsk_pool = NULL; |
| } |
| } |
| |
| /** |
| * stmmac_free_tx_skbufs - free TX skb buffers |
| * @priv: private structure |
| */ |
| static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) |
| { |
| u32 tx_queue_cnt = priv->plat->tx_queues_to_use; |
| u32 queue; |
| |
| for (queue = 0; queue < tx_queue_cnt; queue++) |
| dma_free_tx_skbufs(priv, &priv->dma_conf, queue); |
| } |
| |
| /** |
| * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| */ |
| static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| |
| /* Release the DMA RX socket buffers */ |
| if (rx_q->xsk_pool) |
| dma_free_rx_xskbufs(priv, dma_conf, queue); |
| else |
| dma_free_rx_skbufs(priv, dma_conf, queue); |
| |
| rx_q->buf_alloc_num = 0; |
| rx_q->xsk_pool = NULL; |
| |
| /* Free DMA regions of consistent memory previously allocated */ |
| if (!priv->extend_desc) |
| dma_free_coherent(priv->device, dma_conf->dma_rx_size * |
| sizeof(struct dma_desc), |
| rx_q->dma_rx, rx_q->dma_rx_phy); |
| else |
| dma_free_coherent(priv->device, dma_conf->dma_rx_size * |
| sizeof(struct dma_extended_desc), |
| rx_q->dma_erx, rx_q->dma_rx_phy); |
| |
| if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) |
| xdp_rxq_info_unreg(&rx_q->xdp_rxq); |
| |
| kfree(rx_q->buf_pool); |
| if (rx_q->page_pool) |
| page_pool_destroy(rx_q->page_pool); |
| } |
| |
| static void free_dma_rx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 rx_count = priv->plat->rx_queues_to_use; |
| u32 queue; |
| |
| /* Free RX queue resources */ |
| for (queue = 0; queue < rx_count; queue++) |
| __free_dma_rx_desc_resources(priv, dma_conf, queue); |
| } |
| |
| /** |
| * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: TX queue index |
| */ |
| static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| size_t size; |
| void *addr; |
| |
| /* Release the DMA TX socket buffers */ |
| dma_free_tx_skbufs(priv, dma_conf, queue); |
| |
| if (priv->extend_desc) { |
| size = sizeof(struct dma_extended_desc); |
| addr = tx_q->dma_etx; |
| } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { |
| size = sizeof(struct dma_edesc); |
| addr = tx_q->dma_entx; |
| } else { |
| size = sizeof(struct dma_desc); |
| addr = tx_q->dma_tx; |
| } |
| |
| size *= dma_conf->dma_tx_size; |
| |
| dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); |
| |
| kfree(tx_q->tx_skbuff_dma); |
| kfree(tx_q->tx_skbuff); |
| } |
| |
| static void free_dma_tx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 tx_count = priv->plat->tx_queues_to_use; |
| u32 queue; |
| |
| /* Free TX queue resources */ |
| for (queue = 0; queue < tx_count; queue++) |
| __free_dma_tx_desc_resources(priv, dma_conf, queue); |
| } |
| |
| /** |
| * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: RX queue index |
| * Description: according to which descriptor can be used (extend or basic) |
| * this function allocates the resources for TX and RX paths. In case of |
| * reception, for example, it pre-allocated the RX socket buffer in order to |
| * allow zero-copy mechanism. |
| */ |
| static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| bool xdp_prog = stmmac_xdp_is_enabled(priv); |
| struct page_pool_params pp_params = { 0 }; |
| unsigned int num_pages; |
| unsigned int napi_id; |
| int ret; |
| |
| rx_q->queue_index = queue; |
| rx_q->priv_data = priv; |
| |
| pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; |
| pp_params.pool_size = dma_conf->dma_rx_size; |
| num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); |
| pp_params.order = ilog2(num_pages); |
| pp_params.nid = dev_to_node(priv->device); |
| pp_params.dev = priv->device; |
| pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; |
| pp_params.offset = stmmac_rx_offset(priv); |
| pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); |
| |
| rx_q->page_pool = page_pool_create(&pp_params); |
| if (IS_ERR(rx_q->page_pool)) { |
| ret = PTR_ERR(rx_q->page_pool); |
| rx_q->page_pool = NULL; |
| return ret; |
| } |
| |
| rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, |
| sizeof(*rx_q->buf_pool), |
| GFP_KERNEL); |
| if (!rx_q->buf_pool) |
| return -ENOMEM; |
| |
| if (priv->extend_desc) { |
| rx_q->dma_erx = dma_alloc_coherent(priv->device, |
| dma_conf->dma_rx_size * |
| sizeof(struct dma_extended_desc), |
| &rx_q->dma_rx_phy, |
| GFP_KERNEL); |
| if (!rx_q->dma_erx) |
| return -ENOMEM; |
| |
| } else { |
| rx_q->dma_rx = dma_alloc_coherent(priv->device, |
| dma_conf->dma_rx_size * |
| sizeof(struct dma_desc), |
| &rx_q->dma_rx_phy, |
| GFP_KERNEL); |
| if (!rx_q->dma_rx) |
| return -ENOMEM; |
| } |
| |
| if (stmmac_xdp_is_enabled(priv) && |
| test_bit(queue, priv->af_xdp_zc_qps)) |
| napi_id = ch->rxtx_napi.napi_id; |
| else |
| napi_id = ch->rx_napi.napi_id; |
| |
| ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, |
| rx_q->queue_index, |
| napi_id); |
| if (ret) { |
| netdev_err(priv->dev, "Failed to register xdp rxq info\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 rx_count = priv->plat->rx_queues_to_use; |
| u32 queue; |
| int ret; |
| |
| /* RX queues buffers and DMA */ |
| for (queue = 0; queue < rx_count; queue++) { |
| ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); |
| if (ret) |
| goto err_dma; |
| } |
| |
| return 0; |
| |
| err_dma: |
| free_dma_rx_desc_resources(priv, dma_conf); |
| |
| return ret; |
| } |
| |
| /** |
| * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * @queue: TX queue index |
| * Description: according to which descriptor can be used (extend or basic) |
| * this function allocates the resources for TX and RX paths. In case of |
| * reception, for example, it pre-allocated the RX socket buffer in order to |
| * allow zero-copy mechanism. |
| */ |
| static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf, |
| u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; |
| size_t size; |
| void *addr; |
| |
| tx_q->queue_index = queue; |
| tx_q->priv_data = priv; |
| |
| tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, |
| sizeof(*tx_q->tx_skbuff_dma), |
| GFP_KERNEL); |
| if (!tx_q->tx_skbuff_dma) |
| return -ENOMEM; |
| |
| tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, |
| sizeof(struct sk_buff *), |
| GFP_KERNEL); |
| if (!tx_q->tx_skbuff) |
| return -ENOMEM; |
| |
| if (priv->extend_desc) |
| size = sizeof(struct dma_extended_desc); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| size = sizeof(struct dma_edesc); |
| else |
| size = sizeof(struct dma_desc); |
| |
| size *= dma_conf->dma_tx_size; |
| |
| addr = dma_alloc_coherent(priv->device, size, |
| &tx_q->dma_tx_phy, GFP_KERNEL); |
| if (!addr) |
| return -ENOMEM; |
| |
| if (priv->extend_desc) |
| tx_q->dma_etx = addr; |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| tx_q->dma_entx = addr; |
| else |
| tx_q->dma_tx = addr; |
| |
| return 0; |
| } |
| |
| static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| u32 tx_count = priv->plat->tx_queues_to_use; |
| u32 queue; |
| int ret; |
| |
| /* TX queues buffers and DMA */ |
| for (queue = 0; queue < tx_count; queue++) { |
| ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); |
| if (ret) |
| goto err_dma; |
| } |
| |
| return 0; |
| |
| err_dma: |
| free_dma_tx_desc_resources(priv, dma_conf); |
| return ret; |
| } |
| |
| /** |
| * alloc_dma_desc_resources - alloc TX/RX resources. |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| * Description: according to which descriptor can be used (extend or basic) |
| * this function allocates the resources for TX and RX paths. In case of |
| * reception, for example, it pre-allocated the RX socket buffer in order to |
| * allow zero-copy mechanism. |
| */ |
| static int alloc_dma_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| /* RX Allocation */ |
| int ret = alloc_dma_rx_desc_resources(priv, dma_conf); |
| |
| if (ret) |
| return ret; |
| |
| ret = alloc_dma_tx_desc_resources(priv, dma_conf); |
| |
| return ret; |
| } |
| |
| /** |
| * free_dma_desc_resources - free dma desc resources |
| * @priv: private structure |
| * @dma_conf: structure to take the dma data |
| */ |
| static void free_dma_desc_resources(struct stmmac_priv *priv, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| /* Release the DMA TX socket buffers */ |
| free_dma_tx_desc_resources(priv, dma_conf); |
| |
| /* Release the DMA RX socket buffers later |
| * to ensure all pending XDP_TX buffers are returned. |
| */ |
| free_dma_rx_desc_resources(priv, dma_conf); |
| } |
| |
| /** |
| * stmmac_mac_enable_rx_queues - Enable MAC rx queues |
| * @priv: driver private structure |
| * Description: It is used for enabling the rx queues in the MAC |
| */ |
| static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_count = priv->plat->rx_queues_to_use; |
| int queue; |
| u8 mode; |
| |
| for (queue = 0; queue < rx_queues_count; queue++) { |
| mode = priv->plat->rx_queues_cfg[queue].mode_to_use; |
| stmmac_rx_queue_enable(priv, priv->hw, mode, queue); |
| } |
| } |
| |
| /** |
| * stmmac_start_rx_dma - start RX DMA channel |
| * @priv: driver private structure |
| * @chan: RX channel index |
| * Description: |
| * This starts a RX DMA channel |
| */ |
| static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) |
| { |
| netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); |
| stmmac_start_rx(priv, priv->ioaddr, chan); |
| } |
| |
| /** |
| * stmmac_start_tx_dma - start TX DMA channel |
| * @priv: driver private structure |
| * @chan: TX channel index |
| * Description: |
| * This starts a TX DMA channel |
| */ |
| static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) |
| { |
| netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); |
| stmmac_start_tx(priv, priv->ioaddr, chan); |
| } |
| |
| /** |
| * stmmac_stop_rx_dma - stop RX DMA channel |
| * @priv: driver private structure |
| * @chan: RX channel index |
| * Description: |
| * This stops a RX DMA channel |
| */ |
| static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) |
| { |
| netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); |
| stmmac_stop_rx(priv, priv->ioaddr, chan); |
| } |
| |
| /** |
| * stmmac_stop_tx_dma - stop TX DMA channel |
| * @priv: driver private structure |
| * @chan: TX channel index |
| * Description: |
| * This stops a TX DMA channel |
| */ |
| static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) |
| { |
| netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); |
| stmmac_stop_tx(priv, priv->ioaddr, chan); |
| } |
| |
| static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) |
| { |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); |
| u32 chan; |
| |
| for (chan = 0; chan < dma_csr_ch; chan++) { |
| struct stmmac_channel *ch = &priv->channel[chan]; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| } |
| |
| /** |
| * stmmac_start_all_dma - start all RX and TX DMA channels |
| * @priv: driver private structure |
| * Description: |
| * This starts all the RX and TX DMA channels |
| */ |
| static void stmmac_start_all_dma(struct stmmac_priv *priv) |
| { |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| u32 chan = 0; |
| |
| for (chan = 0; chan < rx_channels_count; chan++) |
| stmmac_start_rx_dma(priv, chan); |
| |
| for (chan = 0; chan < tx_channels_count; chan++) |
| stmmac_start_tx_dma(priv, chan); |
| } |
| |
| /** |
| * stmmac_stop_all_dma - stop all RX and TX DMA channels |
| * @priv: driver private structure |
| * Description: |
| * This stops the RX and TX DMA channels |
| */ |
| static void stmmac_stop_all_dma(struct stmmac_priv *priv) |
| { |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| u32 chan = 0; |
| |
| for (chan = 0; chan < rx_channels_count; chan++) |
| stmmac_stop_rx_dma(priv, chan); |
| |
| for (chan = 0; chan < tx_channels_count; chan++) |
| stmmac_stop_tx_dma(priv, chan); |
| } |
| |
| /** |
| * stmmac_dma_operation_mode - HW DMA operation mode |
| * @priv: driver private structure |
| * Description: it is used for configuring the DMA operation mode register in |
| * order to program the tx/rx DMA thresholds or Store-And-Forward mode. |
| */ |
| static void stmmac_dma_operation_mode(struct stmmac_priv *priv) |
| { |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| int rxfifosz = priv->plat->rx_fifo_size; |
| int txfifosz = priv->plat->tx_fifo_size; |
| u32 txmode = 0; |
| u32 rxmode = 0; |
| u32 chan = 0; |
| u8 qmode = 0; |
| |
| if (rxfifosz == 0) |
| rxfifosz = priv->dma_cap.rx_fifo_size; |
| if (txfifosz == 0) |
| txfifosz = priv->dma_cap.tx_fifo_size; |
| |
| /* Adjust for real per queue fifo size */ |
| rxfifosz /= rx_channels_count; |
| txfifosz /= tx_channels_count; |
| |
| if (priv->plat->force_thresh_dma_mode) { |
| txmode = tc; |
| rxmode = tc; |
| } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { |
| /* |
| * In case of GMAC, SF mode can be enabled |
| * to perform the TX COE in HW. This depends on: |
| * 1) TX COE if actually supported |
| * 2) There is no bugged Jumbo frame support |
| * that needs to not insert csum in the TDES. |
| */ |
| txmode = SF_DMA_MODE; |
| rxmode = SF_DMA_MODE; |
| priv->xstats.threshold = SF_DMA_MODE; |
| } else { |
| txmode = tc; |
| rxmode = SF_DMA_MODE; |
| } |
| |
| /* configure all channels */ |
| for (chan = 0; chan < rx_channels_count; chan++) { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; |
| u32 buf_size; |
| |
| qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; |
| |
| stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, |
| rxfifosz, qmode); |
| |
| if (rx_q->xsk_pool) { |
| buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); |
| stmmac_set_dma_bfsize(priv, priv->ioaddr, |
| buf_size, |
| chan); |
| } else { |
| stmmac_set_dma_bfsize(priv, priv->ioaddr, |
| priv->dma_conf.dma_buf_sz, |
| chan); |
| } |
| } |
| |
| for (chan = 0; chan < tx_channels_count; chan++) { |
| qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; |
| |
| stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, |
| txfifosz, qmode); |
| } |
| } |
| |
| static void stmmac_xsk_request_timestamp(void *_priv) |
| { |
| struct stmmac_metadata_request *meta_req = _priv; |
| |
| stmmac_enable_tx_timestamp(meta_req->priv, meta_req->tx_desc); |
| *meta_req->set_ic = true; |
| } |
| |
| static u64 stmmac_xsk_fill_timestamp(void *_priv) |
| { |
| struct stmmac_xsk_tx_complete *tx_compl = _priv; |
| struct stmmac_priv *priv = tx_compl->priv; |
| struct dma_desc *desc = tx_compl->desc; |
| bool found = false; |
| u64 ns = 0; |
| |
| if (!priv->hwts_tx_en) |
| return 0; |
| |
| /* check tx tstamp status */ |
| if (stmmac_get_tx_timestamp_status(priv, desc)) { |
| stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); |
| found = true; |
| } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { |
| found = true; |
| } |
| |
| if (found) { |
| ns -= priv->plat->cdc_error_adj; |
| return ns_to_ktime(ns); |
| } |
| |
| return 0; |
| } |
| |
| static const struct xsk_tx_metadata_ops stmmac_xsk_tx_metadata_ops = { |
| .tmo_request_timestamp = stmmac_xsk_request_timestamp, |
| .tmo_fill_timestamp = stmmac_xsk_fill_timestamp, |
| }; |
| |
| static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) |
| { |
| struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; |
| struct xsk_buff_pool *pool = tx_q->xsk_pool; |
| unsigned int entry = tx_q->cur_tx; |
| struct dma_desc *tx_desc = NULL; |
| struct xdp_desc xdp_desc; |
| bool work_done = true; |
| u32 tx_set_ic_bit = 0; |
| |
| /* Avoids TX time-out as we are sharing with slow path */ |
| txq_trans_cond_update(nq); |
| |
| budget = min(budget, stmmac_tx_avail(priv, queue)); |
| |
| while (budget-- > 0) { |
| struct stmmac_metadata_request meta_req; |
| struct xsk_tx_metadata *meta = NULL; |
| dma_addr_t dma_addr; |
| bool set_ic; |
| |
| /* We are sharing with slow path and stop XSK TX desc submission when |
| * available TX ring is less than threshold. |
| */ |
| if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || |
| !netif_carrier_ok(priv->dev)) { |
| work_done = false; |
| break; |
| } |
| |
| if (!xsk_tx_peek_desc(pool, &xdp_desc)) |
| break; |
| |
| if (priv->plat->est && priv->plat->est->enable && |
| priv->plat->est->max_sdu[queue] && |
| xdp_desc.len > priv->plat->est->max_sdu[queue]) { |
| priv->xstats.max_sdu_txq_drop[queue]++; |
| continue; |
| } |
| |
| if (likely(priv->extend_desc)) |
| tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| tx_desc = &tx_q->dma_entx[entry].basic; |
| else |
| tx_desc = tx_q->dma_tx + entry; |
| |
| dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); |
| meta = xsk_buff_get_metadata(pool, xdp_desc.addr); |
| xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); |
| |
| tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; |
| |
| /* To return XDP buffer to XSK pool, we simple call |
| * xsk_tx_completed(), so we don't need to fill up |
| * 'buf' and 'xdpf'. |
| */ |
| tx_q->tx_skbuff_dma[entry].buf = 0; |
| tx_q->xdpf[entry] = NULL; |
| |
| tx_q->tx_skbuff_dma[entry].map_as_page = false; |
| tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; |
| tx_q->tx_skbuff_dma[entry].last_segment = true; |
| tx_q->tx_skbuff_dma[entry].is_jumbo = false; |
| |
| stmmac_set_desc_addr(priv, tx_desc, dma_addr); |
| |
| tx_q->tx_count_frames++; |
| |
| if (!priv->tx_coal_frames[queue]) |
| set_ic = false; |
| else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) |
| set_ic = true; |
| else |
| set_ic = false; |
| |
| meta_req.priv = priv; |
| meta_req.tx_desc = tx_desc; |
| meta_req.set_ic = &set_ic; |
| xsk_tx_metadata_request(meta, &stmmac_xsk_tx_metadata_ops, |
| &meta_req); |
| if (set_ic) { |
| tx_q->tx_count_frames = 0; |
| stmmac_set_tx_ic(priv, tx_desc); |
| tx_set_ic_bit++; |
| } |
| |
| stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, |
| true, priv->mode, true, true, |
| xdp_desc.len); |
| |
| stmmac_enable_dma_transmission(priv, priv->ioaddr); |
| |
| xsk_tx_metadata_to_compl(meta, |
| &tx_q->tx_skbuff_dma[entry].xsk_meta); |
| |
| tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); |
| entry = tx_q->cur_tx; |
| } |
| u64_stats_update_begin(&txq_stats->napi_syncp); |
| u64_stats_add(&txq_stats->napi.tx_set_ic_bit, tx_set_ic_bit); |
| u64_stats_update_end(&txq_stats->napi_syncp); |
| |
| if (tx_desc) { |
| stmmac_flush_tx_descriptors(priv, queue); |
| xsk_tx_release(pool); |
| } |
| |
| /* Return true if all of the 3 conditions are met |
| * a) TX Budget is still available |
| * b) work_done = true when XSK TX desc peek is empty (no more |
| * pending XSK TX for transmission) |
| */ |
| return !!budget && work_done; |
| } |
| |
| static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) |
| { |
| if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { |
| tc += 64; |
| |
| if (priv->plat->force_thresh_dma_mode) |
| stmmac_set_dma_operation_mode(priv, tc, tc, chan); |
| else |
| stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, |
| chan); |
| |
| priv->xstats.threshold = tc; |
| } |
| } |
| |
| /** |
| * stmmac_tx_clean - to manage the transmission completion |
| * @priv: driver private structure |
| * @budget: napi budget limiting this functions packet handling |
| * @queue: TX queue index |
| * @pending_packets: signal to arm the TX coal timer |
| * Description: it reclaims the transmit resources after transmission completes. |
| * If some packets still needs to be handled, due to TX coalesce, set |
| * pending_packets to true to make NAPI arm the TX coal timer. |
| */ |
| static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue, |
| bool *pending_packets) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; |
| unsigned int bytes_compl = 0, pkts_compl = 0; |
| unsigned int entry, xmits = 0, count = 0; |
| u32 tx_packets = 0, tx_errors = 0; |
| |
| __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); |
| |
| tx_q->xsk_frames_done = 0; |
| |
| entry = tx_q->dirty_tx; |
| |
| /* Try to clean all TX complete frame in 1 shot */ |
| while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { |
| struct xdp_frame *xdpf; |
| struct sk_buff *skb; |
| struct dma_desc *p; |
| int status; |
| |
| if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || |
| tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { |
| xdpf = tx_q->xdpf[entry]; |
| skb = NULL; |
| } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { |
| xdpf = NULL; |
| skb = tx_q->tx_skbuff[entry]; |
| } else { |
| xdpf = NULL; |
| skb = NULL; |
| } |
| |
| if (priv->extend_desc) |
| p = (struct dma_desc *)(tx_q->dma_etx + entry); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| p = &tx_q->dma_entx[entry].basic; |
| else |
| p = tx_q->dma_tx + entry; |
| |
| status = stmmac_tx_status(priv, &priv->xstats, p, priv->ioaddr); |
| /* Check if the descriptor is owned by the DMA */ |
| if (unlikely(status & tx_dma_own)) |
| break; |
| |
| count++; |
| |
| /* Make sure descriptor fields are read after reading |
| * the own bit. |
| */ |
| dma_rmb(); |
| |
| /* Just consider the last segment and ...*/ |
| if (likely(!(status & tx_not_ls))) { |
| /* ... verify the status error condition */ |
| if (unlikely(status & tx_err)) { |
| tx_errors++; |
| if (unlikely(status & tx_err_bump_tc)) |
| stmmac_bump_dma_threshold(priv, queue); |
| } else { |
| tx_packets++; |
| } |
| if (skb) { |
| stmmac_get_tx_hwtstamp(priv, p, skb); |
| } else if (tx_q->xsk_pool && |
| xp_tx_metadata_enabled(tx_q->xsk_pool)) { |
| struct stmmac_xsk_tx_complete tx_compl = { |
| .priv = priv, |
| .desc = p, |
| }; |
| |
| xsk_tx_metadata_complete(&tx_q->tx_skbuff_dma[entry].xsk_meta, |
| &stmmac_xsk_tx_metadata_ops, |
| &tx_compl); |
| } |
| } |
| |
| if (likely(tx_q->tx_skbuff_dma[entry].buf && |
| tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { |
| if (tx_q->tx_skbuff_dma[entry].map_as_page) |
| dma_unmap_page(priv->device, |
| tx_q->tx_skbuff_dma[entry].buf, |
| tx_q->tx_skbuff_dma[entry].len, |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_single(priv->device, |
| tx_q->tx_skbuff_dma[entry].buf, |
| tx_q->tx_skbuff_dma[entry].len, |
| DMA_TO_DEVICE); |
| tx_q->tx_skbuff_dma[entry].buf = 0; |
| tx_q->tx_skbuff_dma[entry].len = 0; |
| tx_q->tx_skbuff_dma[entry].map_as_page = false; |
| } |
| |
| stmmac_clean_desc3(priv, tx_q, p); |
| |
| tx_q->tx_skbuff_dma[entry].last_segment = false; |
| tx_q->tx_skbuff_dma[entry].is_jumbo = false; |
| |
| if (xdpf && |
| tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { |
| xdp_return_frame_rx_napi(xdpf); |
| tx_q->xdpf[entry] = NULL; |
| } |
| |
| if (xdpf && |
| tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { |
| xdp_return_frame(xdpf); |
| tx_q->xdpf[entry] = NULL; |
| } |
| |
| if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) |
| tx_q->xsk_frames_done++; |
| |
| if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { |
| if (likely(skb)) { |
| pkts_compl++; |
| bytes_compl += skb->len; |
| dev_consume_skb_any(skb); |
| tx_q->tx_skbuff[entry] = NULL; |
| } |
| } |
| |
| stmmac_release_tx_desc(priv, p, priv->mode); |
| |
| entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); |
| } |
| tx_q->dirty_tx = entry; |
| |
| netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), |
| pkts_compl, bytes_compl); |
| |
| if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, |
| queue))) && |
| stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { |
| |
| netif_dbg(priv, tx_done, priv->dev, |
| "%s: restart transmit\n", __func__); |
| netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); |
| } |
| |
| if (tx_q->xsk_pool) { |
| bool work_done; |
| |
| if (tx_q->xsk_frames_done) |
| xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); |
| |
| if (xsk_uses_need_wakeup(tx_q->xsk_pool)) |
| xsk_set_tx_need_wakeup(tx_q->xsk_pool); |
| |
| /* For XSK TX, we try to send as many as possible. |
| * If XSK work done (XSK TX desc empty and budget still |
| * available), return "budget - 1" to reenable TX IRQ. |
| * Else, return "budget" to make NAPI continue polling. |
| */ |
| work_done = stmmac_xdp_xmit_zc(priv, queue, |
| STMMAC_XSK_TX_BUDGET_MAX); |
| if (work_done) |
| xmits = budget - 1; |
| else |
| xmits = budget; |
| } |
| |
| if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && |
| priv->eee_sw_timer_en) { |
| if (stmmac_enable_eee_mode(priv)) |
| mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); |
| } |
| |
| /* We still have pending packets, let's call for a new scheduling */ |
| if (tx_q->dirty_tx != tx_q->cur_tx) |
| *pending_packets = true; |
| |
| u64_stats_update_begin(&txq_stats->napi_syncp); |
| u64_stats_add(&txq_stats->napi.tx_packets, tx_packets); |
| u64_stats_add(&txq_stats->napi.tx_pkt_n, tx_packets); |
| u64_stats_inc(&txq_stats->napi.tx_clean); |
| u64_stats_update_end(&txq_stats->napi_syncp); |
| |
| priv->xstats.tx_errors += tx_errors; |
| |
| __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); |
| |
| /* Combine decisions from TX clean and XSK TX */ |
| return max(count, xmits); |
| } |
| |
| /** |
| * stmmac_tx_err - to manage the tx error |
| * @priv: driver private structure |
| * @chan: channel index |
| * Description: it cleans the descriptors and restarts the transmission |
| * in case of transmission errors. |
| */ |
| static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; |
| |
| netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); |
| |
| stmmac_stop_tx_dma(priv, chan); |
| dma_free_tx_skbufs(priv, &priv->dma_conf, chan); |
| stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); |
| stmmac_reset_tx_queue(priv, chan); |
| stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| tx_q->dma_tx_phy, chan); |
| stmmac_start_tx_dma(priv, chan); |
| |
| priv->xstats.tx_errors++; |
| netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); |
| } |
| |
| /** |
| * stmmac_set_dma_operation_mode - Set DMA operation mode by channel |
| * @priv: driver private structure |
| * @txmode: TX operating mode |
| * @rxmode: RX operating mode |
| * @chan: channel index |
| * Description: it is used for configuring of the DMA operation mode in |
| * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward |
| * mode. |
| */ |
| static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, |
| u32 rxmode, u32 chan) |
| { |
| u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; |
| u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| int rxfifosz = priv->plat->rx_fifo_size; |
| int txfifosz = priv->plat->tx_fifo_size; |
| |
| if (rxfifosz == 0) |
| rxfifosz = priv->dma_cap.rx_fifo_size; |
| if (txfifosz == 0) |
| txfifosz = priv->dma_cap.tx_fifo_size; |
| |
| /* Adjust for real per queue fifo size */ |
| rxfifosz /= rx_channels_count; |
| txfifosz /= tx_channels_count; |
| |
| stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); |
| stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); |
| } |
| |
| static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) |
| { |
| int ret; |
| |
| ret = stmmac_safety_feat_irq_status(priv, priv->dev, |
| priv->ioaddr, priv->dma_cap.asp, &priv->sstats); |
| if (ret && (ret != -EINVAL)) { |
| stmmac_global_err(priv); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) |
| { |
| int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, |
| &priv->xstats, chan, dir); |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; |
| struct stmmac_channel *ch = &priv->channel[chan]; |
| struct napi_struct *rx_napi; |
| struct napi_struct *tx_napi; |
| unsigned long flags; |
| |
| rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; |
| tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; |
| |
| if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { |
| if (napi_schedule_prep(rx_napi)) { |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| __napi_schedule(rx_napi); |
| } |
| } |
| |
| if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { |
| if (napi_schedule_prep(tx_napi)) { |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| __napi_schedule(tx_napi); |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * stmmac_dma_interrupt - DMA ISR |
| * @priv: driver private structure |
| * Description: this is the DMA ISR. It is called by the main ISR. |
| * It calls the dwmac dma routine and schedule poll method in case of some |
| * work can be done. |
| */ |
| static void stmmac_dma_interrupt(struct stmmac_priv *priv) |
| { |
| u32 tx_channel_count = priv->plat->tx_queues_to_use; |
| u32 rx_channel_count = priv->plat->rx_queues_to_use; |
| u32 channels_to_check = tx_channel_count > rx_channel_count ? |
| tx_channel_count : rx_channel_count; |
| u32 chan; |
| int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; |
| |
| /* Make sure we never check beyond our status buffer. */ |
| if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) |
| channels_to_check = ARRAY_SIZE(status); |
| |
| for (chan = 0; chan < channels_to_check; chan++) |
| status[chan] = stmmac_napi_check(priv, chan, |
| DMA_DIR_RXTX); |
| |
| for (chan = 0; chan < tx_channel_count; chan++) { |
| if (unlikely(status[chan] & tx_hard_error_bump_tc)) { |
| /* Try to bump up the dma threshold on this failure */ |
| stmmac_bump_dma_threshold(priv, chan); |
| } else if (unlikely(status[chan] == tx_hard_error)) { |
| stmmac_tx_err(priv, chan); |
| } |
| } |
| } |
| |
| /** |
| * stmmac_mmc_setup: setup the Mac Management Counters (MMC) |
| * @priv: driver private structure |
| * Description: this masks the MMC irq, in fact, the counters are managed in SW. |
| */ |
| static void stmmac_mmc_setup(struct stmmac_priv *priv) |
| { |
| unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | |
| MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; |
| |
| stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); |
| |
| if (priv->dma_cap.rmon) { |
| stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); |
| memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); |
| } else |
| netdev_info(priv->dev, "No MAC Management Counters available\n"); |
| } |
| |
| /** |
| * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. |
| * @priv: driver private structure |
| * Description: |
| * new GMAC chip generations have a new register to indicate the |
| * presence of the optional feature/functions. |
| * This can be also used to override the value passed through the |
| * platform and necessary for old MAC10/100 and GMAC chips. |
| */ |
| static int stmmac_get_hw_features(struct stmmac_priv *priv) |
| { |
| return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; |
| } |
| |
| /** |
| * stmmac_check_ether_addr - check if the MAC addr is valid |
| * @priv: driver private structure |
| * Description: |
| * it is to verify if the MAC address is valid, in case of failures it |
| * generates a random MAC address |
| */ |
| static void stmmac_check_ether_addr(struct stmmac_priv *priv) |
| { |
| u8 addr[ETH_ALEN]; |
| |
| if (!is_valid_ether_addr(priv->dev->dev_addr)) { |
| stmmac_get_umac_addr(priv, priv->hw, addr, 0); |
| if (is_valid_ether_addr(addr)) |
| eth_hw_addr_set(priv->dev, addr); |
| else |
| eth_hw_addr_random(priv->dev); |
| dev_info(priv->device, "device MAC address %pM\n", |
| priv->dev->dev_addr); |
| } |
| } |
| |
| /** |
| * stmmac_init_dma_engine - DMA init. |
| * @priv: driver private structure |
| * Description: |
| * It inits the DMA invoking the specific MAC/GMAC callback. |
| * Some DMA parameters can be passed from the platform; |
| * in case of these are not passed a default is kept for the MAC or GMAC. |
| */ |
| static int stmmac_init_dma_engine(struct stmmac_priv *priv) |
| { |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); |
| struct stmmac_rx_queue *rx_q; |
| struct stmmac_tx_queue *tx_q; |
| u32 chan = 0; |
| int atds = 0; |
| int ret = 0; |
| |
| if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { |
| dev_err(priv->device, "Invalid DMA configuration\n"); |
| return -EINVAL; |
| } |
| |
| if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) |
| atds = 1; |
| |
| ret = stmmac_reset(priv, priv->ioaddr); |
| if (ret) { |
| dev_err(priv->device, "Failed to reset the dma\n"); |
| return ret; |
| } |
| |
| /* DMA Configuration */ |
| stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); |
| |
| if (priv->plat->axi) |
| stmmac_axi(priv, priv->ioaddr, priv->plat->axi); |
| |
| /* DMA CSR Channel configuration */ |
| for (chan = 0; chan < dma_csr_ch; chan++) { |
| stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); |
| } |
| |
| /* DMA RX Channel Configuration */ |
| for (chan = 0; chan < rx_channels_count; chan++) { |
| rx_q = &priv->dma_conf.rx_queue[chan]; |
| |
| stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| rx_q->dma_rx_phy, chan); |
| |
| rx_q->rx_tail_addr = rx_q->dma_rx_phy + |
| (rx_q->buf_alloc_num * |
| sizeof(struct dma_desc)); |
| stmmac_set_rx_tail_ptr(priv, priv->ioaddr, |
| rx_q->rx_tail_addr, chan); |
| } |
| |
| /* DMA TX Channel Configuration */ |
| for (chan = 0; chan < tx_channels_count; chan++) { |
| tx_q = &priv->dma_conf.tx_queue[chan]; |
| |
| stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| tx_q->dma_tx_phy, chan); |
| |
| tx_q->tx_tail_addr = tx_q->dma_tx_phy; |
| stmmac_set_tx_tail_ptr(priv, priv->ioaddr, |
| tx_q->tx_tail_addr, chan); |
| } |
| |
| return ret; |
| } |
| |
| static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| u32 tx_coal_timer = priv->tx_coal_timer[queue]; |
| struct stmmac_channel *ch; |
| struct napi_struct *napi; |
| |
| if (!tx_coal_timer) |
| return; |
| |
| ch = &priv->channel[tx_q->queue_index]; |
| napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; |
| |
| /* Arm timer only if napi is not already scheduled. |
| * Try to cancel any timer if napi is scheduled, timer will be armed |
| * again in the next scheduled napi. |
| */ |
| if (unlikely(!napi_is_scheduled(napi))) |
| hrtimer_start(&tx_q->txtimer, |
| STMMAC_COAL_TIMER(tx_coal_timer), |
| HRTIMER_MODE_REL); |
| else |
| hrtimer_try_to_cancel(&tx_q->txtimer); |
| } |
| |
| /** |
| * stmmac_tx_timer - mitigation sw timer for tx. |
| * @t: data pointer |
| * Description: |
| * This is the timer handler to directly invoke the stmmac_tx_clean. |
| */ |
| static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) |
| { |
| struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); |
| struct stmmac_priv *priv = tx_q->priv_data; |
| struct stmmac_channel *ch; |
| struct napi_struct *napi; |
| |
| ch = &priv->channel[tx_q->queue_index]; |
| napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; |
| |
| if (likely(napi_schedule_prep(napi))) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| __napi_schedule(napi); |
| } |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /** |
| * stmmac_init_coalesce - init mitigation options. |
| * @priv: driver private structure |
| * Description: |
| * This inits the coalesce parameters: i.e. timer rate, |
| * timer handler and default threshold used for enabling the |
| * interrupt on completion bit. |
| */ |
| static void stmmac_init_coalesce(struct stmmac_priv *priv) |
| { |
| u32 tx_channel_count = priv->plat->tx_queues_to_use; |
| u32 rx_channel_count = priv->plat->rx_queues_to_use; |
| u32 chan; |
| |
| for (chan = 0; chan < tx_channel_count; chan++) { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; |
| |
| priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; |
| priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; |
| |
| hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| tx_q->txtimer.function = stmmac_tx_timer; |
| } |
| |
| for (chan = 0; chan < rx_channel_count; chan++) |
| priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; |
| } |
| |
| static void stmmac_set_rings_length(struct stmmac_priv *priv) |
| { |
| u32 rx_channels_count = priv->plat->rx_queues_to_use; |
| u32 tx_channels_count = priv->plat->tx_queues_to_use; |
| u32 chan; |
| |
| /* set TX ring length */ |
| for (chan = 0; chan < tx_channels_count; chan++) |
| stmmac_set_tx_ring_len(priv, priv->ioaddr, |
| (priv->dma_conf.dma_tx_size - 1), chan); |
| |
| /* set RX ring length */ |
| for (chan = 0; chan < rx_channels_count; chan++) |
| stmmac_set_rx_ring_len(priv, priv->ioaddr, |
| (priv->dma_conf.dma_rx_size - 1), chan); |
| } |
| |
| /** |
| * stmmac_set_tx_queue_weight - Set TX queue weight |
| * @priv: driver private structure |
| * Description: It is used for setting TX queues weight |
| */ |
| static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) |
| { |
| u32 tx_queues_count = priv->plat->tx_queues_to_use; |
| u32 weight; |
| u32 queue; |
| |
| for (queue = 0; queue < tx_queues_count; queue++) { |
| weight = priv->plat->tx_queues_cfg[queue].weight; |
| stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); |
| } |
| } |
| |
| /** |
| * stmmac_configure_cbs - Configure CBS in TX queue |
| * @priv: driver private structure |
| * Description: It is used for configuring CBS in AVB TX queues |
| */ |
| static void stmmac_configure_cbs(struct stmmac_priv *priv) |
| { |
| u32 tx_queues_count = priv->plat->tx_queues_to_use; |
| u32 mode_to_use; |
| u32 queue; |
| |
| /* queue 0 is reserved for legacy traffic */ |
| for (queue = 1; queue < tx_queues_count; queue++) { |
| mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; |
| if (mode_to_use == MTL_QUEUE_DCB) |
| continue; |
| |
| stmmac_config_cbs(priv, priv->hw, |
| priv->plat->tx_queues_cfg[queue].send_slope, |
| priv->plat->tx_queues_cfg[queue].idle_slope, |
| priv->plat->tx_queues_cfg[queue].high_credit, |
| priv->plat->tx_queues_cfg[queue].low_credit, |
| queue); |
| } |
| } |
| |
| /** |
| * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel |
| * @priv: driver private structure |
| * Description: It is used for mapping RX queues to RX dma channels |
| */ |
| static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_count = priv->plat->rx_queues_to_use; |
| u32 queue; |
| u32 chan; |
| |
| for (queue = 0; queue < rx_queues_count; queue++) { |
| chan = priv->plat->rx_queues_cfg[queue].chan; |
| stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); |
| } |
| } |
| |
| /** |
| * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority |
| * @priv: driver private structure |
| * Description: It is used for configuring the RX Queue Priority |
| */ |
| static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_count = priv->plat->rx_queues_to_use; |
| u32 queue; |
| u32 prio; |
| |
| for (queue = 0; queue < rx_queues_count; queue++) { |
| if (!priv->plat->rx_queues_cfg[queue].use_prio) |
| continue; |
| |
| prio = priv->plat->rx_queues_cfg[queue].prio; |
| stmmac_rx_queue_prio(priv, priv->hw, prio, queue); |
| } |
| } |
| |
| /** |
| * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority |
| * @priv: driver private structure |
| * Description: It is used for configuring the TX Queue Priority |
| */ |
| static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) |
| { |
| u32 tx_queues_count = priv->plat->tx_queues_to_use; |
| u32 queue; |
| u32 prio; |
| |
| for (queue = 0; queue < tx_queues_count; queue++) { |
| if (!priv->plat->tx_queues_cfg[queue].use_prio) |
| continue; |
| |
| prio = priv->plat->tx_queues_cfg[queue].prio; |
| stmmac_tx_queue_prio(priv, priv->hw, prio, queue); |
| } |
| } |
| |
| /** |
| * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing |
| * @priv: driver private structure |
| * Description: It is used for configuring the RX queue routing |
| */ |
| static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_count = priv->plat->rx_queues_to_use; |
| u32 queue; |
| u8 packet; |
| |
| for (queue = 0; queue < rx_queues_count; queue++) { |
| /* no specific packet type routing specified for the queue */ |
| if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) |
| continue; |
| |
| packet = priv->plat->rx_queues_cfg[queue].pkt_route; |
| stmmac_rx_queue_routing(priv, priv->hw, packet, queue); |
| } |
| } |
| |
| static void stmmac_mac_config_rss(struct stmmac_priv *priv) |
| { |
| if (!priv->dma_cap.rssen || !priv->plat->rss_en) { |
| priv->rss.enable = false; |
| return; |
| } |
| |
| if (priv->dev->features & NETIF_F_RXHASH) |
| priv->rss.enable = true; |
| else |
| priv->rss.enable = false; |
| |
| stmmac_rss_configure(priv, priv->hw, &priv->rss, |
| priv->plat->rx_queues_to_use); |
| } |
| |
| /** |
| * stmmac_mtl_configuration - Configure MTL |
| * @priv: driver private structure |
| * Description: It is used for configurring MTL |
| */ |
| static void stmmac_mtl_configuration(struct stmmac_priv *priv) |
| { |
| u32 rx_queues_count = priv->plat->rx_queues_to_use; |
| u32 tx_queues_count = priv->plat->tx_queues_to_use; |
| |
| if (tx_queues_count > 1) |
| stmmac_set_tx_queue_weight(priv); |
| |
| /* Configure MTL RX algorithms */ |
| if (rx_queues_count > 1) |
| stmmac_prog_mtl_rx_algorithms(priv, priv->hw, |
| priv->plat->rx_sched_algorithm); |
| |
| /* Configure MTL TX algorithms */ |
| if (tx_queues_count > 1) |
| stmmac_prog_mtl_tx_algorithms(priv, priv->hw, |
| priv->plat->tx_sched_algorithm); |
| |
| /* Configure CBS in AVB TX queues */ |
| if (tx_queues_count > 1) |
| stmmac_configure_cbs(priv); |
| |
| /* Map RX MTL to DMA channels */ |
| stmmac_rx_queue_dma_chan_map(priv); |
| |
| /* Enable MAC RX Queues */ |
| stmmac_mac_enable_rx_queues(priv); |
| |
| /* Set RX priorities */ |
| if (rx_queues_count > 1) |
| stmmac_mac_config_rx_queues_prio(priv); |
| |
| /* Set TX priorities */ |
| if (tx_queues_count > 1) |
| stmmac_mac_config_tx_queues_prio(priv); |
| |
| /* Set RX routing */ |
| if (rx_queues_count > 1) |
| stmmac_mac_config_rx_queues_routing(priv); |
| |
| /* Receive Side Scaling */ |
| if (rx_queues_count > 1) |
| stmmac_mac_config_rss(priv); |
| } |
| |
| static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) |
| { |
| if (priv->dma_cap.asp) { |
| netdev_info(priv->dev, "Enabling Safety Features\n"); |
| stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, |
| priv->plat->safety_feat_cfg); |
| } else { |
| netdev_info(priv->dev, "No Safety Features support found\n"); |
| } |
| } |
| |
| static int stmmac_fpe_start_wq(struct stmmac_priv *priv) |
| { |
| char *name; |
| |
| clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); |
| clear_bit(__FPE_REMOVING, &priv->fpe_task_state); |
| |
| name = priv->wq_name; |
| sprintf(name, "%s-fpe", priv->dev->name); |
| |
| priv->fpe_wq = create_singlethread_workqueue(name); |
| if (!priv->fpe_wq) { |
| netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); |
| |
| return -ENOMEM; |
| } |
| netdev_info(priv->dev, "FPE workqueue start"); |
| |
| return 0; |
| } |
| |
| /** |
| * stmmac_hw_setup - setup mac in a usable state. |
| * @dev : pointer to the device structure. |
| * @ptp_register: register PTP if set |
| * Description: |
| * this is the main function to setup the HW in a usable state because the |
| * dma engine is reset, the core registers are configured (e.g. AXI, |
| * Checksum features, timers). The DMA is ready to start receiving and |
| * transmitting. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 rx_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| bool sph_en; |
| u32 chan; |
| int ret; |
| |
| /* DMA initialization and SW reset */ |
| ret = stmmac_init_dma_engine(priv); |
| if (ret < 0) { |
| netdev_err(priv->dev, "%s: DMA engine initialization failed\n", |
| __func__); |
| return ret; |
| } |
| |
| /* Copy the MAC addr into the HW */ |
| stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); |
| |
| /* PS and related bits will be programmed according to the speed */ |
| if (priv->hw->pcs) { |
| int speed = priv->plat->mac_port_sel_speed; |
| |
| if ((speed == SPEED_10) || (speed == SPEED_100) || |
| (speed == SPEED_1000)) { |
| priv->hw->ps = speed; |
| } else { |
| dev_warn(priv->device, "invalid port speed\n"); |
| priv->hw->ps = 0; |
| } |
| } |
| |
| /* Initialize the MAC Core */ |
| stmmac_core_init(priv, priv->hw, dev); |
| |
| /* Initialize MTL*/ |
| stmmac_mtl_configuration(priv); |
| |
| /* Initialize Safety Features */ |
| stmmac_safety_feat_configuration(priv); |
| |
| ret = stmmac_rx_ipc(priv, priv->hw); |
| if (!ret) { |
| netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); |
| priv->plat->rx_coe = STMMAC_RX_COE_NONE; |
| priv->hw->rx_csum = 0; |
| } |
| |
| /* Enable the MAC Rx/Tx */ |
| stmmac_mac_set(priv, priv->ioaddr, true); |
| |
| /* Set the HW DMA mode and the COE */ |
| stmmac_dma_operation_mode(priv); |
| |
| stmmac_mmc_setup(priv); |
| |
| if (ptp_register) { |
| ret = clk_prepare_enable(priv->plat->clk_ptp_ref); |
| if (ret < 0) |
| netdev_warn(priv->dev, |
| "failed to enable PTP reference clock: %pe\n", |
| ERR_PTR(ret)); |
| } |
| |
| ret = stmmac_init_ptp(priv); |
| if (ret == -EOPNOTSUPP) |
| netdev_info(priv->dev, "PTP not supported by HW\n"); |
| else if (ret) |
| netdev_warn(priv->dev, "PTP init failed\n"); |
| else if (ptp_register) |
| stmmac_ptp_register(priv); |
| |
| priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; |
| |
| /* Convert the timer from msec to usec */ |
| if (!priv->tx_lpi_timer) |
| priv->tx_lpi_timer = eee_timer * 1000; |
| |
| if (priv->use_riwt) { |
| u32 queue; |
| |
| for (queue = 0; queue < rx_cnt; queue++) { |
| if (!priv->rx_riwt[queue]) |
| priv->rx_riwt[queue] = DEF_DMA_RIWT; |
| |
| stmmac_rx_watchdog(priv, priv->ioaddr, |
| priv->rx_riwt[queue], queue); |
| } |
| } |
| |
| if (priv->hw->pcs) |
| stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); |
| |
| /* set TX and RX rings length */ |
| stmmac_set_rings_length(priv); |
| |
| /* Enable TSO */ |
| if (priv->tso) { |
| for (chan = 0; chan < tx_cnt; chan++) { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; |
| |
| /* TSO and TBS cannot co-exist */ |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| continue; |
| |
| stmmac_enable_tso(priv, priv->ioaddr, 1, chan); |
| } |
| } |
| |
| /* Enable Split Header */ |
| sph_en = (priv->hw->rx_csum > 0) && priv->sph; |
| for (chan = 0; chan < rx_cnt; chan++) |
| stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); |
| |
| |
| /* VLAN Tag Insertion */ |
| if (priv->dma_cap.vlins) |
| stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); |
| |
| /* TBS */ |
| for (chan = 0; chan < tx_cnt; chan++) { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; |
| int enable = tx_q->tbs & STMMAC_TBS_AVAIL; |
| |
| stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); |
| } |
| |
| /* Configure real RX and TX queues */ |
| netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); |
| netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); |
| |
| /* Start the ball rolling... */ |
| stmmac_start_all_dma(priv); |
| |
| stmmac_set_hw_vlan_mode(priv, priv->hw); |
| |
| if (priv->dma_cap.fpesel) { |
| stmmac_fpe_start_wq(priv); |
| |
| if (priv->plat->fpe_cfg->enable) |
| stmmac_fpe_handshake(priv, true); |
| } |
| |
| return 0; |
| } |
| |
| static void stmmac_hw_teardown(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| clk_disable_unprepare(priv->plat->clk_ptp_ref); |
| } |
| |
| static void stmmac_free_irq(struct net_device *dev, |
| enum request_irq_err irq_err, int irq_idx) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int j; |
| |
| switch (irq_err) { |
| case REQ_IRQ_ERR_ALL: |
| irq_idx = priv->plat->tx_queues_to_use; |
| fallthrough; |
| case REQ_IRQ_ERR_TX: |
| for (j = irq_idx - 1; j >= 0; j--) { |
| if (priv->tx_irq[j] > 0) { |
| irq_set_affinity_hint(priv->tx_irq[j], NULL); |
| free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); |
| } |
| } |
| irq_idx = priv->plat->rx_queues_to_use; |
| fallthrough; |
| case REQ_IRQ_ERR_RX: |
| for (j = irq_idx - 1; j >= 0; j--) { |
| if (priv->rx_irq[j] > 0) { |
| irq_set_affinity_hint(priv->rx_irq[j], NULL); |
| free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); |
| } |
| } |
| |
| if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) |
| free_irq(priv->sfty_ue_irq, dev); |
| fallthrough; |
| case REQ_IRQ_ERR_SFTY_UE: |
| if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) |
| free_irq(priv->sfty_ce_irq, dev); |
| fallthrough; |
| case REQ_IRQ_ERR_SFTY_CE: |
| if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) |
| free_irq(priv->lpi_irq, dev); |
| fallthrough; |
| case REQ_IRQ_ERR_LPI: |
| if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) |
| free_irq(priv->wol_irq, dev); |
| fallthrough; |
| case REQ_IRQ_ERR_SFTY: |
| if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) |
| free_irq(priv->sfty_irq, dev); |
| fallthrough; |
| case REQ_IRQ_ERR_WOL: |
| free_irq(dev->irq, dev); |
| fallthrough; |
| case REQ_IRQ_ERR_MAC: |
| case REQ_IRQ_ERR_NO: |
| /* If MAC IRQ request error, no more IRQ to free */ |
| break; |
| } |
| } |
| |
| static int stmmac_request_irq_multi_msi(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| enum request_irq_err irq_err; |
| cpumask_t cpu_mask; |
| int irq_idx = 0; |
| char *int_name; |
| int ret; |
| int i; |
| |
| /* For common interrupt */ |
| int_name = priv->int_name_mac; |
| sprintf(int_name, "%s:%s", dev->name, "mac"); |
| ret = request_irq(dev->irq, stmmac_mac_interrupt, |
| 0, int_name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc mac MSI %d (error: %d)\n", |
| __func__, dev->irq, ret); |
| irq_err = REQ_IRQ_ERR_MAC; |
| goto irq_error; |
| } |
| |
| /* Request the Wake IRQ in case of another line |
| * is used for WoL |
| */ |
| priv->wol_irq_disabled = true; |
| if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { |
| int_name = priv->int_name_wol; |
| sprintf(int_name, "%s:%s", dev->name, "wol"); |
| ret = request_irq(priv->wol_irq, |
| stmmac_mac_interrupt, |
| 0, int_name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc wol MSI %d (error: %d)\n", |
| __func__, priv->wol_irq, ret); |
| irq_err = REQ_IRQ_ERR_WOL; |
| goto irq_error; |
| } |
| } |
| |
| /* Request the LPI IRQ in case of another line |
| * is used for LPI |
| */ |
| if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { |
| int_name = priv->int_name_lpi; |
| sprintf(int_name, "%s:%s", dev->name, "lpi"); |
| ret = request_irq(priv->lpi_irq, |
| stmmac_mac_interrupt, |
| 0, int_name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc lpi MSI %d (error: %d)\n", |
| __func__, priv->lpi_irq, ret); |
| irq_err = REQ_IRQ_ERR_LPI; |
| goto irq_error; |
| } |
| } |
| |
| /* Request the common Safety Feature Correctible/Uncorrectible |
| * Error line in case of another line is used |
| */ |
| if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) { |
| int_name = priv->int_name_sfty; |
| sprintf(int_name, "%s:%s", dev->name, "safety"); |
| ret = request_irq(priv->sfty_irq, stmmac_safety_interrupt, |
| 0, int_name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc sfty MSI %d (error: %d)\n", |
| __func__, priv->sfty_irq, ret); |
| irq_err = REQ_IRQ_ERR_SFTY; |
| goto irq_error; |
| } |
| } |
| |
| /* Request the Safety Feature Correctible Error line in |
| * case of another line is used |
| */ |
| if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { |
| int_name = priv->int_name_sfty_ce; |
| sprintf(int_name, "%s:%s", dev->name, "safety-ce"); |
| ret = request_irq(priv->sfty_ce_irq, |
| stmmac_safety_interrupt, |
| 0, int_name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc sfty ce MSI %d (error: %d)\n", |
| __func__, priv->sfty_ce_irq, ret); |
| irq_err = REQ_IRQ_ERR_SFTY_CE; |
| goto irq_error; |
| } |
| } |
| |
| /* Request the Safety Feature Uncorrectible Error line in |
| * case of another line is used |
| */ |
| if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { |
| int_name = priv->int_name_sfty_ue; |
| sprintf(int_name, "%s:%s", dev->name, "safety-ue"); |
| ret = request_irq(priv->sfty_ue_irq, |
| stmmac_safety_interrupt, |
| 0, int_name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc sfty ue MSI %d (error: %d)\n", |
| __func__, priv->sfty_ue_irq, ret); |
| irq_err = REQ_IRQ_ERR_SFTY_UE; |
| goto irq_error; |
| } |
| } |
| |
| /* Request Rx MSI irq */ |
| for (i = 0; i < priv->plat->rx_queues_to_use; i++) { |
| if (i >= MTL_MAX_RX_QUEUES) |
| break; |
| if (priv->rx_irq[i] == 0) |
| continue; |
| |
| int_name = priv->int_name_rx_irq[i]; |
| sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); |
| ret = request_irq(priv->rx_irq[i], |
| stmmac_msi_intr_rx, |
| 0, int_name, &priv->dma_conf.rx_queue[i]); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc rx-%d MSI %d (error: %d)\n", |
| __func__, i, priv->rx_irq[i], ret); |
| irq_err = REQ_IRQ_ERR_RX; |
| irq_idx = i; |
| goto irq_error; |
| } |
| cpumask_clear(&cpu_mask); |
| cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); |
| irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); |
| } |
| |
| /* Request Tx MSI irq */ |
| for (i = 0; i < priv->plat->tx_queues_to_use; i++) { |
| if (i >= MTL_MAX_TX_QUEUES) |
| break; |
| if (priv->tx_irq[i] == 0) |
| continue; |
| |
| int_name = priv->int_name_tx_irq[i]; |
| sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); |
| ret = request_irq(priv->tx_irq[i], |
| stmmac_msi_intr_tx, |
| 0, int_name, &priv->dma_conf.tx_queue[i]); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: alloc tx-%d MSI %d (error: %d)\n", |
| __func__, i, priv->tx_irq[i], ret); |
| irq_err = REQ_IRQ_ERR_TX; |
| irq_idx = i; |
| goto irq_error; |
| } |
| cpumask_clear(&cpu_mask); |
| cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); |
| irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); |
| } |
| |
| return 0; |
| |
| irq_error: |
| stmmac_free_irq(dev, irq_err, irq_idx); |
| return ret; |
| } |
| |
| static int stmmac_request_irq_single(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| enum request_irq_err irq_err; |
| int ret; |
| |
| ret = request_irq(dev->irq, stmmac_interrupt, |
| IRQF_SHARED, dev->name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: ERROR: allocating the IRQ %d (error: %d)\n", |
| __func__, dev->irq, ret); |
| irq_err = REQ_IRQ_ERR_MAC; |
| goto irq_error; |
| } |
| |
| /* Request the Wake IRQ in case of another line |
| * is used for WoL |
| */ |
| if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { |
| ret = request_irq(priv->wol_irq, stmmac_interrupt, |
| IRQF_SHARED, dev->name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: ERROR: allocating the WoL IRQ %d (%d)\n", |
| __func__, priv->wol_irq, ret); |
| irq_err = REQ_IRQ_ERR_WOL; |
| goto irq_error; |
| } |
| } |
| |
| /* Request the IRQ lines */ |
| if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { |
| ret = request_irq(priv->lpi_irq, stmmac_interrupt, |
| IRQF_SHARED, dev->name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: ERROR: allocating the LPI IRQ %d (%d)\n", |
| __func__, priv->lpi_irq, ret); |
| irq_err = REQ_IRQ_ERR_LPI; |
| goto irq_error; |
| } |
| } |
| |
| /* Request the common Safety Feature Correctible/Uncorrectible |
| * Error line in case of another line is used |
| */ |
| if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) { |
| ret = request_irq(priv->sfty_irq, stmmac_safety_interrupt, |
| IRQF_SHARED, dev->name, dev); |
| if (unlikely(ret < 0)) { |
| netdev_err(priv->dev, |
| "%s: ERROR: allocating the sfty IRQ %d (%d)\n", |
| __func__, priv->sfty_irq, ret); |
| irq_err = REQ_IRQ_ERR_SFTY; |
| goto irq_error; |
| } |
| } |
| |
| return 0; |
| |
| irq_error: |
| stmmac_free_irq(dev, irq_err, 0); |
| return ret; |
| } |
| |
| static int stmmac_request_irq(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int ret; |
| |
| /* Request the IRQ lines */ |
| if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN) |
| ret = stmmac_request_irq_multi_msi(dev); |
| else |
| ret = stmmac_request_irq_single(dev); |
| |
| return ret; |
| } |
| |
| /** |
| * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue |
| * @priv: driver private structure |
| * @mtu: MTU to setup the dma queue and buf with |
| * Description: Allocate and generate a dma_conf based on the provided MTU. |
| * Allocate the Tx/Rx DMA queue and init them. |
| * Return value: |
| * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. |
| */ |
| static struct stmmac_dma_conf * |
| stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) |
| { |
| struct stmmac_dma_conf *dma_conf; |
| int chan, bfsize, ret; |
| |
| dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); |
| if (!dma_conf) { |
| netdev_err(priv->dev, "%s: DMA conf allocation failed\n", |
| __func__); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| bfsize = stmmac_set_16kib_bfsize(priv, mtu); |
| if (bfsize < 0) |
| bfsize = 0; |
| |
| if (bfsize < BUF_SIZE_16KiB) |
| bfsize = stmmac_set_bfsize(mtu, 0); |
| |
| dma_conf->dma_buf_sz = bfsize; |
| /* Chose the tx/rx size from the already defined one in the |
| * priv struct. (if defined) |
| */ |
| dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; |
| dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; |
| |
| if (!dma_conf->dma_tx_size) |
| dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; |
| if (!dma_conf->dma_rx_size) |
| dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; |
| |
| /* Earlier check for TBS */ |
| for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { |
| struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; |
| int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; |
| |
| /* Setup per-TXQ tbs flag before TX descriptor alloc */ |
| tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; |
| } |
| |
| ret = alloc_dma_desc_resources(priv, dma_conf); |
| if (ret < 0) { |
| netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", |
| __func__); |
| goto alloc_error; |
| } |
| |
| ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); |
| if (ret < 0) { |
| netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", |
| __func__); |
| goto init_error; |
| } |
| |
| return dma_conf; |
| |
| init_error: |
| free_dma_desc_resources(priv, dma_conf); |
| alloc_error: |
| kfree(dma_conf); |
| return ERR_PTR(ret); |
| } |
| |
| /** |
| * __stmmac_open - open entry point of the driver |
| * @dev : pointer to the device structure. |
| * @dma_conf : structure to take the dma data |
| * Description: |
| * This function is the open entry point of the driver. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| static int __stmmac_open(struct net_device *dev, |
| struct stmmac_dma_conf *dma_conf) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int mode = priv->plat->phy_interface; |
| u32 chan; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(priv->device); |
| if (ret < 0) |
| return ret; |
| |
| if (priv->hw->pcs != STMMAC_PCS_TBI && |
| priv->hw->pcs != STMMAC_PCS_RTBI && |
| (!priv->hw->xpcs || |
| xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) && |
| !priv->hw->lynx_pcs) { |
| ret = stmmac_init_phy(dev); |
| if (ret) { |
| netdev_err(priv->dev, |
| "%s: Cannot attach to PHY (error: %d)\n", |
| __func__, ret); |
| goto init_phy_error; |
| } |
| } |
| |
| priv->rx_copybreak = STMMAC_RX_COPYBREAK; |
| |
| buf_sz = dma_conf->dma_buf_sz; |
| for (int i = 0; i < MTL_MAX_TX_QUEUES; i++) |
| if (priv->dma_conf.tx_queue[i].tbs & STMMAC_TBS_EN) |
| dma_conf->tx_queue[i].tbs = priv->dma_conf.tx_queue[i].tbs; |
| memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); |
| |
| stmmac_reset_queues_param(priv); |
| |
| if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && |
| priv->plat->serdes_powerup) { |
| ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); |
| if (ret < 0) { |
| netdev_err(priv->dev, "%s: Serdes powerup failed\n", |
| __func__); |
| goto init_error; |
| } |
| } |
| |
| ret = stmmac_hw_setup(dev, true); |
| if (ret < 0) { |
| netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); |
| goto init_error; |
| } |
| |
| stmmac_init_coalesce(priv); |
| |
| phylink_start(priv->phylink); |
| /* We may have called phylink_speed_down before */ |
| phylink_speed_up(priv->phylink); |
| |
| ret = stmmac_request_irq(dev); |
| if (ret) |
| goto irq_error; |
| |
| stmmac_enable_all_queues(priv); |
| netif_tx_start_all_queues(priv->dev); |
| stmmac_enable_all_dma_irq(priv); |
| |
| return 0; |
| |
| irq_error: |
| phylink_stop(priv->phylink); |
| |
| for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
| hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); |
| |
| stmmac_hw_teardown(dev); |
| init_error: |
| phylink_disconnect_phy(priv->phylink); |
| init_phy_error: |
| pm_runtime_put(priv->device); |
| return ret; |
| } |
| |
| static int stmmac_open(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| struct stmmac_dma_conf *dma_conf; |
| int ret; |
| |
| dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); |
| if (IS_ERR(dma_conf)) |
| return PTR_ERR(dma_conf); |
| |
| ret = __stmmac_open(dev, dma_conf); |
| if (ret) |
| free_dma_desc_resources(priv, dma_conf); |
| |
| kfree(dma_conf); |
| return ret; |
| } |
| |
| static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) |
| { |
| set_bit(__FPE_REMOVING, &priv->fpe_task_state); |
| |
| if (priv->fpe_wq) { |
| destroy_workqueue(priv->fpe_wq); |
| priv->fpe_wq = NULL; |
| } |
| |
| netdev_info(priv->dev, "FPE workqueue stop"); |
| } |
| |
| /** |
| * stmmac_release - close entry point of the driver |
| * @dev : device pointer. |
| * Description: |
| * This is the stop entry point of the driver. |
| */ |
| static int stmmac_release(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 chan; |
| |
| if (device_may_wakeup(priv->device)) |
| phylink_speed_down(priv->phylink, false); |
| /* Stop and disconnect the PHY */ |
| phylink_stop(priv->phylink); |
| phylink_disconnect_phy(priv->phylink); |
| |
| stmmac_disable_all_queues(priv); |
| |
| for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
| hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); |
| |
| netif_tx_disable(dev); |
| |
| /* Free the IRQ lines */ |
| stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); |
| |
| if (priv->eee_enabled) { |
| priv->tx_path_in_lpi_mode = false; |
| del_timer_sync(&priv->eee_ctrl_timer); |
| } |
| |
| /* Stop TX/RX DMA and clear the descriptors */ |
| stmmac_stop_all_dma(priv); |
| |
| /* Release and free the Rx/Tx resources */ |
| free_dma_desc_resources(priv, &priv->dma_conf); |
| |
| /* Disable the MAC Rx/Tx */ |
| stmmac_mac_set(priv, priv->ioaddr, false); |
| |
| /* Powerdown Serdes if there is */ |
| if (priv->plat->serdes_powerdown) |
| priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); |
| |
| netif_carrier_off(dev); |
| |
| stmmac_release_ptp(priv); |
| |
| pm_runtime_put(priv->device); |
| |
| if (priv->dma_cap.fpesel) |
| stmmac_fpe_stop_wq(priv); |
| |
| return 0; |
| } |
| |
| static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, |
| struct stmmac_tx_queue *tx_q) |
| { |
| u16 tag = 0x0, inner_tag = 0x0; |
| u32 inner_type = 0x0; |
| struct dma_desc *p; |
| |
| if (!priv->dma_cap.vlins) |
| return false; |
| if (!skb_vlan_tag_present(skb)) |
| return false; |
| if (skb->vlan_proto == htons(ETH_P_8021AD)) { |
| inner_tag = skb_vlan_tag_get(skb); |
| inner_type = STMMAC_VLAN_INSERT; |
| } |
| |
| tag = skb_vlan_tag_get(skb); |
| |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| p = &tx_q->dma_entx[tx_q->cur_tx].basic; |
| else |
| p = &tx_q->dma_tx[tx_q->cur_tx]; |
| |
| if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) |
| return false; |
| |
| stmmac_set_tx_owner(priv, p); |
| tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); |
| return true; |
| } |
| |
| /** |
| * stmmac_tso_allocator - close entry point of the driver |
| * @priv: driver private structure |
| * @des: buffer start address |
| * @total_len: total length to fill in descriptors |
| * @last_segment: condition for the last descriptor |
| * @queue: TX queue index |
| * Description: |
| * This function fills descriptor and request new descriptors according to |
| * buffer length to fill |
| */ |
| static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, |
| int total_len, bool last_segment, u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| struct dma_desc *desc; |
| u32 buff_size; |
| int tmp_len; |
| |
| tmp_len = total_len; |
| |
| while (tmp_len > 0) { |
| dma_addr_t curr_addr; |
| |
| tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, |
| priv->dma_conf.dma_tx_size); |
| WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); |
| |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc = &tx_q->dma_entx[tx_q->cur_tx].basic; |
| else |
| desc = &tx_q->dma_tx[tx_q->cur_tx]; |
| |
| curr_addr = des + (total_len - tmp_len); |
| if (priv->dma_cap.addr64 <= 32) |
| desc->des0 = cpu_to_le32(curr_addr); |
| else |
| stmmac_set_desc_addr(priv, desc, curr_addr); |
| |
| buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? |
| TSO_MAX_BUFF_SIZE : tmp_len; |
| |
| stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, |
| 0, 1, |
| (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), |
| 0, 0); |
| |
| tmp_len -= TSO_MAX_BUFF_SIZE; |
| } |
| } |
| |
| static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| int desc_size; |
| |
| if (likely(priv->extend_desc)) |
| desc_size = sizeof(struct dma_extended_desc); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc_size = sizeof(struct dma_edesc); |
| else |
| desc_size = sizeof(struct dma_desc); |
| |
| /* The own bit must be the latest setting done when prepare the |
| * descriptor and then barrier is needed to make sure that |
| * all is coherent before granting the DMA engine. |
| */ |
| wmb(); |
| |
| tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); |
| stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); |
| } |
| |
| /** |
| * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) |
| * @skb : the socket buffer |
| * @dev : device pointer |
| * Description: this is the transmit function that is called on TSO frames |
| * (support available on GMAC4 and newer chips). |
| * Diagram below show the ring programming in case of TSO frames: |
| * |
| * First Descriptor |
| * -------- |
| * | DES0 |---> buffer1 = L2/L3/L4 header |
| * | DES1 |---> TCP Payload (can continue on next descr...) |
| * | DES2 |---> buffer 1 and 2 len |
| * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] |
| * -------- |
| * | |
| * ... |
| * | |
| * -------- |
| * | DES0 | --| Split TCP Payload on Buffers 1 and 2 |
| * | DES1 | --| |
| * | DES2 | --> buffer 1 and 2 len |
| * | DES3 | |
| * -------- |
| * |
| * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. |
| */ |
| static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct dma_desc *desc, *first, *mss_desc = NULL; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int nfrags = skb_shinfo(skb)->nr_frags; |
| u32 queue = skb_get_queue_mapping(skb); |
| unsigned int first_entry, tx_packets; |
| struct stmmac_txq_stats *txq_stats; |
| int tmp_pay_len = 0, first_tx; |
| struct stmmac_tx_queue *tx_q; |
| bool has_vlan, set_ic; |
| u8 proto_hdr_len, hdr; |
| u32 pay_len, mss; |
| dma_addr_t des; |
| int i; |
| |
| tx_q = &priv->dma_conf.tx_queue[queue]; |
| txq_stats = &priv->xstats.txq_stats[queue]; |
| first_tx = tx_q->cur_tx; |
| |
| /* Compute header lengths */ |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); |
| hdr = sizeof(struct udphdr); |
| } else { |
| proto_hdr_len = skb_tcp_all_headers(skb); |
| hdr = tcp_hdrlen(skb); |
| } |
| |
| /* Desc availability based on threshold should be enough safe */ |
| if (unlikely(stmmac_tx_avail(priv, queue) < |
| (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { |
| if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { |
| netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, |
| queue)); |
| /* This is a hard error, log it. */ |
| netdev_err(priv->dev, |
| "%s: Tx Ring full when queue awake\n", |
| __func__); |
| } |
| return NETDEV_TX_BUSY; |
| } |
| |
| pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ |
| |
| mss = skb_shinfo(skb)->gso_size; |
| |
| /* set new MSS value if needed */ |
| if (mss != tx_q->mss) { |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; |
| else |
| mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; |
| |
| stmmac_set_mss(priv, mss_desc, mss); |
| tx_q->mss = mss; |
| tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, |
| priv->dma_conf.dma_tx_size); |
| WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); |
| } |
| |
| if (netif_msg_tx_queued(priv)) { |
| pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", |
| __func__, hdr, proto_hdr_len, pay_len, mss); |
| pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, |
| skb->data_len); |
| } |
| |
| /* Check if VLAN can be inserted by HW */ |
| has_vlan = stmmac_vlan_insert(priv, skb, tx_q); |
| |
| first_entry = tx_q->cur_tx; |
| WARN_ON(tx_q->tx_skbuff[first_entry]); |
| |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc = &tx_q->dma_entx[first_entry].basic; |
| else |
| desc = &tx_q->dma_tx[first_entry]; |
| first = desc; |
| |
| if (has_vlan) |
| stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); |
| |
| /* first descriptor: fill Headers on Buf1 */ |
| des = dma_map_single(priv->device, skb->data, skb_headlen(skb), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(priv->device, des)) |
| goto dma_map_err; |
| |
| tx_q->tx_skbuff_dma[first_entry].buf = des; |
| tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); |
| tx_q->tx_skbuff_dma[first_entry].map_as_page = false; |
| tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; |
| |
| if (priv->dma_cap.addr64 <= 32) { |
| first->des0 = cpu_to_le32(des); |
| |
| /* Fill start of payload in buff2 of first descriptor */ |
| if (pay_len) |
| first->des1 = cpu_to_le32(des + proto_hdr_len); |
| |
| /* If needed take extra descriptors to fill the remaining payload */ |
| tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; |
| } else { |
| stmmac_set_desc_addr(priv, first, des); |
| tmp_pay_len = pay_len; |
| des += proto_hdr_len; |
| pay_len = 0; |
| } |
| |
| stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); |
| |
| /* Prepare fragments */ |
| for (i = 0; i < nfrags; i++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| des = skb_frag_dma_map(priv->device, frag, 0, |
| skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(priv->device, des)) |
| goto dma_map_err; |
| |
| stmmac_tso_allocator(priv, des, skb_frag_size(frag), |
| (i == nfrags - 1), queue); |
| |
| tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; |
| tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); |
| tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; |
| tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; |
| } |
| |
| tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; |
| |
| /* Only the last descriptor gets to point to the skb. */ |
| tx_q->tx_skbuff[tx_q->cur_tx] = skb; |
| tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; |
| |
| /* Manage tx mitigation */ |
| tx_packets = (tx_q->cur_tx + 1) - first_tx; |
| tx_q->tx_count_frames += tx_packets; |
| |
| if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) |
| set_ic = true; |
| else if (!priv->tx_coal_frames[queue]) |
| set_ic = false; |
| else if (tx_packets > priv->tx_coal_frames[queue]) |
| set_ic = true; |
| else if ((tx_q->tx_count_frames % |
| priv->tx_coal_frames[queue]) < tx_packets) |
| set_ic = true; |
| else |
| set_ic = false; |
| |
| if (set_ic) { |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc = &tx_q->dma_entx[tx_q->cur_tx].basic; |
| else |
| desc = &tx_q->dma_tx[tx_q->cur_tx]; |
| |
| tx_q->tx_count_frames = 0; |
| stmmac_set_tx_ic(priv, desc); |
| } |
| |
| /* We've used all descriptors we need for this skb, however, |
| * advance cur_tx so that it references a fresh descriptor. |
| * ndo_start_xmit will fill this descriptor the next time it's |
| * called and stmmac_tx_clean may clean up to this descriptor. |
| */ |
| tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); |
| |
| if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { |
| netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", |
| __func__); |
| netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); |
| } |
| |
| u64_stats_update_begin(&txq_stats->q_syncp); |
| u64_stats_add(&txq_stats->q.tx_bytes, skb->len); |
| u64_stats_inc(&txq_stats->q.tx_tso_frames); |
| u64_stats_add(&txq_stats->q.tx_tso_nfrags, nfrags); |
| if (set_ic) |
| u64_stats_inc(&txq_stats->q.tx_set_ic_bit); |
| u64_stats_update_end(&txq_stats->q_syncp); |
| |
| if (priv->sarc_type) |
| stmmac_set_desc_sarc(priv, first, priv->sarc_type); |
| |
| skb_tx_timestamp(skb); |
| |
| if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| priv->hwts_tx_en)) { |
| /* declare that device is doing timestamping */ |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| stmmac_enable_tx_timestamp(priv, first); |
| } |
| |
| /* Complete the first descriptor before granting the DMA */ |
| stmmac_prepare_tso_tx_desc(priv, first, 1, |
| proto_hdr_len, |
| pay_len, |
| 1, tx_q->tx_skbuff_dma[first_entry].last_segment, |
| hdr / 4, (skb->len - proto_hdr_len)); |
| |
| /* If context desc is used to change MSS */ |
| if (mss_desc) { |
| /* Make sure that first descriptor has been completely |
| * written, including its own bit. This is because MSS is |
| * actually before first descriptor, so we need to make |
| * sure that MSS's own bit is the last thing written. |
| */ |
| dma_wmb(); |
| stmmac_set_tx_owner(priv, mss_desc); |
| } |
| |
| if (netif_msg_pktdata(priv)) { |
| pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", |
| __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, |
| tx_q->cur_tx, first, nfrags); |
| pr_info(">>> frame to be transmitted: "); |
| print_pkt(skb->data, skb_headlen(skb)); |
| } |
| |
| netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); |
| |
| stmmac_flush_tx_descriptors(priv, queue); |
| stmmac_tx_timer_arm(priv, queue); |
| |
| return NETDEV_TX_OK; |
| |
| dma_map_err: |
| dev_err(priv->device, "Tx dma map failed\n"); |
| dev_kfree_skb(skb); |
| priv->xstats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * stmmac_has_ip_ethertype() - Check if packet has IP ethertype |
| * @skb: socket buffer to check |
| * |
| * Check if a packet has an ethertype that will trigger the IP header checks |
| * and IP/TCP checksum engine of the stmmac core. |
| * |
| * Return: true if the ethertype can trigger the checksum engine, false |
| * otherwise |
| */ |
| static bool stmmac_has_ip_ethertype(struct sk_buff *skb) |
| { |
| int depth = 0; |
| __be16 proto; |
| |
| proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb), |
| &depth); |
| |
| return (depth <= ETH_HLEN) && |
| (proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6)); |
| } |
| |
| /** |
| * stmmac_xmit - Tx entry point of the driver |
| * @skb : the socket buffer |
| * @dev : device pointer |
| * Description : this is the tx entry point of the driver. |
| * It programs the chain or the ring and supports oversized frames |
| * and SG feature. |
| */ |
| static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| unsigned int first_entry, tx_packets, enh_desc; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| unsigned int nopaged_len = skb_headlen(skb); |
| int i, csum_insertion = 0, is_jumbo = 0; |
| u32 queue = skb_get_queue_mapping(skb); |
| int nfrags = skb_shinfo(skb)->nr_frags; |
| int gso = skb_shinfo(skb)->gso_type; |
| struct stmmac_txq_stats *txq_stats; |
| struct dma_edesc *tbs_desc = NULL; |
| struct dma_desc *desc, *first; |
| struct stmmac_tx_queue *tx_q; |
| bool has_vlan, set_ic; |
| int entry, first_tx; |
| dma_addr_t des; |
| |
| tx_q = &priv->dma_conf.tx_queue[queue]; |
| txq_stats = &priv->xstats.txq_stats[queue]; |
| first_tx = tx_q->cur_tx; |
| |
| if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) |
| stmmac_disable_eee_mode(priv); |
| |
| /* Manage oversized TCP frames for GMAC4 device */ |
| if (skb_is_gso(skb) && priv->tso) { |
| if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) |
| return stmmac_tso_xmit(skb, dev); |
| if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) |
| return stmmac_tso_xmit(skb, dev); |
| } |
| |
| if (priv->plat->est && priv->plat->est->enable && |
| priv->plat->est->max_sdu[queue] && |
| skb->len > priv->plat->est->max_sdu[queue]){ |
| priv->xstats.max_sdu_txq_drop[queue]++; |
| goto max_sdu_err; |
| } |
| |
| if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { |
| if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { |
| netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, |
| queue)); |
| /* This is a hard error, log it. */ |
| netdev_err(priv->dev, |
| "%s: Tx Ring full when queue awake\n", |
| __func__); |
| } |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Check if VLAN can be inserted by HW */ |
| has_vlan = stmmac_vlan_insert(priv, skb, tx_q); |
| |
| entry = tx_q->cur_tx; |
| first_entry = entry; |
| WARN_ON(tx_q->tx_skbuff[first_entry]); |
| |
| csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); |
| /* DWMAC IPs can be synthesized to support tx coe only for a few tx |
| * queues. In that case, checksum offloading for those queues that don't |
| * support tx coe needs to fallback to software checksum calculation. |
| * |
| * Packets that won't trigger the COE e.g. most DSA-tagged packets will |
| * also have to be checksummed in software. |
| */ |
| if (csum_insertion && |
| (priv->plat->tx_queues_cfg[queue].coe_unsupported || |
| !stmmac_has_ip_ethertype(skb))) { |
| if (unlikely(skb_checksum_help(skb))) |
| goto dma_map_err; |
| csum_insertion = !csum_insertion; |
| } |
| |
| if (likely(priv->extend_desc)) |
| desc = (struct dma_desc *)(tx_q->dma_etx + entry); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc = &tx_q->dma_entx[entry].basic; |
| else |
| desc = tx_q->dma_tx + entry; |
| |
| first = desc; |
| |
| if (has_vlan) |
| stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); |
| |
| enh_desc = priv->plat->enh_desc; |
| /* To program the descriptors according to the size of the frame */ |
| if (enh_desc) |
| is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); |
| |
| if (unlikely(is_jumbo)) { |
| entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); |
| if (unlikely(entry < 0) && (entry != -EINVAL)) |
| goto dma_map_err; |
| } |
| |
| for (i = 0; i < nfrags; i++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| int len = skb_frag_size(frag); |
| bool last_segment = (i == (nfrags - 1)); |
| |
| entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); |
| WARN_ON(tx_q->tx_skbuff[entry]); |
| |
| if (likely(priv->extend_desc)) |
| desc = (struct dma_desc *)(tx_q->dma_etx + entry); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc = &tx_q->dma_entx[entry].basic; |
| else |
| desc = tx_q->dma_tx + entry; |
| |
| des = skb_frag_dma_map(priv->device, frag, 0, len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(priv->device, des)) |
| goto dma_map_err; /* should reuse desc w/o issues */ |
| |
| tx_q->tx_skbuff_dma[entry].buf = des; |
| |
| stmmac_set_desc_addr(priv, desc, des); |
| |
| tx_q->tx_skbuff_dma[entry].map_as_page = true; |
| tx_q->tx_skbuff_dma[entry].len = len; |
| tx_q->tx_skbuff_dma[entry].last_segment = last_segment; |
| tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; |
| |
| /* Prepare the descriptor and set the own bit too */ |
| stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, |
| priv->mode, 1, last_segment, skb->len); |
| } |
| |
| /* Only the last descriptor gets to point to the skb. */ |
| tx_q->tx_skbuff[entry] = skb; |
| tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; |
| |
| /* According to the coalesce parameter the IC bit for the latest |
| * segment is reset and the timer re-started to clean the tx status. |
| * This approach takes care about the fragments: desc is the first |
| * element in case of no SG. |
| */ |
| tx_packets = (entry + 1) - first_tx; |
| tx_q->tx_count_frames += tx_packets; |
| |
| if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) |
| set_ic = true; |
| else if (!priv->tx_coal_frames[queue]) |
| set_ic = false; |
| else if (tx_packets > priv->tx_coal_frames[queue]) |
| set_ic = true; |
| else if ((tx_q->tx_count_frames % |
| priv->tx_coal_frames[queue]) < tx_packets) |
| set_ic = true; |
| else |
| set_ic = false; |
| |
| if (set_ic) { |
| if (likely(priv->extend_desc)) |
| desc = &tx_q->dma_etx[entry].basic; |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| desc = &tx_q->dma_entx[entry].basic; |
| else |
| desc = &tx_q->dma_tx[entry]; |
| |
| tx_q->tx_count_frames = 0; |
| stmmac_set_tx_ic(priv, desc); |
| } |
| |
| /* We've used all descriptors we need for this skb, however, |
| * advance cur_tx so that it references a fresh descriptor. |
| * ndo_start_xmit will fill this descriptor the next time it's |
| * called and stmmac_tx_clean may clean up to this descriptor. |
| */ |
| entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); |
| tx_q->cur_tx = entry; |
| |
| if (netif_msg_pktdata(priv)) { |
| netdev_dbg(priv->dev, |
| "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", |
| __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, |
| entry, first, nfrags); |
| |
| netdev_dbg(priv->dev, ">>> frame to be transmitted: "); |
| print_pkt(skb->data, skb->len); |
| } |
| |
| if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { |
| netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", |
| __func__); |
| netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); |
| } |
| |
| u64_stats_update_begin(&txq_stats->q_syncp); |
| u64_stats_add(&txq_stats->q.tx_bytes, skb->len); |
| if (set_ic) |
| u64_stats_inc(&txq_stats->q.tx_set_ic_bit); |
| u64_stats_update_end(&txq_stats->q_syncp); |
| |
| if (priv->sarc_type) |
| stmmac_set_desc_sarc(priv, first, priv->sarc_type); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Ready to fill the first descriptor and set the OWN bit w/o any |
| * problems because all the descriptors are actually ready to be |
| * passed to the DMA engine. |
| */ |
| if (likely(!is_jumbo)) { |
| bool last_segment = (nfrags == 0); |
| |
| des = dma_map_single(priv->device, skb->data, |
| nopaged_len, DMA_TO_DEVICE); |
| if (dma_mapping_error(priv->device, des)) |
| goto dma_map_err; |
| |
| tx_q->tx_skbuff_dma[first_entry].buf = des; |
| tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; |
| tx_q->tx_skbuff_dma[first_entry].map_as_page = false; |
| |
| stmmac_set_desc_addr(priv, first, des); |
| |
| tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; |
| tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; |
| |
| if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| priv->hwts_tx_en)) { |
| /* declare that device is doing timestamping */ |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| stmmac_enable_tx_timestamp(priv, first); |
| } |
| |
| /* Prepare the first descriptor setting the OWN bit too */ |
| stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, |
| csum_insertion, priv->mode, 0, last_segment, |
| skb->len); |
| } |
| |
| if (tx_q->tbs & STMMAC_TBS_EN) { |
| struct timespec64 ts = ns_to_timespec64(skb->tstamp); |
| |
| tbs_desc = &tx_q->dma_entx[first_entry]; |
| stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); |
| } |
| |
| stmmac_set_tx_owner(priv, first); |
| |
| netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); |
| |
| stmmac_enable_dma_transmission(priv, priv->ioaddr); |
| |
| stmmac_flush_tx_descriptors(priv, queue); |
| stmmac_tx_timer_arm(priv, queue); |
| |
| return NETDEV_TX_OK; |
| |
| dma_map_err: |
| netdev_err(priv->dev, "Tx DMA map failed\n"); |
| max_sdu_err: |
| dev_kfree_skb(skb); |
| priv->xstats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |
| static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) |
| { |
| struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb); |
| __be16 vlan_proto = veth->h_vlan_proto; |
| u16 vlanid; |
| |
| if ((vlan_proto == htons(ETH_P_8021Q) && |
| dev->features & NETIF_F_HW_VLAN_CTAG_RX) || |
| (vlan_proto == htons(ETH_P_8021AD) && |
| dev->features & NETIF_F_HW_VLAN_STAG_RX)) { |
| /* pop the vlan tag */ |
| vlanid = ntohs(veth->h_vlan_TCI); |
| memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); |
| skb_pull(skb, VLAN_HLEN); |
| __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); |
| } |
| } |
| |
| /** |
| * stmmac_rx_refill - refill used skb preallocated buffers |
| * @priv: driver private structure |
| * @queue: RX queue index |
| * Description : this is to reallocate the skb for the reception process |
| * that is based on zero-copy. |
| */ |
| static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| int dirty = stmmac_rx_dirty(priv, queue); |
| unsigned int entry = rx_q->dirty_rx; |
| gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); |
| |
| if (priv->dma_cap.host_dma_width <= 32) |
| gfp |= GFP_DMA32; |
| |
| while (dirty-- > 0) { |
| struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; |
| struct dma_desc *p; |
| bool use_rx_wd; |
| |
| if (priv->extend_desc) |
| p = (struct dma_desc *)(rx_q->dma_erx + entry); |
| else |
| p = rx_q->dma_rx + entry; |
| |
| if (!buf->page) { |
| buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
| if (!buf->page) |
| break; |
| } |
| |
| if (priv->sph && !buf->sec_page) { |
| buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
| if (!buf->sec_page) |
| break; |
| |
| buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); |
| } |
| |
| buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; |
| |
| stmmac_set_desc_addr(priv, p, buf->addr); |
| if (priv->sph) |
| stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); |
| else |
| stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); |
| stmmac_refill_desc3(priv, rx_q, p); |
| |
| rx_q->rx_count_frames++; |
| rx_q->rx_count_frames += priv->rx_coal_frames[queue]; |
| if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) |
| rx_q->rx_count_frames = 0; |
| |
| use_rx_wd = !priv->rx_coal_frames[queue]; |
| use_rx_wd |= rx_q->rx_count_frames > 0; |
| if (!priv->use_riwt) |
| use_rx_wd = false; |
| |
| dma_wmb(); |
| stmmac_set_rx_owner(priv, p, use_rx_wd); |
| |
| entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); |
| } |
| rx_q->dirty_rx = entry; |
| rx_q->rx_tail_addr = rx_q->dma_rx_phy + |
| (rx_q->dirty_rx * sizeof(struct dma_desc)); |
| stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); |
| } |
| |
| static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, |
| struct dma_desc *p, |
| int status, unsigned int len) |
| { |
| unsigned int plen = 0, hlen = 0; |
| int coe = priv->hw->rx_csum; |
| |
| /* Not first descriptor, buffer is always zero */ |
| if (priv->sph && len) |
| return 0; |
| |
| /* First descriptor, get split header length */ |
| stmmac_get_rx_header_len(priv, p, &hlen); |
| if (priv->sph && hlen) { |
| priv->xstats.rx_split_hdr_pkt_n++; |
| return hlen; |
| } |
| |
| /* First descriptor, not last descriptor and not split header */ |
| if (status & rx_not_ls) |
| return priv->dma_conf.dma_buf_sz; |
| |
| plen = stmmac_get_rx_frame_len(priv, p, coe); |
| |
| /* First descriptor and last descriptor and not split header */ |
| return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); |
| } |
| |
| static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, |
| struct dma_desc *p, |
| int status, unsigned int len) |
| { |
| int coe = priv->hw->rx_csum; |
| unsigned int plen = 0; |
| |
| /* Not split header, buffer is not available */ |
| if (!priv->sph) |
| return 0; |
| |
| /* Not last descriptor */ |
| if (status & rx_not_ls) |
| return priv->dma_conf.dma_buf_sz; |
| |
| plen = stmmac_get_rx_frame_len(priv, p, coe); |
| |
| /* Last descriptor */ |
| return plen - len; |
| } |
| |
| static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, |
| struct xdp_frame *xdpf, bool dma_map) |
| { |
| struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue]; |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| unsigned int entry = tx_q->cur_tx; |
| struct dma_desc *tx_desc; |
| dma_addr_t dma_addr; |
| bool set_ic; |
| |
| if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) |
| return STMMAC_XDP_CONSUMED; |
| |
| if (priv->plat->est && priv->plat->est->enable && |
| priv->plat->est->max_sdu[queue] && |
| xdpf->len > priv->plat->est->max_sdu[queue]) { |
| priv->xstats.max_sdu_txq_drop[queue]++; |
| return STMMAC_XDP_CONSUMED; |
| } |
| |
| if (likely(priv->extend_desc)) |
| tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); |
| else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| tx_desc = &tx_q->dma_entx[entry].basic; |
| else |
| tx_desc = tx_q->dma_tx + entry; |
| |
| if (dma_map) { |
| dma_addr = dma_map_single(priv->device, xdpf->data, |
| xdpf->len, DMA_TO_DEVICE); |
| if (dma_mapping_error(priv->device, dma_addr)) |
| return STMMAC_XDP_CONSUMED; |
| |
| tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; |
| } else { |
| struct page *page = virt_to_page(xdpf->data); |
| |
| dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + |
| xdpf->headroom; |
| dma_sync_single_for_device(priv->device, dma_addr, |
| xdpf->len, DMA_BIDIRECTIONAL); |
| |
| tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; |
| } |
| |
| tx_q->tx_skbuff_dma[entry].buf = dma_addr; |
| tx_q->tx_skbuff_dma[entry].map_as_page = false; |
| tx_q->tx_skbuff_dma[entry].len = xdpf->len; |
| tx_q->tx_skbuff_dma[entry].last_segment = true; |
| tx_q->tx_skbuff_dma[entry].is_jumbo = false; |
| |
| tx_q->xdpf[entry] = xdpf; |
| |
| stmmac_set_desc_addr(priv, tx_desc, dma_addr); |
| |
| stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, |
| true, priv->mode, true, true, |
| xdpf->len); |
| |
| tx_q->tx_count_frames++; |
| |
| if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) |
| set_ic = true; |
| else |
| set_ic = false; |
| |
| if (set_ic) { |
| tx_q->tx_count_frames = 0; |
| stmmac_set_tx_ic(priv, tx_desc); |
| u64_stats_update_begin(&txq_stats->q_syncp); |
| u64_stats_inc(&txq_stats->q.tx_set_ic_bit); |
| u64_stats_update_end(&txq_stats->q_syncp); |
| } |
| |
| stmmac_enable_dma_transmission(priv, priv->ioaddr); |
| |
| entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); |
| tx_q->cur_tx = entry; |
| |
| return STMMAC_XDP_TX; |
| } |
| |
| static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, |
| int cpu) |
| { |
| int index = cpu; |
| |
| if (unlikely(index < 0)) |
| index = 0; |
| |
| while (index >= priv->plat->tx_queues_to_use) |
| index -= priv->plat->tx_queues_to_use; |
| |
| return index; |
| } |
| |
| static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, |
| struct xdp_buff *xdp) |
| { |
| struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); |
| int cpu = smp_processor_id(); |
| struct netdev_queue *nq; |
| int queue; |
| int res; |
| |
| if (unlikely(!xdpf)) |
| return STMMAC_XDP_CONSUMED; |
| |
| queue = stmmac_xdp_get_tx_queue(priv, cpu); |
| nq = netdev_get_tx_queue(priv->dev, queue); |
| |
| __netif_tx_lock(nq, cpu); |
| /* Avoids TX time-out as we are sharing with slow path */ |
| txq_trans_cond_update(nq); |
| |
| res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); |
| if (res == STMMAC_XDP_TX) |
| stmmac_flush_tx_descriptors(priv, queue); |
| |
| __netif_tx_unlock(nq); |
| |
| return res; |
| } |
| |
| static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, |
| struct bpf_prog *prog, |
| struct xdp_buff *xdp) |
| { |
| u32 act; |
| int res; |
| |
| act = bpf_prog_run_xdp(prog, xdp); |
| switch (act) { |
| case XDP_PASS: |
| res = STMMAC_XDP_PASS; |
| break; |
| case XDP_TX: |
| res = stmmac_xdp_xmit_back(priv, xdp); |
| break; |
| case XDP_REDIRECT: |
| if (xdp_do_redirect(priv->dev, xdp, prog) < 0) |
| res = STMMAC_XDP_CONSUMED; |
| else |
| res = STMMAC_XDP_REDIRECT; |
| break; |
| default: |
| bpf_warn_invalid_xdp_action(priv->dev, prog, act); |
| fallthrough; |
| case XDP_ABORTED: |
| trace_xdp_exception(priv->dev, prog, act); |
| fallthrough; |
| case XDP_DROP: |
| res = STMMAC_XDP_CONSUMED; |
| break; |
| } |
| |
| return res; |
| } |
| |
| static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, |
| struct xdp_buff *xdp) |
| { |
| struct bpf_prog *prog; |
| int res; |
| |
| prog = READ_ONCE(priv->xdp_prog); |
| if (!prog) { |
| res = STMMAC_XDP_PASS; |
| goto out; |
| } |
| |
| res = __stmmac_xdp_run_prog(priv, prog, xdp); |
| out: |
| return ERR_PTR(-res); |
| } |
| |
| static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, |
| int xdp_status) |
| { |
| int cpu = smp_processor_id(); |
| int queue; |
| |
| queue = stmmac_xdp_get_tx_queue(priv, cpu); |
| |
| if (xdp_status & STMMAC_XDP_TX) |
| stmmac_tx_timer_arm(priv, queue); |
| |
| if (xdp_status & STMMAC_XDP_REDIRECT) |
| xdp_do_flush(); |
| } |
| |
| static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, |
| struct xdp_buff *xdp) |
| { |
| unsigned int metasize = xdp->data - xdp->data_meta; |
| unsigned int datasize = xdp->data_end - xdp->data; |
| struct sk_buff *skb; |
| |
| skb = __napi_alloc_skb(&ch->rxtx_napi, |
| xdp->data_end - xdp->data_hard_start, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| skb_reserve(skb, xdp->data - xdp->data_hard_start); |
| memcpy(__skb_put(skb, datasize), xdp->data, datasize); |
| if (metasize) |
| skb_metadata_set(skb, metasize); |
| |
| return skb; |
| } |
| |
| static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, |
| struct dma_desc *p, struct dma_desc *np, |
| struct xdp_buff *xdp) |
| { |
| struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| unsigned int len = xdp->data_end - xdp->data; |
| enum pkt_hash_types hash_type; |
| int coe = priv->hw->rx_csum; |
| struct sk_buff *skb; |
| u32 hash; |
| |
| skb = stmmac_construct_skb_zc(ch, xdp); |
| if (!skb) { |
| priv->xstats.rx_dropped++; |
| return; |
| } |
| |
| stmmac_get_rx_hwtstamp(priv, p, np, skb); |
| if (priv->hw->hw_vlan_en) |
| /* MAC level stripping. */ |
| stmmac_rx_hw_vlan(priv, priv->hw, p, skb); |
| else |
| /* Driver level stripping. */ |
| stmmac_rx_vlan(priv->dev, skb); |
| skb->protocol = eth_type_trans(skb, priv->dev); |
| |
| if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb)) |
| skb_checksum_none_assert(skb); |
| else |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) |
| skb_set_hash(skb, hash, hash_type); |
| |
| skb_record_rx_queue(skb, queue); |
| napi_gro_receive(&ch->rxtx_napi, skb); |
| |
| u64_stats_update_begin(&rxq_stats->napi_syncp); |
| u64_stats_inc(&rxq_stats->napi.rx_pkt_n); |
| u64_stats_add(&rxq_stats->napi.rx_bytes, len); |
| u64_stats_update_end(&rxq_stats->napi_syncp); |
| } |
| |
| static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) |
| { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| unsigned int entry = rx_q->dirty_rx; |
| struct dma_desc *rx_desc = NULL; |
| bool ret = true; |
| |
| budget = min(budget, stmmac_rx_dirty(priv, queue)); |
| |
| while (budget-- > 0 && entry != rx_q->cur_rx) { |
| struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; |
| dma_addr_t dma_addr; |
| bool use_rx_wd; |
| |
| if (!buf->xdp) { |
| buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); |
| if (!buf->xdp) { |
| ret = false; |
| break; |
| } |
| } |
| |
| if (priv->extend_desc) |
| rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); |
| else |
| rx_desc = rx_q->dma_rx + entry; |
| |
| dma_addr = xsk_buff_xdp_get_dma(buf->xdp); |
| stmmac_set_desc_addr(priv, rx_desc, dma_addr); |
| stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); |
| stmmac_refill_desc3(priv, rx_q, rx_desc); |
| |
| rx_q->rx_count_frames++; |
| rx_q->rx_count_frames += priv->rx_coal_frames[queue]; |
| if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) |
| rx_q->rx_count_frames = 0; |
| |
| use_rx_wd = !priv->rx_coal_frames[queue]; |
| use_rx_wd |= rx_q->rx_count_frames > 0; |
| if (!priv->use_riwt) |
| use_rx_wd = false; |
| |
| dma_wmb(); |
| stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); |
| |
| entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); |
| } |
| |
| if (rx_desc) { |
| rx_q->dirty_rx = entry; |
| rx_q->rx_tail_addr = rx_q->dma_rx_phy + |
| (rx_q->dirty_rx * sizeof(struct dma_desc)); |
| stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); |
| } |
| |
| return ret; |
| } |
| |
| static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp) |
| { |
| /* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used |
| * to represent incoming packet, whereas cb field in the same structure |
| * is used to store driver specific info. Thus, struct stmmac_xdp_buff |
| * is laid on top of xdp and cb fields of struct xdp_buff_xsk. |
| */ |
| return (struct stmmac_xdp_buff *)xdp; |
| } |
| |
| static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) |
| { |
| struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| unsigned int count = 0, error = 0, len = 0; |
| int dirty = stmmac_rx_dirty(priv, queue); |
| unsigned int next_entry = rx_q->cur_rx; |
| u32 rx_errors = 0, rx_dropped = 0; |
| unsigned int desc_size; |
| struct bpf_prog *prog; |
| bool failure = false; |
| int xdp_status = 0; |
| int status = 0; |
| |
| if (netif_msg_rx_status(priv)) { |
| void *rx_head; |
| |
| netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); |
| if (priv->extend_desc) { |
| rx_head = (void *)rx_q->dma_erx; |
| desc_size = sizeof(struct dma_extended_desc); |
| } else { |
| rx_head = (void *)rx_q->dma_rx; |
| desc_size = sizeof(struct dma_desc); |
| } |
| |
| stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, |
| rx_q->dma_rx_phy, desc_size); |
| } |
| while (count < limit) { |
| struct stmmac_rx_buffer *buf; |
| struct stmmac_xdp_buff *ctx; |
| unsigned int buf1_len = 0; |
| struct dma_desc *np, *p; |
| int entry; |
| int res; |
| |
| if (!count && rx_q->state_saved) { |
| error = rx_q->state.error; |
| len = rx_q->state.len; |
| } else { |
| rx_q->state_saved = false; |
| error = 0; |
| len = 0; |
| } |
| |
| if (count >= limit) |
| break; |
| |
| read_again: |
| buf1_len = 0; |
| entry = next_entry; |
| buf = &rx_q->buf_pool[entry]; |
| |
| if (dirty >= STMMAC_RX_FILL_BATCH) { |
| failure = failure || |
| !stmmac_rx_refill_zc(priv, queue, dirty); |
| dirty = 0; |
| } |
| |
| if (priv->extend_desc) |
| p = (struct dma_desc *)(rx_q->dma_erx + entry); |
| else |
| p = rx_q->dma_rx + entry; |
| |
| /* read the status of the incoming frame */ |
| status = stmmac_rx_status(priv, &priv->xstats, p); |
| /* check if managed by the DMA otherwise go ahead */ |
| if (unlikely(status & dma_own)) |
| break; |
| |
| /* Prefetch the next RX descriptor */ |
| rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, |
| priv->dma_conf.dma_rx_size); |
| next_entry = rx_q->cur_rx; |
| |
| if (priv->extend_desc) |
| np = (struct dma_desc *)(rx_q->dma_erx + next_entry); |
| else |
| np = rx_q->dma_rx + next_entry; |
| |
| prefetch(np); |
| |
| /* Ensure a valid XSK buffer before proceed */ |
| if (!buf->xdp) |
| break; |
| |
| if (priv->extend_desc) |
| stmmac_rx_extended_status(priv, &priv->xstats, |
| rx_q->dma_erx + entry); |
| if (unlikely(status == discard_frame)) { |
| xsk_buff_free(buf->xdp); |
| buf->xdp = NULL; |
| dirty++; |
| error = 1; |
| if (!priv->hwts_rx_en) |
| rx_errors++; |
| } |
| |
| if (unlikely(error && (status & rx_not_ls))) |
| goto read_again; |
| if (unlikely(error)) { |
| count++; |
| continue; |
| } |
| |
| /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ |
| if (likely(status & rx_not_ls)) { |
| xsk_buff_free(buf->xdp); |
| buf->xdp = NULL; |
| dirty++; |
| count++; |
| goto read_again; |
| } |
| |
| ctx = xsk_buff_to_stmmac_ctx(buf->xdp); |
| ctx->priv = priv; |
| ctx->desc = p; |
| ctx->ndesc = np; |
| |
| /* XDP ZC Frame only support primary buffers for now */ |
| buf1_len = stmmac_rx_buf1_len(priv, p, status, len); |
| len += buf1_len; |
| |
| /* ACS is disabled; strip manually. */ |
| if (likely(!(status & rx_not_ls))) { |
| buf1_len -= ETH_FCS_LEN; |
| len -= ETH_FCS_LEN; |
| } |
| |
| /* RX buffer is good and fit into a XSK pool buffer */ |
| buf->xdp->data_end = buf->xdp->data + buf1_len; |
| xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); |
| |
| prog = READ_ONCE(priv->xdp_prog); |
| res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); |
| |
| switch (res) { |
| case STMMAC_XDP_PASS: |
| stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); |
| xsk_buff_free(buf->xdp); |
| break; |
| case STMMAC_XDP_CONSUMED: |
| xsk_buff_free(buf->xdp); |
| rx_dropped++; |
| break; |
| case STMMAC_XDP_TX: |
| case STMMAC_XDP_REDIRECT: |
| xdp_status |= res; |
| break; |
| } |
| |
| buf->xdp = NULL; |
| dirty++; |
| count++; |
| } |
| |
| if (status & rx_not_ls) { |
| rx_q->state_saved = true; |
| rx_q->state.error = error; |
| rx_q->state.len = len; |
| } |
| |
| stmmac_finalize_xdp_rx(priv, xdp_status); |
| |
| u64_stats_update_begin(&rxq_stats->napi_syncp); |
| u64_stats_add(&rxq_stats->napi.rx_pkt_n, count); |
| u64_stats_update_end(&rxq_stats->napi_syncp); |
| |
| priv->xstats.rx_dropped += rx_dropped; |
| priv->xstats.rx_errors += rx_errors; |
| |
| if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { |
| if (failure || stmmac_rx_dirty(priv, queue) > 0) |
| xsk_set_rx_need_wakeup(rx_q->xsk_pool); |
| else |
| xsk_clear_rx_need_wakeup(rx_q->xsk_pool); |
| |
| return (int)count; |
| } |
| |
| return failure ? limit : (int)count; |
| } |
| |
| /** |
| * stmmac_rx - manage the receive process |
| * @priv: driver private structure |
| * @limit: napi bugget |
| * @queue: RX queue index. |
| * Description : this the function called by the napi poll method. |
| * It gets all the frames inside the ring. |
| */ |
| static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) |
| { |
| u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0; |
| struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue]; |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| unsigned int count = 0, error = 0, len = 0; |
| int status = 0, coe = priv->hw->rx_csum; |
| unsigned int next_entry = rx_q->cur_rx; |
| enum dma_data_direction dma_dir; |
| unsigned int desc_size; |
| struct sk_buff *skb = NULL; |
| struct stmmac_xdp_buff ctx; |
| int xdp_status = 0; |
| int buf_sz; |
| |
| dma_dir = page_pool_get_dma_dir(rx_q->page_pool); |
| buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; |
| limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit); |
| |
| if (netif_msg_rx_status(priv)) { |
| void *rx_head; |
| |
| netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); |
| if (priv->extend_desc) { |
| rx_head = (void *)rx_q->dma_erx; |
| desc_size = sizeof(struct dma_extended_desc); |
| } else { |
| rx_head = (void *)rx_q->dma_rx; |
| desc_size = sizeof(struct dma_desc); |
| } |
| |
| stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, |
| rx_q->dma_rx_phy, desc_size); |
| } |
| while (count < limit) { |
| unsigned int buf1_len = 0, buf2_len = 0; |
| enum pkt_hash_types hash_type; |
| struct stmmac_rx_buffer *buf; |
| struct dma_desc *np, *p; |
| int entry; |
| u32 hash; |
| |
| if (!count && rx_q->state_saved) { |
| skb = rx_q->state.skb; |
| error = rx_q->state.error; |
| len = rx_q->state.len; |
| } else { |
| rx_q->state_saved = false; |
| skb = NULL; |
| error = 0; |
| len = 0; |
| } |
| |
| read_again: |
| if (count >= limit) |
| break; |
| |
| buf1_len = 0; |
| buf2_len = 0; |
| entry = next_entry; |
| buf = &rx_q->buf_pool[entry]; |
| |
| if (priv->extend_desc) |
| p = (struct dma_desc *)(rx_q->dma_erx + entry); |
| else |
| p = rx_q->dma_rx + entry; |
| |
| /* read the status of the incoming frame */ |
| status = stmmac_rx_status(priv, &priv->xstats, p); |
| /* check if managed by the DMA otherwise go ahead */ |
| if (unlikely(status & dma_own)) |
| break; |
| |
| rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, |
| priv->dma_conf.dma_rx_size); |
| next_entry = rx_q->cur_rx; |
| |
| if (priv->extend_desc) |
| np = (struct dma_desc *)(rx_q->dma_erx + next_entry); |
| else |
| np = rx_q->dma_rx + next_entry; |
| |
| prefetch(np); |
| |
| if (priv->extend_desc) |
| stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry); |
| if (unlikely(status == discard_frame)) { |
| page_pool_recycle_direct(rx_q->page_pool, buf->page); |
| buf->page = NULL; |
| error = 1; |
| if (!priv->hwts_rx_en) |
| rx_errors++; |
| } |
| |
| if (unlikely(error && (status & rx_not_ls))) |
| goto read_again; |
| if (unlikely(error)) { |
| dev_kfree_skb(skb); |
| skb = NULL; |
| count++; |
| continue; |
| } |
| |
| /* Buffer is good. Go on. */ |
| |
| prefetch(page_address(buf->page) + buf->page_offset); |
| if (buf->sec_page) |
| prefetch(page_address(buf->sec_page)); |
| |
| buf1_len = stmmac_rx_buf1_len(priv, p, status, len); |
| len += buf1_len; |
| buf2_len = stmmac_rx_buf2_len(priv, p, status, len); |
| len += buf2_len; |
| |
| /* ACS is disabled; strip manually. */ |
| if (likely(!(status & rx_not_ls))) { |
| if (buf2_len) { |
| buf2_len -= ETH_FCS_LEN; |
| len -= ETH_FCS_LEN; |
| } else if (buf1_len) { |
| buf1_len -= ETH_FCS_LEN; |
| len -= ETH_FCS_LEN; |
| } |
| } |
| |
| if (!skb) { |
| unsigned int pre_len, sync_len; |
| |
| dma_sync_single_for_cpu(priv->device, buf->addr, |
| buf1_len, dma_dir); |
| |
| xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq); |
| xdp_prepare_buff(&ctx.xdp, page_address(buf->page), |
| buf->page_offset, buf1_len, true); |
| |
| pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - |
| buf->page_offset; |
| |
| ctx.priv = priv; |
| ctx.desc = p; |
| ctx.ndesc = np; |
| |
| skb = stmmac_xdp_run_prog(priv, &ctx.xdp); |
| /* Due xdp_adjust_tail: DMA sync for_device |
| * cover max len CPU touch |
| */ |
| sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start - |
| buf->page_offset; |
| sync_len = max(sync_len, pre_len); |
| |
| /* For Not XDP_PASS verdict */ |
| if (IS_ERR(skb)) { |
| unsigned int xdp_res = -PTR_ERR(skb); |
| |
| if (xdp_res & STMMAC_XDP_CONSUMED) { |
| page_pool_put_page(rx_q->page_pool, |
| virt_to_head_page(ctx.xdp.data), |
| sync_len, true); |
| buf->page = NULL; |
| rx_dropped++; |
| |
| /* Clear skb as it was set as |
| * status by XDP program. |
| */ |
| skb = NULL; |
| |
| if (unlikely((status & rx_not_ls))) |
| goto read_again; |
| |
| count++; |
| continue; |
| } else if (xdp_res & (STMMAC_XDP_TX | |
| STMMAC_XDP_REDIRECT)) { |
| xdp_status |= xdp_res; |
| buf->page = NULL; |
| skb = NULL; |
| count++; |
| continue; |
| } |
| } |
| } |
| |
| if (!skb) { |
| /* XDP program may expand or reduce tail */ |
| buf1_len = ctx.xdp.data_end - ctx.xdp.data; |
| |
| skb = napi_alloc_skb(&ch->rx_napi, buf1_len); |
| if (!skb) { |
| rx_dropped++; |
| count++; |
| goto drain_data; |
| } |
| |
| /* XDP program may adjust header */ |
| skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len); |
| skb_put(skb, buf1_len); |
| |
| /* Data payload copied into SKB, page ready for recycle */ |
| page_pool_recycle_direct(rx_q->page_pool, buf->page); |
| buf->page = NULL; |
| } else if (buf1_len) { |
| dma_sync_single_for_cpu(priv->device, buf->addr, |
| buf1_len, dma_dir); |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, |
| buf->page, buf->page_offset, buf1_len, |
| priv->dma_conf.dma_buf_sz); |
| |
| /* Data payload appended into SKB */ |
| skb_mark_for_recycle(skb); |
| buf->page = NULL; |
| } |
| |
| if (buf2_len) { |
| dma_sync_single_for_cpu(priv->device, buf->sec_addr, |
| buf2_len, dma_dir); |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, |
| buf->sec_page, 0, buf2_len, |
| priv->dma_conf.dma_buf_sz); |
| |
| /* Data payload appended into SKB */ |
| skb_mark_for_recycle(skb); |
| buf->sec_page = NULL; |
| } |
| |
| drain_data: |
| if (likely(status & rx_not_ls)) |
| goto read_again; |
| if (!skb) |
| continue; |
| |
| /* Got entire packet into SKB. Finish it. */ |
| |
| stmmac_get_rx_hwtstamp(priv, p, np, skb); |
| |
| if (priv->hw->hw_vlan_en) |
| /* MAC level stripping. */ |
| stmmac_rx_hw_vlan(priv, priv->hw, p, skb); |
| else |
| /* Driver level stripping. */ |
| stmmac_rx_vlan(priv->dev, skb); |
| |
| skb->protocol = eth_type_trans(skb, priv->dev); |
| |
| if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb)) |
| skb_checksum_none_assert(skb); |
| else |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) |
| skb_set_hash(skb, hash, hash_type); |
| |
| skb_record_rx_queue(skb, queue); |
| napi_gro_receive(&ch->rx_napi, skb); |
| skb = NULL; |
| |
| rx_packets++; |
| rx_bytes += len; |
| count++; |
| } |
| |
| if (status & rx_not_ls || skb) { |
| rx_q->state_saved = true; |
| rx_q->state.skb = skb; |
| rx_q->state.error = error; |
| rx_q->state.len = len; |
| } |
| |
| stmmac_finalize_xdp_rx(priv, xdp_status); |
| |
| stmmac_rx_refill(priv, queue); |
| |
| u64_stats_update_begin(&rxq_stats->napi_syncp); |
| u64_stats_add(&rxq_stats->napi.rx_packets, rx_packets); |
| u64_stats_add(&rxq_stats->napi.rx_bytes, rx_bytes); |
| u64_stats_add(&rxq_stats->napi.rx_pkt_n, count); |
| u64_stats_update_end(&rxq_stats->napi_syncp); |
| |
| priv->xstats.rx_dropped += rx_dropped; |
| priv->xstats.rx_errors += rx_errors; |
| |
| return count; |
| } |
| |
| static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) |
| { |
| struct stmmac_channel *ch = |
| container_of(napi, struct stmmac_channel, rx_napi); |
| struct stmmac_priv *priv = ch->priv_data; |
| struct stmmac_rxq_stats *rxq_stats; |
| u32 chan = ch->index; |
| int work_done; |
| |
| rxq_stats = &priv->xstats.rxq_stats[chan]; |
| u64_stats_update_begin(&rxq_stats->napi_syncp); |
| u64_stats_inc(&rxq_stats->napi.poll); |
| u64_stats_update_end(&rxq_stats->napi_syncp); |
| |
| work_done = stmmac_rx(priv, budget, chan); |
| if (work_done < budget && napi_complete_done(napi, work_done)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| return work_done; |
| } |
| |
| static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) |
| { |
| struct stmmac_channel *ch = |
| container_of(napi, struct stmmac_channel, tx_napi); |
| struct stmmac_priv *priv = ch->priv_data; |
| struct stmmac_txq_stats *txq_stats; |
| bool pending_packets = false; |
| u32 chan = ch->index; |
| int work_done; |
| |
| txq_stats = &priv->xstats.txq_stats[chan]; |
| u64_stats_update_begin(&txq_stats->napi_syncp); |
| u64_stats_inc(&txq_stats->napi.poll); |
| u64_stats_update_end(&txq_stats->napi_syncp); |
| |
| work_done = stmmac_tx_clean(priv, budget, chan, &pending_packets); |
| work_done = min(work_done, budget); |
| |
| if (work_done < budget && napi_complete_done(napi, work_done)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| /* TX still have packet to handle, check if we need to arm tx timer */ |
| if (pending_packets) |
| stmmac_tx_timer_arm(priv, chan); |
| |
| return work_done; |
| } |
| |
| static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) |
| { |
| struct stmmac_channel *ch = |
| container_of(napi, struct stmmac_channel, rxtx_napi); |
| struct stmmac_priv *priv = ch->priv_data; |
| bool tx_pending_packets = false; |
| int rx_done, tx_done, rxtx_done; |
| struct stmmac_rxq_stats *rxq_stats; |
| struct stmmac_txq_stats *txq_stats; |
| u32 chan = ch->index; |
| |
| rxq_stats = &priv->xstats.rxq_stats[chan]; |
| u64_stats_update_begin(&rxq_stats->napi_syncp); |
| u64_stats_inc(&rxq_stats->napi.poll); |
| u64_stats_update_end(&rxq_stats->napi_syncp); |
| |
| txq_stats = &priv->xstats.txq_stats[chan]; |
| u64_stats_update_begin(&txq_stats->napi_syncp); |
| u64_stats_inc(&txq_stats->napi.poll); |
| u64_stats_update_end(&txq_stats->napi_syncp); |
| |
| tx_done = stmmac_tx_clean(priv, budget, chan, &tx_pending_packets); |
| tx_done = min(tx_done, budget); |
| |
| rx_done = stmmac_rx_zc(priv, budget, chan); |
| |
| rxtx_done = max(tx_done, rx_done); |
| |
| /* If either TX or RX work is not complete, return budget |
| * and keep pooling |
| */ |
| if (rxtx_done >= budget) |
| return budget; |
| |
| /* all work done, exit the polling mode */ |
| if (napi_complete_done(napi, rxtx_done)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| /* Both RX and TX work done are compelte, |
| * so enable both RX & TX IRQs. |
| */ |
| stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| /* TX still have packet to handle, check if we need to arm tx timer */ |
| if (tx_pending_packets) |
| stmmac_tx_timer_arm(priv, chan); |
| |
| return min(rxtx_done, budget - 1); |
| } |
| |
| /** |
| * stmmac_tx_timeout |
| * @dev : Pointer to net device structure |
| * @txqueue: the index of the hanging transmit queue |
| * Description: this function is called when a packet transmission fails to |
| * complete within a reasonable time. The driver will mark the error in the |
| * netdev structure and arrange for the device to be reset to a sane state |
| * in order to transmit a new packet. |
| */ |
| static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| stmmac_global_err(priv); |
| } |
| |
| /** |
| * stmmac_set_rx_mode - entry point for multicast addressing |
| * @dev : pointer to the device structure |
| * Description: |
| * This function is a driver entry point which gets called by the kernel |
| * whenever multicast addresses must be enabled/disabled. |
| * Return value: |
| * void. |
| */ |
| static void stmmac_set_rx_mode(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| stmmac_set_filter(priv, priv->hw, dev); |
| } |
| |
| /** |
| * stmmac_change_mtu - entry point to change MTU size for the device. |
| * @dev : device pointer. |
| * @new_mtu : the new MTU size for the device. |
| * Description: the Maximum Transfer Unit (MTU) is used by the network layer |
| * to drive packet transmission. Ethernet has an MTU of 1500 octets |
| * (ETH_DATA_LEN). This value can be changed with ifconfig. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| static int stmmac_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int txfifosz = priv->plat->tx_fifo_size; |
| struct stmmac_dma_conf *dma_conf; |
| const int mtu = new_mtu; |
| int ret; |
| |
| if (txfifosz == 0) |
| txfifosz = priv->dma_cap.tx_fifo_size; |
| |
| txfifosz /= priv->plat->tx_queues_to_use; |
| |
| if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { |
| netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); |
| return -EINVAL; |
| } |
| |
| new_mtu = STMMAC_ALIGN(new_mtu); |
| |
| /* If condition true, FIFO is too small or MTU too large */ |
| if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) |
| return -EINVAL; |
| |
| if (netif_running(dev)) { |
| netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); |
| /* Try to allocate the new DMA conf with the new mtu */ |
| dma_conf = stmmac_setup_dma_desc(priv, mtu); |
| if (IS_ERR(dma_conf)) { |
| netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", |
| mtu); |
| return PTR_ERR(dma_conf); |
| } |
| |
| stmmac_release(dev); |
| |
| ret = __stmmac_open(dev, dma_conf); |
| if (ret) { |
| free_dma_desc_resources(priv, dma_conf); |
| kfree(dma_conf); |
| netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); |
| return ret; |
| } |
| |
| kfree(dma_conf); |
| |
| stmmac_set_rx_mode(dev); |
| } |
| |
| dev->mtu = mtu; |
| netdev_update_features(dev); |
| |
| return 0; |
| } |
| |
| static netdev_features_t stmmac_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) |
| features &= ~NETIF_F_RXCSUM; |
| |
| if (!priv->plat->tx_coe) |
| features &= ~NETIF_F_CSUM_MASK; |
| |
| /* Some GMAC devices have a bugged Jumbo frame support that |
| * needs to have the Tx COE disabled for oversized frames |
| * (due to limited buffer sizes). In this case we disable |
| * the TX csum insertion in the TDES and not use SF. |
| */ |
| if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) |
| features &= ~NETIF_F_CSUM_MASK; |
| |
| /* Disable tso if asked by ethtool */ |
| if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) { |
| if (features & NETIF_F_TSO) |
| priv->tso = true; |
| else |
| priv->tso = false; |
| } |
| |
| return features; |
| } |
| |
| static int stmmac_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct stmmac_priv *priv = netdev_priv(netdev); |
| |
| /* Keep the COE Type in case of csum is supporting */ |
| if (features & NETIF_F_RXCSUM) |
| priv->hw->rx_csum = priv->plat->rx_coe; |
| else |
| priv->hw->rx_csum = 0; |
| /* No check needed because rx_coe has been set before and it will be |
| * fixed in case of issue. |
| */ |
| stmmac_rx_ipc(priv, priv->hw); |
| |
| if (priv->sph_cap) { |
| bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; |
| u32 chan; |
| |
| for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) |
| stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); |
| } |
| |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) |
| priv->hw->hw_vlan_en = true; |
| else |
| priv->hw->hw_vlan_en = false; |
| |
| stmmac_set_hw_vlan_mode(priv, priv->hw); |
| |
| return 0; |
| } |
| |
| static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) |
| { |
| struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; |
| enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; |
| enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; |
| bool *hs_enable = &fpe_cfg->hs_enable; |
| |
| if (status == FPE_EVENT_UNKNOWN || !*hs_enable) |
| return; |
| |
| /* If LP has sent verify mPacket, LP is FPE capable */ |
| if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { |
| if (*lp_state < FPE_STATE_CAPABLE) |
| *lp_state = FPE_STATE_CAPABLE; |
| |
| /* If user has requested FPE enable, quickly response */ |
| if (*hs_enable) |
| stmmac_fpe_send_mpacket(priv, priv->ioaddr, |
| fpe_cfg, |
| MPACKET_RESPONSE); |
| } |
| |
| /* If Local has sent verify mPacket, Local is FPE capable */ |
| if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { |
| if (*lo_state < FPE_STATE_CAPABLE) |
| *lo_state = FPE_STATE_CAPABLE; |
| } |
| |
| /* If LP has sent response mPacket, LP is entering FPE ON */ |
| if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) |
| *lp_state = FPE_STATE_ENTERING_ON; |
| |
| /* If Local has sent response mPacket, Local is entering FPE ON */ |
| if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) |
| *lo_state = FPE_STATE_ENTERING_ON; |
| |
| if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && |
| !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && |
| priv->fpe_wq) { |
| queue_work(priv->fpe_wq, &priv->fpe_task); |
| } |
| } |
| |
| static void stmmac_common_interrupt(struct stmmac_priv *priv) |
| { |
| u32 rx_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| u32 queues_count; |
| u32 queue; |
| bool xmac; |
| |
| xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; |
| queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; |
| |
| if (priv->irq_wake) |
| pm_wakeup_event(priv->device, 0); |
| |
| if (priv->dma_cap.estsel) |
| stmmac_est_irq_status(priv, priv, priv->dev, |
| &priv->xstats, tx_cnt); |
| |
| if (priv->dma_cap.fpesel) { |
| int status = stmmac_fpe_irq_status(priv, priv->ioaddr, |
| priv->dev); |
| |
| stmmac_fpe_event_status(priv, status); |
| } |
| |
| /* To handle GMAC own interrupts */ |
| if ((priv->plat->has_gmac) || xmac) { |
| int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); |
| |
| if (unlikely(status)) { |
| /* For LPI we need to save the tx status */ |
| if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) |
| priv->tx_path_in_lpi_mode = true; |
| if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) |
| priv->tx_path_in_lpi_mode = false; |
| } |
| |
| for (queue = 0; queue < queues_count; queue++) |
| stmmac_host_mtl_irq_status(priv, priv->hw, queue); |
| |
| /* PCS link status */ |
| if (priv->hw->pcs && |
| !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) { |
| if (priv->xstats.pcs_link) |
| netif_carrier_on(priv->dev); |
| else |
| netif_carrier_off(priv->dev); |
| } |
| |
| stmmac_timestamp_interrupt(priv, priv); |
| } |
| } |
| |
| /** |
| * stmmac_interrupt - main ISR |
| * @irq: interrupt number. |
| * @dev_id: to pass the net device pointer. |
| * Description: this is the main driver interrupt service routine. |
| * It can call: |
| * o DMA service routine (to manage incoming frame reception and transmission |
| * status) |
| * o Core interrupts to manage: remote wake-up, management counter, LPI |
| * interrupts. |
| */ |
| static irqreturn_t stmmac_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| /* Check if adapter is up */ |
| if (test_bit(STMMAC_DOWN, &priv->state)) |
| return IRQ_HANDLED; |
| |
| /* Check ASP error if it isn't delivered via an individual IRQ */ |
| if (priv->sfty_irq <= 0 && stmmac_safety_feat_interrupt(priv)) |
| return IRQ_HANDLED; |
| |
| /* To handle Common interrupts */ |
| stmmac_common_interrupt(priv); |
| |
| /* To handle DMA interrupts */ |
| stmmac_dma_interrupt(priv); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| /* Check if adapter is up */ |
| if (test_bit(STMMAC_DOWN, &priv->state)) |
| return IRQ_HANDLED; |
| |
| /* To handle Common interrupts */ |
| stmmac_common_interrupt(priv); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| /* Check if adapter is up */ |
| if (test_bit(STMMAC_DOWN, &priv->state)) |
| return IRQ_HANDLED; |
| |
| /* Check if a fatal error happened */ |
| stmmac_safety_feat_interrupt(priv); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) |
| { |
| struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; |
| struct stmmac_dma_conf *dma_conf; |
| int chan = tx_q->queue_index; |
| struct stmmac_priv *priv; |
| int status; |
| |
| dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); |
| priv = container_of(dma_conf, struct stmmac_priv, dma_conf); |
| |
| /* Check if adapter is up */ |
| if (test_bit(STMMAC_DOWN, &priv->state)) |
| return IRQ_HANDLED; |
| |
| status = stmmac_napi_check(priv, chan, DMA_DIR_TX); |
| |
| if (unlikely(status & tx_hard_error_bump_tc)) { |
| /* Try to bump up the dma threshold on this failure */ |
| stmmac_bump_dma_threshold(priv, chan); |
| } else if (unlikely(status == tx_hard_error)) { |
| stmmac_tx_err(priv, chan); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) |
| { |
| struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; |
| struct stmmac_dma_conf *dma_conf; |
| int chan = rx_q->queue_index; |
| struct stmmac_priv *priv; |
| |
| dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); |
| priv = container_of(dma_conf, struct stmmac_priv, dma_conf); |
| |
| /* Check if adapter is up */ |
| if (test_bit(STMMAC_DOWN, &priv->state)) |
| return IRQ_HANDLED; |
| |
| stmmac_napi_check(priv, chan, DMA_DIR_RX); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * stmmac_ioctl - Entry point for the Ioctl |
| * @dev: Device pointer. |
| * @rq: An IOCTL specefic structure, that can contain a pointer to |
| * a proprietary structure used to pass information to the driver. |
| * @cmd: IOCTL command |
| * Description: |
| * Currently it supports the phy_mii_ioctl(...) and HW time stamping. |
| */ |
| static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct stmmac_priv *priv = netdev_priv (dev); |
| int ret = -EOPNOTSUPP; |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| ret = phylink_mii_ioctl(priv->phylink, rq, cmd); |
| break; |
| case SIOCSHWTSTAMP: |
| ret = stmmac_hwtstamp_set(dev, rq); |
| break; |
| case SIOCGHWTSTAMP: |
| ret = stmmac_hwtstamp_get(dev, rq); |
| break; |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, |
| void *cb_priv) |
| { |
| struct stmmac_priv *priv = cb_priv; |
| int ret = -EOPNOTSUPP; |
| |
| if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) |
| return ret; |
| |
| __stmmac_disable_all_queues(priv); |
| |
| switch (type) { |
| case TC_SETUP_CLSU32: |
| ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); |
| break; |
| case TC_SETUP_CLSFLOWER: |
| ret = stmmac_tc_setup_cls(priv, priv, type_data); |
| break; |
| default: |
| break; |
| } |
| |
| stmmac_enable_all_queues(priv); |
| return ret; |
| } |
| |
| static LIST_HEAD(stmmac_block_cb_list); |
| |
| static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, |
| void *type_data) |
| { |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| |
| switch (type) { |
| case TC_QUERY_CAPS: |
| return stmmac_tc_query_caps(priv, priv, type_data); |
| case TC_SETUP_BLOCK: |
| return flow_block_cb_setup_simple(type_data, |
| &stmmac_block_cb_list, |
| stmmac_setup_tc_block_cb, |
| priv, priv, true); |
| case TC_SETUP_QDISC_CBS: |
| return stmmac_tc_setup_cbs(priv, priv, type_data); |
| case TC_SETUP_QDISC_TAPRIO: |
| return stmmac_tc_setup_taprio(priv, priv, type_data); |
| case TC_SETUP_QDISC_ETF: |
| return stmmac_tc_setup_etf(priv, priv, type_data); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, |
| struct net_device *sb_dev) |
| { |
| int gso = skb_shinfo(skb)->gso_type; |
| |
| if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { |
| /* |
| * There is no way to determine the number of TSO/USO |
| * capable Queues. Let's use always the Queue 0 |
| * because if TSO/USO is supported then at least this |
| * one will be capable. |
| */ |
| return 0; |
| } |
| |
| return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; |
| } |
| |
| static int stmmac_set_mac_address(struct net_device *ndev, void *addr) |
| { |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| int ret = 0; |
| |
| ret = pm_runtime_resume_and_get(priv->device); |
| if (ret < 0) |
| return ret; |
| |
| ret = eth_mac_addr(ndev, addr); |
| if (ret) |
| goto set_mac_error; |
| |
| stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); |
| |
| set_mac_error: |
| pm_runtime_put(priv->device); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static struct dentry *stmmac_fs_dir; |
| |
| static void sysfs_display_ring(void *head, int size, int extend_desc, |
| struct seq_file *seq, dma_addr_t dma_phy_addr) |
| { |
| struct dma_extended_desc *ep = (struct dma_extended_desc *)head; |
| struct dma_desc *p = (struct dma_desc *)head; |
| unsigned int desc_size; |
| dma_addr_t dma_addr; |
| int i; |
| |
| desc_size = extend_desc ? sizeof(*ep) : sizeof(*p); |
| for (i = 0; i < size; i++) { |
| dma_addr = dma_phy_addr + i * desc_size; |
| seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", |
| i, &dma_addr, |
| le32_to_cpu(p->des0), le32_to_cpu(p->des1), |
| le32_to_cpu(p->des2), le32_to_cpu(p->des3)); |
| if (extend_desc) |
| p = &(++ep)->basic; |
| else |
| p++; |
| } |
| } |
| |
| static int stmmac_rings_status_show(struct seq_file *seq, void *v) |
| { |
| struct net_device *dev = seq->private; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 rx_count = priv->plat->rx_queues_to_use; |
| u32 tx_count = priv->plat->tx_queues_to_use; |
| u32 queue; |
| |
| if ((dev->flags & IFF_UP) == 0) |
| return 0; |
| |
| for (queue = 0; queue < rx_count; queue++) { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| |
| seq_printf(seq, "RX Queue %d:\n", queue); |
| |
| if (priv->extend_desc) { |
| seq_printf(seq, "Extended descriptor ring:\n"); |
| sysfs_display_ring((void *)rx_q->dma_erx, |
| priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); |
| } else { |
| seq_printf(seq, "Descriptor ring:\n"); |
| sysfs_display_ring((void *)rx_q->dma_rx, |
| priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); |
| } |
| } |
| |
| for (queue = 0; queue < tx_count; queue++) { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| |
| seq_printf(seq, "TX Queue %d:\n", queue); |
| |
| if (priv->extend_desc) { |
| seq_printf(seq, "Extended descriptor ring:\n"); |
| sysfs_display_ring((void *)tx_q->dma_etx, |
| priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); |
| } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { |
| seq_printf(seq, "Descriptor ring:\n"); |
| sysfs_display_ring((void *)tx_q->dma_tx, |
| priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); |
| } |
| } |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); |
| |
| static int stmmac_dma_cap_show(struct seq_file *seq, void *v) |
| { |
| static const char * const dwxgmac_timestamp_source[] = { |
| "None", |
| "Internal", |
| "External", |
| "Both", |
| }; |
| static const char * const dwxgmac_safety_feature_desc[] = { |
| "No", |
| "All Safety Features with ECC and Parity", |
| "All Safety Features without ECC or Parity", |
| "All Safety Features with Parity Only", |
| "ECC Only", |
| "UNDEFINED", |
| "UNDEFINED", |
| "UNDEFINED", |
| }; |
| struct net_device *dev = seq->private; |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| if (!priv->hw_cap_support) { |
| seq_printf(seq, "DMA HW features not supported\n"); |
| return 0; |
| } |
| |
| seq_printf(seq, "==============================\n"); |
| seq_printf(seq, "\tDMA HW features\n"); |
| seq_printf(seq, "==============================\n"); |
| |
| seq_printf(seq, "\t10/100 Mbps: %s\n", |
| (priv->dma_cap.mbps_10_100) ? "Y" : "N"); |
| seq_printf(seq, "\t1000 Mbps: %s\n", |
| (priv->dma_cap.mbps_1000) ? "Y" : "N"); |
| seq_printf(seq, "\tHalf duplex: %s\n", |
| (priv->dma_cap.half_duplex) ? "Y" : "N"); |
| if (priv->plat->has_xgmac) { |
| seq_printf(seq, |
| "\tNumber of Additional MAC address registers: %d\n", |
| priv->dma_cap.multi_addr); |
| } else { |
| seq_printf(seq, "\tHash Filter: %s\n", |
| (priv->dma_cap.hash_filter) ? "Y" : "N"); |
| seq_printf(seq, "\tMultiple MAC address registers: %s\n", |
| (priv->dma_cap.multi_addr) ? "Y" : "N"); |
| } |
| seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", |
| (priv->dma_cap.pcs) ? "Y" : "N"); |
| seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", |
| (priv->dma_cap.sma_mdio) ? "Y" : "N"); |
| seq_printf(seq, "\tPMT Remote wake up: %s\n", |
| (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); |
| seq_printf(seq, "\tPMT Magic Frame: %s\n", |
| (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); |
| seq_printf(seq, "\tRMON module: %s\n", |
| (priv->dma_cap.rmon) ? "Y" : "N"); |
| seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", |
| (priv->dma_cap.time_stamp) ? "Y" : "N"); |
| seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", |
| (priv->dma_cap.atime_stamp) ? "Y" : "N"); |
| if (priv->plat->has_xgmac) |
| seq_printf(seq, "\tTimestamp System Time Source: %s\n", |
| dwxgmac_timestamp_source[priv->dma_cap.tssrc]); |
| seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", |
| (priv->dma_cap.eee) ? "Y" : "N"); |
| seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); |
| seq_printf(seq, "\tChecksum Offload in TX: %s\n", |
| (priv->dma_cap.tx_coe) ? "Y" : "N"); |
| if (priv->synopsys_id >= DWMAC_CORE_4_00 || |
| priv->plat->has_xgmac) { |
| seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", |
| (priv->dma_cap.rx_coe) ? "Y" : "N"); |
| } else { |
| seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", |
| (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); |
| seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", |
| (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); |
| seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", |
| (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); |
| } |
| seq_printf(seq, "\tNumber of Additional RX channel: %d\n", |
| priv->dma_cap.number_rx_channel); |
| seq_printf(seq, "\tNumber of Additional TX channel: %d\n", |
| priv->dma_cap.number_tx_channel); |
| seq_printf(seq, "\tNumber of Additional RX queues: %d\n", |
| priv->dma_cap.number_rx_queues); |
| seq_printf(seq, "\tNumber of Additional TX queues: %d\n", |
| priv->dma_cap.number_tx_queues); |
| seq_printf(seq, "\tEnhanced descriptors: %s\n", |
| (priv->dma_cap.enh_desc) ? "Y" : "N"); |
| seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); |
| seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); |
| seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ? |
| (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0); |
| seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); |
| seq_printf(seq, "\tNumber of PPS Outputs: %d\n", |
| priv->dma_cap.pps_out_num); |
| seq_printf(seq, "\tSafety Features: %s\n", |
| dwxgmac_safety_feature_desc[priv->dma_cap.asp]); |
| seq_printf(seq, "\tFlexible RX Parser: %s\n", |
| priv->dma_cap.frpsel ? "Y" : "N"); |
| seq_printf(seq, "\tEnhanced Addressing: %d\n", |
| priv->dma_cap.host_dma_width); |
| seq_printf(seq, "\tReceive Side Scaling: %s\n", |
| priv->dma_cap.rssen ? "Y" : "N"); |
| seq_printf(seq, "\tVLAN Hash Filtering: %s\n", |
| priv->dma_cap.vlhash ? "Y" : "N"); |
| seq_printf(seq, "\tSplit Header: %s\n", |
| priv->dma_cap.sphen ? "Y" : "N"); |
| seq_printf(seq, "\tVLAN TX Insertion: %s\n", |
| priv->dma_cap.vlins ? "Y" : "N"); |
| seq_printf(seq, "\tDouble VLAN: %s\n", |
| priv->dma_cap.dvlan ? "Y" : "N"); |
| seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", |
| priv->dma_cap.l3l4fnum); |
| seq_printf(seq, "\tARP Offloading: %s\n", |
| priv->dma_cap.arpoffsel ? "Y" : "N"); |
| seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", |
| priv->dma_cap.estsel ? "Y" : "N"); |
| seq_printf(seq, "\tFrame Preemption (FPE): %s\n", |
| priv->dma_cap.fpesel ? "Y" : "N"); |
| seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", |
| priv->dma_cap.tbssel ? "Y" : "N"); |
| seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n", |
| priv->dma_cap.tbs_ch_num); |
| seq_printf(seq, "\tPer-Stream Filtering: %s\n", |
| priv->dma_cap.sgfsel ? "Y" : "N"); |
| seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n", |
| BIT(priv->dma_cap.ttsfd) >> 1); |
| seq_printf(seq, "\tNumber of Traffic Classes: %d\n", |
| priv->dma_cap.numtc); |
| seq_printf(seq, "\tDCB Feature: %s\n", |
| priv->dma_cap.dcben ? "Y" : "N"); |
| seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n", |
| priv->dma_cap.advthword ? "Y" : "N"); |
| seq_printf(seq, "\tPTP Offload: %s\n", |
| priv->dma_cap.ptoen ? "Y" : "N"); |
| seq_printf(seq, "\tOne-Step Timestamping: %s\n", |
| priv->dma_cap.osten ? "Y" : "N"); |
| seq_printf(seq, "\tPriority-Based Flow Control: %s\n", |
| priv->dma_cap.pfcen ? "Y" : "N"); |
| seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n", |
| BIT(priv->dma_cap.frpes) << 6); |
| seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n", |
| BIT(priv->dma_cap.frpbs) << 6); |
| seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n", |
| priv->dma_cap.frppipe_num); |
| seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n", |
| priv->dma_cap.nrvf_num ? |
| (BIT(priv->dma_cap.nrvf_num) << 1) : 0); |
| seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n", |
| priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0); |
| seq_printf(seq, "\tDepth of GCL: %lu\n", |
| priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0); |
| seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n", |
| priv->dma_cap.cbtisel ? "Y" : "N"); |
| seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n", |
| priv->dma_cap.aux_snapshot_n); |
| seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n", |
| priv->dma_cap.pou_ost_en ? "Y" : "N"); |
| seq_printf(seq, "\tEnhanced DMA: %s\n", |
| priv->dma_cap.edma ? "Y" : "N"); |
| seq_printf(seq, "\tDifferent Descriptor Cache: %s\n", |
| priv->dma_cap.ediffc ? "Y" : "N"); |
| seq_printf(seq, "\tVxLAN/NVGRE: %s\n", |
| priv->dma_cap.vxn ? "Y" : "N"); |
| seq_printf(seq, "\tDebug Memory Interface: %s\n", |
| priv->dma_cap.dbgmem ? "Y" : "N"); |
| seq_printf(seq, "\tNumber of Policing Counters: %lu\n", |
| priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0); |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); |
| |
| /* Use network device events to rename debugfs file entries. |
| */ |
| static int stmmac_device_event(struct notifier_block *unused, |
| unsigned long event, void *ptr) |
| { |
| struct net_device *dev = netdev_notifier_info_to_dev(ptr); |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| if (dev->netdev_ops != &stmmac_netdev_ops) |
| goto done; |
| |
| switch (event) { |
| case NETDEV_CHANGENAME: |
| if (priv->dbgfs_dir) |
| priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, |
| priv->dbgfs_dir, |
| stmmac_fs_dir, |
| dev->name); |
| break; |
| } |
| done: |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block stmmac_notifier = { |
| .notifier_call = stmmac_device_event, |
| }; |
| |
| static void stmmac_init_fs(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| rtnl_lock(); |
| |
| /* Create per netdev entries */ |
| priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); |
| |
| /* Entry to report DMA RX/TX rings */ |
| debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, |
| &stmmac_rings_status_fops); |
| |
| /* Entry to report the DMA HW features */ |
| debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, |
| &stmmac_dma_cap_fops); |
| |
| rtnl_unlock(); |
| } |
| |
| static void stmmac_exit_fs(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| debugfs_remove_recursive(priv->dbgfs_dir); |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| static u32 stmmac_vid_crc32_le(__le16 vid_le) |
| { |
| unsigned char *data = (unsigned char *)&vid_le; |
| unsigned char data_byte = 0; |
| u32 crc = ~0x0; |
| u32 temp = 0; |
| int i, bits; |
| |
| bits = get_bitmask_order(VLAN_VID_MASK); |
| for (i = 0; i < bits; i++) { |
| if ((i % 8) == 0) |
| data_byte = data[i / 8]; |
| |
| temp = ((crc & 1) ^ data_byte) & 1; |
| crc >>= 1; |
| data_byte >>= 1; |
| |
| if (temp) |
| crc ^= 0xedb88320; |
| } |
| |
| return crc; |
| } |
| |
| static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) |
| { |
| u32 crc, hash = 0; |
| __le16 pmatch = 0; |
| int count = 0; |
| u16 vid = 0; |
| |
| for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { |
| __le16 vid_le = cpu_to_le16(vid); |
| crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; |
| hash |= (1 << crc); |
| count++; |
| } |
| |
| if (!priv->dma_cap.vlhash) { |
| if (count > 2) /* VID = 0 always passes filter */ |
| return -EOPNOTSUPP; |
| |
| pmatch = cpu_to_le16(vid); |
| hash = 0; |
| } |
| |
| return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); |
| } |
| |
| static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) |
| { |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| bool is_double = false; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(priv->device); |
| if (ret < 0) |
| return ret; |
| |
| if (be16_to_cpu(proto) == ETH_P_8021AD) |
| is_double = true; |
| |
| set_bit(vid, priv->active_vlans); |
| ret = stmmac_vlan_update(priv, is_double); |
| if (ret) { |
| clear_bit(vid, priv->active_vlans); |
| goto err_pm_put; |
| } |
| |
| if (priv->hw->num_vlan) { |
| ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); |
| if (ret) |
| goto err_pm_put; |
| } |
| err_pm_put: |
| pm_runtime_put(priv->device); |
| |
| return ret; |
| } |
| |
| static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) |
| { |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| bool is_double = false; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(priv->device); |
| if (ret < 0) |
| return ret; |
| |
| if (be16_to_cpu(proto) == ETH_P_8021AD) |
| is_double = true; |
| |
| clear_bit(vid, priv->active_vlans); |
| |
| if (priv->hw->num_vlan) { |
| ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); |
| if (ret) |
| goto del_vlan_error; |
| } |
| |
| ret = stmmac_vlan_update(priv, is_double); |
| |
| del_vlan_error: |
| pm_runtime_put(priv->device); |
| |
| return ret; |
| } |
| |
| static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| |
| switch (bpf->command) { |
| case XDP_SETUP_PROG: |
| return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); |
| case XDP_SETUP_XSK_POOL: |
| return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, |
| bpf->xsk.queue_id); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, |
| struct xdp_frame **frames, u32 flags) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int cpu = smp_processor_id(); |
| struct netdev_queue *nq; |
| int i, nxmit = 0; |
| int queue; |
| |
| if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) |
| return -ENETDOWN; |
| |
| if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) |
| return -EINVAL; |
| |
| queue = stmmac_xdp_get_tx_queue(priv, cpu); |
| nq = netdev_get_tx_queue(priv->dev, queue); |
| |
| __netif_tx_lock(nq, cpu); |
| /* Avoids TX time-out as we are sharing with slow path */ |
| txq_trans_cond_update(nq); |
| |
| for (i = 0; i < num_frames; i++) { |
| int res; |
| |
| res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); |
| if (res == STMMAC_XDP_CONSUMED) |
| break; |
| |
| nxmit++; |
| } |
| |
| if (flags & XDP_XMIT_FLUSH) { |
| stmmac_flush_tx_descriptors(priv, queue); |
| stmmac_tx_timer_arm(priv, queue); |
| } |
| |
| __netif_tx_unlock(nq); |
| |
| return nxmit; |
| } |
| |
| void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| |
| stmmac_stop_rx_dma(priv, queue); |
| __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); |
| } |
| |
| void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| unsigned long flags; |
| u32 buf_size; |
| int ret; |
| |
| ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); |
| if (ret) { |
| netdev_err(priv->dev, "Failed to alloc RX desc.\n"); |
| return; |
| } |
| |
| ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); |
| if (ret) { |
| __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); |
| netdev_err(priv->dev, "Failed to init RX desc.\n"); |
| return; |
| } |
| |
| stmmac_reset_rx_queue(priv, queue); |
| stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); |
| |
| stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| rx_q->dma_rx_phy, rx_q->queue_index); |
| |
| rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * |
| sizeof(struct dma_desc)); |
| stmmac_set_rx_tail_ptr(priv, priv->ioaddr, |
| rx_q->rx_tail_addr, rx_q->queue_index); |
| |
| if (rx_q->xsk_pool && rx_q->buf_alloc_num) { |
| buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); |
| stmmac_set_dma_bfsize(priv, priv->ioaddr, |
| buf_size, |
| rx_q->queue_index); |
| } else { |
| stmmac_set_dma_bfsize(priv, priv->ioaddr, |
| priv->dma_conf.dma_buf_sz, |
| rx_q->queue_index); |
| } |
| |
| stmmac_start_rx_dma(priv, queue); |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| |
| stmmac_stop_tx_dma(priv, queue); |
| __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); |
| } |
| |
| void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| unsigned long flags; |
| int ret; |
| |
| ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); |
| if (ret) { |
| netdev_err(priv->dev, "Failed to alloc TX desc.\n"); |
| return; |
| } |
| |
| ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); |
| if (ret) { |
| __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); |
| netdev_err(priv->dev, "Failed to init TX desc.\n"); |
| return; |
| } |
| |
| stmmac_reset_tx_queue(priv, queue); |
| stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); |
| |
| stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| tx_q->dma_tx_phy, tx_q->queue_index); |
| |
| if (tx_q->tbs & STMMAC_TBS_AVAIL) |
| stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); |
| |
| tx_q->tx_tail_addr = tx_q->dma_tx_phy; |
| stmmac_set_tx_tail_ptr(priv, priv->ioaddr, |
| tx_q->tx_tail_addr, tx_q->queue_index); |
| |
| stmmac_start_tx_dma(priv, queue); |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| void stmmac_xdp_release(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 chan; |
| |
| /* Ensure tx function is not running */ |
| netif_tx_disable(dev); |
| |
| /* Disable NAPI process */ |
| stmmac_disable_all_queues(priv); |
| |
| for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
| hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); |
| |
| /* Free the IRQ lines */ |
| stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); |
| |
| /* Stop TX/RX DMA channels */ |
| stmmac_stop_all_dma(priv); |
| |
| /* Release and free the Rx/Tx resources */ |
| free_dma_desc_resources(priv, &priv->dma_conf); |
| |
| /* Disable the MAC Rx/Tx */ |
| stmmac_mac_set(priv, priv->ioaddr, false); |
| |
| /* set trans_start so we don't get spurious |
| * watchdogs during reset |
| */ |
| netif_trans_update(dev); |
| netif_carrier_off(dev); |
| } |
| |
| int stmmac_xdp_open(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 rx_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| u32 dma_csr_ch = max(rx_cnt, tx_cnt); |
| struct stmmac_rx_queue *rx_q; |
| struct stmmac_tx_queue *tx_q; |
| u32 buf_size; |
| bool sph_en; |
| u32 chan; |
| int ret; |
| |
| ret = alloc_dma_desc_resources(priv, &priv->dma_conf); |
| if (ret < 0) { |
| netdev_err(dev, "%s: DMA descriptors allocation failed\n", |
| __func__); |
| goto dma_desc_error; |
| } |
| |
| ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); |
| if (ret < 0) { |
| netdev_err(dev, "%s: DMA descriptors initialization failed\n", |
| __func__); |
| goto init_error; |
| } |
| |
| stmmac_reset_queues_param(priv); |
| |
| /* DMA CSR Channel configuration */ |
| for (chan = 0; chan < dma_csr_ch; chan++) { |
| stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); |
| stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); |
| } |
| |
| /* Adjust Split header */ |
| sph_en = (priv->hw->rx_csum > 0) && priv->sph; |
| |
| /* DMA RX Channel Configuration */ |
| for (chan = 0; chan < rx_cnt; chan++) { |
| rx_q = &priv->dma_conf.rx_queue[chan]; |
| |
| stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| rx_q->dma_rx_phy, chan); |
| |
| rx_q->rx_tail_addr = rx_q->dma_rx_phy + |
| (rx_q->buf_alloc_num * |
| sizeof(struct dma_desc)); |
| stmmac_set_rx_tail_ptr(priv, priv->ioaddr, |
| rx_q->rx_tail_addr, chan); |
| |
| if (rx_q->xsk_pool && rx_q->buf_alloc_num) { |
| buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); |
| stmmac_set_dma_bfsize(priv, priv->ioaddr, |
| buf_size, |
| rx_q->queue_index); |
| } else { |
| stmmac_set_dma_bfsize(priv, priv->ioaddr, |
| priv->dma_conf.dma_buf_sz, |
| rx_q->queue_index); |
| } |
| |
| stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); |
| } |
| |
| /* DMA TX Channel Configuration */ |
| for (chan = 0; chan < tx_cnt; chan++) { |
| tx_q = &priv->dma_conf.tx_queue[chan]; |
| |
| stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
| tx_q->dma_tx_phy, chan); |
| |
| tx_q->tx_tail_addr = tx_q->dma_tx_phy; |
| stmmac_set_tx_tail_ptr(priv, priv->ioaddr, |
| tx_q->tx_tail_addr, chan); |
| |
| hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| tx_q->txtimer.function = stmmac_tx_timer; |
| } |
| |
| /* Enable the MAC Rx/Tx */ |
| stmmac_mac_set(priv, priv->ioaddr, true); |
| |
| /* Start Rx & Tx DMA Channels */ |
| stmmac_start_all_dma(priv); |
| |
| ret = stmmac_request_irq(dev); |
| if (ret) |
| goto irq_error; |
| |
| /* Enable NAPI process*/ |
| stmmac_enable_all_queues(priv); |
| netif_carrier_on(dev); |
| netif_tx_start_all_queues(dev); |
| stmmac_enable_all_dma_irq(priv); |
| |
| return 0; |
| |
| irq_error: |
| for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
| hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); |
| |
| stmmac_hw_teardown(dev); |
| init_error: |
| free_dma_desc_resources(priv, &priv->dma_conf); |
| dma_desc_error: |
| return ret; |
| } |
| |
| int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| struct stmmac_rx_queue *rx_q; |
| struct stmmac_tx_queue *tx_q; |
| struct stmmac_channel *ch; |
| |
| if (test_bit(STMMAC_DOWN, &priv->state) || |
| !netif_carrier_ok(priv->dev)) |
| return -ENETDOWN; |
| |
| if (!stmmac_xdp_is_enabled(priv)) |
| return -EINVAL; |
| |
| if (queue >= priv->plat->rx_queues_to_use || |
| queue >= priv->plat->tx_queues_to_use) |
| return -EINVAL; |
| |
| rx_q = &priv->dma_conf.rx_queue[queue]; |
| tx_q = &priv->dma_conf.tx_queue[queue]; |
| ch = &priv->channel[queue]; |
| |
| if (!rx_q->xsk_pool && !tx_q->xsk_pool) |
| return -EINVAL; |
| |
| if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { |
| /* EQoS does not have per-DMA channel SW interrupt, |
| * so we schedule RX Napi straight-away. |
| */ |
| if (likely(napi_schedule_prep(&ch->rxtx_napi))) |
| __napi_schedule(&ch->rxtx_napi); |
| } |
| |
| return 0; |
| } |
| |
| static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| u32 rx_cnt = priv->plat->rx_queues_to_use; |
| unsigned int start; |
| int q; |
| |
| for (q = 0; q < tx_cnt; q++) { |
| struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q]; |
| u64 tx_packets; |
| u64 tx_bytes; |
| |
| do { |
| start = u64_stats_fetch_begin(&txq_stats->q_syncp); |
| tx_bytes = u64_stats_read(&txq_stats->q.tx_bytes); |
| } while (u64_stats_fetch_retry(&txq_stats->q_syncp, start)); |
| do { |
| start = u64_stats_fetch_begin(&txq_stats->napi_syncp); |
| tx_packets = u64_stats_read(&txq_stats->napi.tx_packets); |
| } while (u64_stats_fetch_retry(&txq_stats->napi_syncp, start)); |
| |
| stats->tx_packets += tx_packets; |
| stats->tx_bytes += tx_bytes; |
| } |
| |
| for (q = 0; q < rx_cnt; q++) { |
| struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q]; |
| u64 rx_packets; |
| u64 rx_bytes; |
| |
| do { |
| start = u64_stats_fetch_begin(&rxq_stats->napi_syncp); |
| rx_packets = u64_stats_read(&rxq_stats->napi.rx_packets); |
| rx_bytes = u64_stats_read(&rxq_stats->napi.rx_bytes); |
| } while (u64_stats_fetch_retry(&rxq_stats->napi_syncp, start)); |
| |
| stats->rx_packets += rx_packets; |
| stats->rx_bytes += rx_bytes; |
| } |
| |
| stats->rx_dropped = priv->xstats.rx_dropped; |
| stats->rx_errors = priv->xstats.rx_errors; |
| stats->tx_dropped = priv->xstats.tx_dropped; |
| stats->tx_errors = priv->xstats.tx_errors; |
| stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier; |
| stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision; |
| stats->rx_length_errors = priv->xstats.rx_length; |
| stats->rx_crc_errors = priv->xstats.rx_crc_errors; |
| stats->rx_over_errors = priv->xstats.rx_overflow_cntr; |
| stats->rx_missed_errors = priv->xstats.rx_missed_cntr; |
| } |
| |
| static const struct net_device_ops stmmac_netdev_ops = { |
| .ndo_open = stmmac_open, |
| .ndo_start_xmit = stmmac_xmit, |
| .ndo_stop = stmmac_release, |
| .ndo_change_mtu = stmmac_change_mtu, |
| .ndo_fix_features = stmmac_fix_features, |
| .ndo_set_features = stmmac_set_features, |
| .ndo_set_rx_mode = stmmac_set_rx_mode, |
| .ndo_tx_timeout = stmmac_tx_timeout, |
| .ndo_eth_ioctl = stmmac_ioctl, |
| .ndo_get_stats64 = stmmac_get_stats64, |
| .ndo_setup_tc = stmmac_setup_tc, |
| .ndo_select_queue = stmmac_select_queue, |
| .ndo_set_mac_address = stmmac_set_mac_address, |
| .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, |
| .ndo_bpf = stmmac_bpf, |
| .ndo_xdp_xmit = stmmac_xdp_xmit, |
| .ndo_xsk_wakeup = stmmac_xsk_wakeup, |
| }; |
| |
| static void stmmac_reset_subtask(struct stmmac_priv *priv) |
| { |
| if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) |
| return; |
| if (test_bit(STMMAC_DOWN, &priv->state)) |
| return; |
| |
| netdev_err(priv->dev, "Reset adapter.\n"); |
| |
| rtnl_lock(); |
| netif_trans_update(priv->dev); |
| while (test_and_set_bit(STMMAC_RESETING, &priv->state)) |
| usleep_range(1000, 2000); |
| |
| set_bit(STMMAC_DOWN, &priv->state); |
| dev_close(priv->dev); |
| dev_open(priv->dev, NULL); |
| clear_bit(STMMAC_DOWN, &priv->state); |
| clear_bit(STMMAC_RESETING, &priv->state); |
| rtnl_unlock(); |
| } |
| |
| static void stmmac_service_task(struct work_struct *work) |
| { |
| struct stmmac_priv *priv = container_of(work, struct stmmac_priv, |
| service_task); |
| |
| stmmac_reset_subtask(priv); |
| clear_bit(STMMAC_SERVICE_SCHED, &priv->state); |
| } |
| |
| /** |
| * stmmac_hw_init - Init the MAC device |
| * @priv: driver private structure |
| * Description: this function is to configure the MAC device according to |
| * some platform parameters or the HW capability register. It prepares the |
| * driver to use either ring or chain modes and to setup either enhanced or |
| * normal descriptors. |
| */ |
| static int stmmac_hw_init(struct stmmac_priv *priv) |
| { |
| int ret; |
| |
| /* dwmac-sun8i only work in chain mode */ |
| if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) |
| chain_mode = 1; |
| priv->chain_mode = chain_mode; |
| |
| /* Initialize HW Interface */ |
| ret = stmmac_hwif_init(priv); |
| if (ret) |
| return ret; |
| |
| /* Get the HW capability (new GMAC newer than 3.50a) */ |
| priv->hw_cap_support = stmmac_get_hw_features(priv); |
| if (priv->hw_cap_support) { |
| dev_info(priv->device, "DMA HW capability register supported\n"); |
| |
| /* We can override some gmac/dma configuration fields: e.g. |
| * enh_desc, tx_coe (e.g. that are passed through the |
| * platform) with the values from the HW capability |
| * register (if supported). |
| */ |
| priv->plat->enh_desc = priv->dma_cap.enh_desc; |
| priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && |
| !(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL); |
| priv->hw->pmt = priv->plat->pmt; |
| if (priv->dma_cap.hash_tb_sz) { |
| priv->hw->multicast_filter_bins = |
| (BIT(priv->dma_cap.hash_tb_sz) << 5); |
| priv->hw->mcast_bits_log2 = |
| ilog2(priv->hw->multicast_filter_bins); |
| } |
| |
| /* TXCOE doesn't work in thresh DMA mode */ |
| if (priv->plat->force_thresh_dma_mode) |
| priv->plat->tx_coe = 0; |
| else |
| priv->plat->tx_coe = priv->dma_cap.tx_coe; |
| |
| /* In case of GMAC4 rx_coe is from HW cap register. */ |
| priv->plat->rx_coe = priv->dma_cap.rx_coe; |
| |
| if (priv->dma_cap.rx_coe_type2) |
| priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; |
| else if (priv->dma_cap.rx_coe_type1) |
| priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; |
| |
| } else { |
| dev_info(priv->device, "No HW DMA feature register supported\n"); |
| } |
| |
| if (priv->plat->rx_coe) { |
| priv->hw->rx_csum = priv->plat->rx_coe; |
| dev_info(priv->device, "RX Checksum Offload Engine supported\n"); |
| if (priv->synopsys_id < DWMAC_CORE_4_00) |
| dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); |
| } |
| if (priv->plat->tx_coe) |
| dev_info(priv->device, "TX Checksum insertion supported\n"); |
| |
| if (priv->plat->pmt) { |
| dev_info(priv->device, "Wake-Up On Lan supported\n"); |
| device_set_wakeup_capable(priv->device, 1); |
| } |
| |
| if (priv->dma_cap.tsoen) |
| dev_info(priv->device, "TSO supported\n"); |
| |
| priv->hw->vlan_fail_q_en = |
| (priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN); |
| priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; |
| |
| /* Run HW quirks, if any */ |
| if (priv->hwif_quirks) { |
| ret = priv->hwif_quirks(priv); |
| if (ret) |
| return ret; |
| } |
| |
| /* Rx Watchdog is available in the COREs newer than the 3.40. |
| * In some case, for example on bugged HW this feature |
| * has to be disable and this can be done by passing the |
| * riwt_off field from the platform. |
| */ |
| if (((priv->synopsys_id >= DWMAC_CORE_3_50) || |
| (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { |
| priv->use_riwt = 1; |
| dev_info(priv->device, |
| "Enable RX Mitigation via HW Watchdog Timer\n"); |
| } |
| |
| return 0; |
| } |
| |
| static void stmmac_napi_add(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 queue, maxq; |
| |
| maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); |
| |
| for (queue = 0; queue < maxq; queue++) { |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| |
| ch->priv_data = priv; |
| ch->index = queue; |
| spin_lock_init(&ch->lock); |
| |
| if (queue < priv->plat->rx_queues_to_use) { |
| netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx); |
| } |
| if (queue < priv->plat->tx_queues_to_use) { |
| netif_napi_add_tx(dev, &ch->tx_napi, |
| stmmac_napi_poll_tx); |
| } |
| if (queue < priv->plat->rx_queues_to_use && |
| queue < priv->plat->tx_queues_to_use) { |
| netif_napi_add(dev, &ch->rxtx_napi, |
| stmmac_napi_poll_rxtx); |
| } |
| } |
| } |
| |
| static void stmmac_napi_del(struct net_device *dev) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| u32 queue, maxq; |
| |
| maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); |
| |
| for (queue = 0; queue < maxq; queue++) { |
| struct stmmac_channel *ch = &priv->channel[queue]; |
| |
| if (queue < priv->plat->rx_queues_to_use) |
| netif_napi_del(&ch->rx_napi); |
| if (queue < priv->plat->tx_queues_to_use) |
| netif_napi_del(&ch->tx_napi); |
| if (queue < priv->plat->rx_queues_to_use && |
| queue < priv->plat->tx_queues_to_use) { |
| netif_napi_del(&ch->rxtx_napi); |
| } |
| } |
| } |
| |
| int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int ret = 0, i; |
| |
| if (netif_running(dev)) |
| stmmac_release(dev); |
| |
| stmmac_napi_del(dev); |
| |
| priv->plat->rx_queues_to_use = rx_cnt; |
| priv->plat->tx_queues_to_use = tx_cnt; |
| if (!netif_is_rxfh_configured(dev)) |
| for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) |
| priv->rss.table[i] = ethtool_rxfh_indir_default(i, |
| rx_cnt); |
| |
| stmmac_set_half_duplex(priv); |
| stmmac_napi_add(dev); |
| |
| if (netif_running(dev)) |
| ret = stmmac_open(dev); |
| |
| return ret; |
| } |
| |
| int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) |
| { |
| struct stmmac_priv *priv = netdev_priv(dev); |
| int ret = 0; |
| |
| if (netif_running(dev)) |
| stmmac_release(dev); |
| |
| priv->dma_conf.dma_rx_size = rx_size; |
| priv->dma_conf.dma_tx_size = tx_size; |
| |
| if (netif_running(dev)) |
| ret = stmmac_open(dev); |
| |
| return ret; |
| } |
| |
| #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" |
| static void stmmac_fpe_lp_task(struct work_struct *work) |
| { |
| struct stmmac_priv *priv = container_of(work, struct stmmac_priv, |
| fpe_task); |
| struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; |
| enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; |
| enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; |
| bool *hs_enable = &fpe_cfg->hs_enable; |
| bool *enable = &fpe_cfg->enable; |
| int retries = 20; |
| |
| while (retries-- > 0) { |
| /* Bail out immediately if FPE handshake is OFF */ |
| if (*lo_state == FPE_STATE_OFF || !*hs_enable) |
| break; |
| |
| if (*lo_state == FPE_STATE_ENTERING_ON && |
| *lp_state == FPE_STATE_ENTERING_ON) { |
| stmmac_fpe_configure(priv, priv->ioaddr, |
| fpe_cfg, |
| priv->plat->tx_queues_to_use, |
| priv->plat->rx_queues_to_use, |
| *enable); |
| |
| netdev_info(priv->dev, "configured FPE\n"); |
| |
| *lo_state = FPE_STATE_ON; |
| *lp_state = FPE_STATE_ON; |
| netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); |
| break; |
| } |
| |
| if ((*lo_state == FPE_STATE_CAPABLE || |
| *lo_state == FPE_STATE_ENTERING_ON) && |
| *lp_state != FPE_STATE_ON) { |
| netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, |
| *lo_state, *lp_state); |
| stmmac_fpe_send_mpacket(priv, priv->ioaddr, |
| fpe_cfg, |
| MPACKET_VERIFY); |
| } |
| /* Sleep then retry */ |
| msleep(500); |
| } |
| |
| clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); |
| } |
| |
| void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) |
| { |
| if (priv->plat->fpe_cfg->hs_enable != enable) { |
| if (enable) { |
| stmmac_fpe_send_mpacket(priv, priv->ioaddr, |
| priv->plat->fpe_cfg, |
| MPACKET_VERIFY); |
| } else { |
| priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; |
| priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; |
| } |
| |
| priv->plat->fpe_cfg->hs_enable = enable; |
| } |
| } |
| |
| static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) |
| { |
| const struct stmmac_xdp_buff *ctx = (void *)_ctx; |
| struct dma_desc *desc_contains_ts = ctx->desc; |
| struct stmmac_priv *priv = ctx->priv; |
| struct dma_desc *ndesc = ctx->ndesc; |
| struct dma_desc *desc = ctx->desc; |
| u64 ns = 0; |
| |
| if (!priv->hwts_rx_en) |
| return -ENODATA; |
| |
| /* For GMAC4, the valid timestamp is from CTX next desc. */ |
| if (priv->plat->has_gmac4 || priv->plat->has_xgmac) |
| desc_contains_ts = ndesc; |
| |
| /* Check if timestamp is available */ |
| if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) { |
| stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns); |
| ns -= priv->plat->cdc_error_adj; |
| *timestamp = ns_to_ktime(ns); |
| return 0; |
| } |
| |
| return -ENODATA; |
| } |
| |
| static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = { |
| .xmo_rx_timestamp = stmmac_xdp_rx_timestamp, |
| }; |
| |
| /** |
| * stmmac_dvr_probe |
| * @device: device pointer |
| * @plat_dat: platform data pointer |
| * @res: stmmac resource pointer |
| * Description: this is the main probe function used to |
| * call the alloc_etherdev, allocate the priv structure. |
| * Return: |
| * returns 0 on success, otherwise errno. |
| */ |
| int stmmac_dvr_probe(struct device *device, |
| struct plat_stmmacenet_data *plat_dat, |
| struct stmmac_resources *res) |
| { |
| struct net_device *ndev = NULL; |
| struct stmmac_priv *priv; |
| u32 rxq; |
| int i, ret = 0; |
| |
| ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), |
| MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); |
| if (!ndev) |
| return -ENOMEM; |
| |
| SET_NETDEV_DEV(ndev, device); |
| |
| priv = netdev_priv(ndev); |
| priv->device = device; |
| priv->dev = ndev; |
| |
| for (i = 0; i < MTL_MAX_RX_QUEUES; i++) |
| u64_stats_init(&priv->xstats.rxq_stats[i].napi_syncp); |
| for (i = 0; i < MTL_MAX_TX_QUEUES; i++) { |
| u64_stats_init(&priv->xstats.txq_stats[i].q_syncp); |
| u64_stats_init(&priv->xstats.txq_stats[i].napi_syncp); |
| } |
| |
| priv->xstats.pcpu_stats = |
| devm_netdev_alloc_pcpu_stats(device, struct stmmac_pcpu_stats); |
| if (!priv->xstats.pcpu_stats) |
| return -ENOMEM; |
| |
| stmmac_set_ethtool_ops(ndev); |
| priv->pause = pause; |
| priv->plat = plat_dat; |
| priv->ioaddr = res->addr; |
| priv->dev->base_addr = (unsigned long)res->addr; |
| priv->plat->dma_cfg->multi_msi_en = |
| (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN); |
| |
| priv->dev->irq = res->irq; |
| priv->wol_irq = res->wol_irq; |
| priv->lpi_irq = res->lpi_irq; |
| priv->sfty_irq = res->sfty_irq; |
| priv->sfty_ce_irq = res->sfty_ce_irq; |
| priv->sfty_ue_irq = res->sfty_ue_irq; |
| for (i = 0; i < MTL_MAX_RX_QUEUES; i++) |
| priv->rx_irq[i] = res->rx_irq[i]; |
| for (i = 0; i < MTL_MAX_TX_QUEUES; i++) |
| priv->tx_irq[i] = res->tx_irq[i]; |
| |
| if (!is_zero_ether_addr(res->mac)) |
| eth_hw_addr_set(priv->dev, res->mac); |
| |
| dev_set_drvdata(device, priv->dev); |
| |
| /* Verify driver arguments */ |
| stmmac_verify_args(); |
| |
| priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); |
| if (!priv->af_xdp_zc_qps) |
| return -ENOMEM; |
| |
| /* Allocate workqueue */ |
| priv->wq = create_singlethread_workqueue("stmmac_wq"); |
| if (!priv->wq) { |
| dev_err(priv->device, "failed to create workqueue\n"); |
| ret = -ENOMEM; |
| goto error_wq_init; |
| } |
| |
| INIT_WORK(&priv->service_task, stmmac_service_task); |
| |
| /* Initialize Link Partner FPE workqueue */ |
| INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); |
| |
| /* Override with kernel parameters if supplied XXX CRS XXX |
| * this needs to have multiple instances |
| */ |
| if ((phyaddr >= 0) && (phyaddr <= 31)) |
| priv->plat->phy_addr = phyaddr; |
| |
| if (priv->plat->stmmac_rst) { |
| ret = reset_control_assert(priv->plat->stmmac_rst); |
| reset_control_deassert(priv->plat->stmmac_rst); |
| /* Some reset controllers have only reset callback instead of |
| * assert + deassert callbacks pair. |
| */ |
| if (ret == -ENOTSUPP) |
| reset_control_reset(priv->plat->stmmac_rst); |
| } |
| |
| ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); |
| if (ret == -ENOTSUPP) |
| dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", |
| ERR_PTR(ret)); |
| |
| /* Wait a bit for the reset to take effect */ |
| udelay(10); |
| |
| /* Init MAC and get the capabilities */ |
| ret = stmmac_hw_init(priv); |
| if (ret) |
| goto error_hw_init; |
| |
| /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. |
| */ |
| if (priv->synopsys_id < DWMAC_CORE_5_20) |
| priv->plat->dma_cfg->dche = false; |
| |
| stmmac_check_ether_addr(priv); |
| |
| ndev->netdev_ops = &stmmac_netdev_ops; |
| |
| ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops; |
| ndev->xsk_tx_metadata_ops = &stmmac_xsk_tx_metadata_ops; |
| |
| ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_RXCSUM; |
| ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | |
| NETDEV_XDP_ACT_XSK_ZEROCOPY; |
| |
| ret = stmmac_tc_init(priv, priv); |
| if (!ret) { |
| ndev->hw_features |= NETIF_F_HW_TC; |
| } |
| |
| if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) { |
| ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; |
| if (priv->plat->has_gmac4) |
| ndev->hw_features |= NETIF_F_GSO_UDP_L4; |
| priv->tso = true; |
| dev_info(priv->device, "TSO feature enabled\n"); |
| } |
| |
| if (priv->dma_cap.sphen && |
| !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) { |
| ndev->hw_features |= NETIF_F_GRO; |
| priv->sph_cap = true; |
| priv->sph = priv->sph_cap; |
| dev_info(priv->device, "SPH feature enabled\n"); |
| } |
| |
| /* Ideally our host DMA address width is the same as for the |
| * device. However, it may differ and then we have to use our |
| * host DMA width for allocation and the device DMA width for |
| * register handling. |
| */ |
| if (priv->plat->host_dma_width) |
| priv->dma_cap.host_dma_width = priv->plat->host_dma_width; |
| else |
| priv->dma_cap.host_dma_width = priv->dma_cap.addr64; |
| |
| if (priv->dma_cap.host_dma_width) { |
| ret = dma_set_mask_and_coherent(device, |
| DMA_BIT_MASK(priv->dma_cap.host_dma_width)); |
| if (!ret) { |
| dev_info(priv->device, "Using %d/%d bits DMA host/device width\n", |
| priv->dma_cap.host_dma_width, priv->dma_cap.addr64); |
| |
| /* |
| * If more than 32 bits can be addressed, make sure to |
| * enable enhanced addressing mode. |
| */ |
| if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) |
| priv->plat->dma_cfg->eame = true; |
| } else { |
| ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); |
| if (ret) { |
| dev_err(priv->device, "Failed to set DMA Mask\n"); |
| goto error_hw_init; |
| } |
| |
| priv->dma_cap.host_dma_width = 32; |
| } |
| } |
| |
| ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; |
| ndev->watchdog_timeo = msecs_to_jiffies(watchdog); |
| #ifdef STMMAC_VLAN_TAG_USED |
| /* Both mac100 and gmac support receive VLAN tag detection */ |
| ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; |
| ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; |
| priv->hw->hw_vlan_en = true; |
| |
| if (priv->dma_cap.vlhash) { |
| ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; |
| ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; |
| } |
| if (priv->dma_cap.vlins) { |
| ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; |
| if (priv->dma_cap.dvlan) |
| ndev->features |= NETIF_F_HW_VLAN_STAG_TX; |
| } |
| #endif |
| priv->msg_enable = netif_msg_init(debug, default_msg_level); |
| |
| priv->xstats.threshold = tc; |
| |
| /* Initialize RSS */ |
| rxq = priv->plat->rx_queues_to_use; |
| netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); |
| for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) |
| priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); |
| |
| if (priv->dma_cap.rssen && priv->plat->rss_en) |
| ndev->features |= NETIF_F_RXHASH; |
| |
| ndev->vlan_features |= ndev->features; |
| /* TSO doesn't work on VLANs yet */ |
| ndev->vlan_features &= ~NETIF_F_TSO; |
| |
| /* MTU range: 46 - hw-specific max */ |
| ndev->min_mtu = ETH_ZLEN - ETH_HLEN; |
| if (priv->plat->has_xgmac) |
| ndev->max_mtu = XGMAC_JUMBO_LEN; |
| else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) |
| ndev->max_mtu = JUMBO_LEN; |
| else |
| ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); |
| /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu |
| * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. |
| */ |
| if ((priv->plat->maxmtu < ndev->max_mtu) && |
| (priv->plat->maxmtu >= ndev->min_mtu)) |
| ndev->max_mtu = priv->plat->maxmtu; |
| else if (priv->plat->maxmtu < ndev->min_mtu) |
| dev_warn(priv->device, |
| "%s: warning: maxmtu having invalid value (%d)\n", |
| __func__, priv->plat->maxmtu); |
| |
| if (flow_ctrl) |
| priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ |
| |
| ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| |
| /* Setup channels NAPI */ |
| stmmac_napi_add(ndev); |
| |
| mutex_init(&priv->lock); |
| |
| /* If a specific clk_csr value is passed from the platform |
| * this means that the CSR Clock Range selection cannot be |
| * changed at run-time and it is fixed. Viceversa the driver'll try to |
| * set the MDC clock dynamically according to the csr actual |
| * clock input. |
| */ |
| if (priv->plat->clk_csr >= 0) |
| priv->clk_csr = priv->plat->clk_csr; |
| else |
| stmmac_clk_csr_set(priv); |
| |
| stmmac_check_pcs_mode(priv); |
| |
| pm_runtime_get_noresume(device); |
| pm_runtime_set_active(device); |
| if (!pm_runtime_enabled(device)) |
| pm_runtime_enable(device); |
| |
| if (priv->hw->pcs != STMMAC_PCS_TBI && |
| priv->hw->pcs != STMMAC_PCS_RTBI) { |
| /* MDIO bus Registration */ |
| ret = stmmac_mdio_register(ndev); |
| if (ret < 0) { |
| dev_err_probe(priv->device, ret, |
| "%s: MDIO bus (id: %d) registration failed\n", |
| __func__, priv->plat->bus_id); |
| goto error_mdio_register; |
| } |
| } |
| |
| if (priv->plat->speed_mode_2500) |
| priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); |
| |
| if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { |
| ret = stmmac_xpcs_setup(priv->mii); |
| if (ret) |
| goto error_xpcs_setup; |
| } |
| |
| ret = stmmac_phy_setup(priv); |
| if (ret) { |
| netdev_err(ndev, "failed to setup phy (%d)\n", ret); |
| goto error_phy_setup; |
| } |
| |
| ret = register_netdev(ndev); |
| if (ret) { |
| dev_err(priv->device, "%s: ERROR %i registering the device\n", |
| __func__, ret); |
| goto error_netdev_register; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| stmmac_init_fs(ndev); |
| #endif |
| |
| if (priv->plat->dump_debug_regs) |
| priv->plat->dump_debug_regs(priv->plat->bsp_priv); |
| |
| /* Let pm_runtime_put() disable the clocks. |
| * If CONFIG_PM is not enabled, the clocks will stay powered. |
| */ |
| pm_runtime_put(device); |
| |
| return ret; |
| |
| error_netdev_register: |
| phylink_destroy(priv->phylink); |
| error_xpcs_setup: |
| error_phy_setup: |
| if (priv->hw->pcs != STMMAC_PCS_TBI && |
| priv->hw->pcs != STMMAC_PCS_RTBI) |
| stmmac_mdio_unregister(ndev); |
| error_mdio_register: |
| stmmac_napi_del(ndev); |
| error_hw_init: |
| destroy_workqueue(priv->wq); |
| error_wq_init: |
| bitmap_free(priv->af_xdp_zc_qps); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(stmmac_dvr_probe); |
| |
| /** |
| * stmmac_dvr_remove |
| * @dev: device pointer |
| * Description: this function resets the TX/RX processes, disables the MAC RX/TX |
| * changes the link status, releases the DMA descriptor rings. |
| */ |
| void stmmac_dvr_remove(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| |
| netdev_info(priv->dev, "%s: removing driver", __func__); |
| |
| pm_runtime_get_sync(dev); |
| |
| stmmac_stop_all_dma(priv); |
| stmmac_mac_set(priv, priv->ioaddr, false); |
| netif_carrier_off(ndev); |
| unregister_netdev(ndev); |
| |
| #ifdef CONFIG_DEBUG_FS |
| stmmac_exit_fs(ndev); |
| #endif |
| phylink_destroy(priv->phylink); |
| if (priv->plat->stmmac_rst) |
| reset_control_assert(priv->plat->stmmac_rst); |
| reset_control_assert(priv->plat->stmmac_ahb_rst); |
| if (priv->hw->pcs != STMMAC_PCS_TBI && |
| priv->hw->pcs != STMMAC_PCS_RTBI) |
| stmmac_mdio_unregister(ndev); |
| destroy_workqueue(priv->wq); |
| mutex_destroy(&priv->lock); |
| bitmap_free(priv->af_xdp_zc_qps); |
| |
| pm_runtime_disable(dev); |
| pm_runtime_put_noidle(dev); |
| } |
| EXPORT_SYMBOL_GPL(stmmac_dvr_remove); |
| |
| /** |
| * stmmac_suspend - suspend callback |
| * @dev: device pointer |
| * Description: this is the function to suspend the device and it is called |
| * by the platform driver to stop the network queue, release the resources, |
| * program the PMT register (for WoL), clean and release driver resources. |
| */ |
| int stmmac_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| u32 chan; |
| |
| if (!ndev || !netif_running(ndev)) |
| return 0; |
| |
| mutex_lock(&priv->lock); |
| |
| netif_device_detach(ndev); |
| |
| stmmac_disable_all_queues(priv); |
| |
| for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
| hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); |
| |
| if (priv->eee_enabled) { |
| priv->tx_path_in_lpi_mode = false; |
| del_timer_sync(&priv->eee_ctrl_timer); |
| } |
| |
| /* Stop TX/RX DMA */ |
| stmmac_stop_all_dma(priv); |
| |
| if (priv->plat->serdes_powerdown) |
| priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); |
| |
| /* Enable Power down mode by programming the PMT regs */ |
| if (device_may_wakeup(priv->device) && priv->plat->pmt) { |
| stmmac_pmt(priv, priv->hw, priv->wolopts); |
| priv->irq_wake = 1; |
| } else { |
| stmmac_mac_set(priv, priv->ioaddr, false); |
| pinctrl_pm_select_sleep_state(priv->device); |
| } |
| |
| mutex_unlock(&priv->lock); |
| |
| rtnl_lock(); |
| if (device_may_wakeup(priv->device) && priv->plat->pmt) { |
| phylink_suspend(priv->phylink, true); |
| } else { |
| if (device_may_wakeup(priv->device)) |
| phylink_speed_down(priv->phylink, false); |
| phylink_suspend(priv->phylink, false); |
| } |
| rtnl_unlock(); |
| |
| if (priv->dma_cap.fpesel) { |
| /* Disable FPE */ |
| stmmac_fpe_configure(priv, priv->ioaddr, |
| priv->plat->fpe_cfg, |
| priv->plat->tx_queues_to_use, |
| priv->plat->rx_queues_to_use, false); |
| |
| stmmac_fpe_handshake(priv, false); |
| stmmac_fpe_stop_wq(priv); |
| } |
| |
| priv->speed = SPEED_UNKNOWN; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(stmmac_suspend); |
| |
| static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; |
| |
| rx_q->cur_rx = 0; |
| rx_q->dirty_rx = 0; |
| } |
| |
| static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) |
| { |
| struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; |
| |
| tx_q->cur_tx = 0; |
| tx_q->dirty_tx = 0; |
| tx_q->mss = 0; |
| |
| netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); |
| } |
| |
| /** |
| * stmmac_reset_queues_param - reset queue parameters |
| * @priv: device pointer |
| */ |
| static void stmmac_reset_queues_param(struct stmmac_priv *priv) |
| { |
| u32 rx_cnt = priv->plat->rx_queues_to_use; |
| u32 tx_cnt = priv->plat->tx_queues_to_use; |
| u32 queue; |
| |
| for (queue = 0; queue < rx_cnt; queue++) |
| stmmac_reset_rx_queue(priv, queue); |
| |
| for (queue = 0; queue < tx_cnt; queue++) |
| stmmac_reset_tx_queue(priv, queue); |
| } |
| |
| /** |
| * stmmac_resume - resume callback |
| * @dev: device pointer |
| * Description: when resume this function is invoked to setup the DMA and CORE |
| * in a usable state. |
| */ |
| int stmmac_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct stmmac_priv *priv = netdev_priv(ndev); |
| int ret; |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| /* Power Down bit, into the PM register, is cleared |
| * automatically as soon as a magic packet or a Wake-up frame |
| * is received. Anyway, it's better to manually clear |
| * this bit because it can generate problems while resuming |
| * from another devices (e.g. serial console). |
| */ |
| if (device_may_wakeup(priv->device) && priv->plat->pmt) { |
| mutex_lock(&priv->lock); |
| stmmac_pmt(priv, priv->hw, 0); |
| mutex_unlock(&priv->lock); |
| priv->irq_wake = 0; |
| } else { |
| pinctrl_pm_select_default_state(priv->device); |
| /* reset the phy so that it's ready */ |
| if (priv->mii) |
| stmmac_mdio_reset(priv->mii); |
| } |
| |
| if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) && |
| priv->plat->serdes_powerup) { |
| ret = priv->plat->serdes_powerup(ndev, |
| priv->plat->bsp_priv); |
| |
| if (ret < 0) |
| return ret; |
| } |
| |
| rtnl_lock(); |
| if (device_may_wakeup(priv->device) && priv->plat->pmt) { |
| phylink_resume(priv->phylink); |
| } else { |
| phylink_resume(priv->phylink); |
| if (device_may_wakeup(priv->device)) |
| phylink_speed_up(priv->phylink); |
| } |
| rtnl_unlock(); |
| |
| rtnl_lock(); |
| mutex_lock(&priv->lock); |
| |
| stmmac_reset_queues_param(priv); |
| |
| stmmac_free_tx_skbufs(priv); |
| stmmac_clear_descriptors(priv, &priv->dma_conf); |
| |
| stmmac_hw_setup(ndev, false); |
| stmmac_init_coalesce(priv); |
| stmmac_set_rx_mode(ndev); |
| |
| stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); |
| |
| stmmac_enable_all_queues(priv); |
| stmmac_enable_all_dma_irq(priv); |
| |
| mutex_unlock(&priv->lock); |
| rtnl_unlock(); |
| |
| netif_device_attach(ndev); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(stmmac_resume); |
| |
| #ifndef MODULE |
| static int __init stmmac_cmdline_opt(char *str) |
| { |
| char *opt; |
| |
| if (!str || !*str) |
| return 1; |
| while ((opt = strsep(&str, ",")) != NULL) { |
| if (!strncmp(opt, "debug:", 6)) { |
| if (kstrtoint(opt + 6, 0, &debug)) |
| goto err; |
| } else if (!strncmp(opt, "phyaddr:", 8)) { |
| if (kstrtoint(opt + 8, 0, &phyaddr)) |
| goto err; |
| } else if (!strncmp(opt, "buf_sz:", 7)) { |
| if (kstrtoint(opt + 7, 0, &buf_sz)) |
| goto err; |
| } else if (!strncmp(opt, "tc:", 3)) { |
| if (kstrtoint(opt + 3, 0, &tc)) |
| goto err; |
| } else if (!strncmp(opt, "watchdog:", 9)) { |
| if (kstrtoint(opt + 9, 0, &watchdog)) |
| goto err; |
| } else if (!strncmp(opt, "flow_ctrl:", 10)) { |
| if (kstrtoint(opt + 10, 0, &flow_ctrl)) |
| goto err; |
| } else if (!strncmp(opt, "pause:", 6)) { |
| if (kstrtoint(opt + 6, 0, &pause)) |
| goto err; |
| } else if (!strncmp(opt, "eee_timer:", 10)) { |
| if (kstrtoint(opt + 10, 0, &eee_timer)) |
| goto err; |
| } else if (!strncmp(opt, "chain_mode:", 11)) { |
| if (kstrtoint(opt + 11, 0, &chain_mode)) |
| goto err; |
| } |
| } |
| return 1; |
| |
| err: |
| pr_err("%s: ERROR broken module parameter conversion", __func__); |
| return 1; |
| } |
| |
| __setup("stmmaceth=", stmmac_cmdline_opt); |
| #endif /* MODULE */ |
| |
| static int __init stmmac_init(void) |
| { |
| #ifdef CONFIG_DEBUG_FS |
| /* Create debugfs main directory if it doesn't exist yet */ |
| if (!stmmac_fs_dir) |
| stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); |
| register_netdevice_notifier(&stmmac_notifier); |
| #endif |
| |
| return 0; |
| } |
| |
| static void __exit stmmac_exit(void) |
| { |
| #ifdef CONFIG_DEBUG_FS |
| unregister_netdevice_notifier(&stmmac_notifier); |
| debugfs_remove_recursive(stmmac_fs_dir); |
| #endif |
| } |
| |
| module_init(stmmac_init) |
| module_exit(stmmac_exit) |
| |
| MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); |
| MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); |
| MODULE_LICENSE("GPL"); |