| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2008 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/list_sort.h> |
| #include <linux/iversion.h> |
| #include "misc.h" |
| #include "ctree.h" |
| #include "tree-log.h" |
| #include "disk-io.h" |
| #include "locking.h" |
| #include "backref.h" |
| #include "compression.h" |
| #include "qgroup.h" |
| #include "block-group.h" |
| #include "space-info.h" |
| #include "inode-item.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "extent-tree.h" |
| #include "root-tree.h" |
| #include "dir-item.h" |
| #include "file-item.h" |
| #include "file.h" |
| #include "orphan.h" |
| #include "tree-checker.h" |
| |
| #define MAX_CONFLICT_INODES 10 |
| |
| /* magic values for the inode_only field in btrfs_log_inode: |
| * |
| * LOG_INODE_ALL means to log everything |
| * LOG_INODE_EXISTS means to log just enough to recreate the inode |
| * during log replay |
| */ |
| enum { |
| LOG_INODE_ALL, |
| LOG_INODE_EXISTS, |
| }; |
| |
| /* |
| * directory trouble cases |
| * |
| * 1) on rename or unlink, if the inode being unlinked isn't in the fsync |
| * log, we must force a full commit before doing an fsync of the directory |
| * where the unlink was done. |
| * ---> record transid of last unlink/rename per directory |
| * |
| * mkdir foo/some_dir |
| * normal commit |
| * rename foo/some_dir foo2/some_dir |
| * mkdir foo/some_dir |
| * fsync foo/some_dir/some_file |
| * |
| * The fsync above will unlink the original some_dir without recording |
| * it in its new location (foo2). After a crash, some_dir will be gone |
| * unless the fsync of some_file forces a full commit |
| * |
| * 2) we must log any new names for any file or dir that is in the fsync |
| * log. ---> check inode while renaming/linking. |
| * |
| * 2a) we must log any new names for any file or dir during rename |
| * when the directory they are being removed from was logged. |
| * ---> check inode and old parent dir during rename |
| * |
| * 2a is actually the more important variant. With the extra logging |
| * a crash might unlink the old name without recreating the new one |
| * |
| * 3) after a crash, we must go through any directories with a link count |
| * of zero and redo the rm -rf |
| * |
| * mkdir f1/foo |
| * normal commit |
| * rm -rf f1/foo |
| * fsync(f1) |
| * |
| * The directory f1 was fully removed from the FS, but fsync was never |
| * called on f1, only its parent dir. After a crash the rm -rf must |
| * be replayed. This must be able to recurse down the entire |
| * directory tree. The inode link count fixup code takes care of the |
| * ugly details. |
| */ |
| |
| /* |
| * stages for the tree walking. The first |
| * stage (0) is to only pin down the blocks we find |
| * the second stage (1) is to make sure that all the inodes |
| * we find in the log are created in the subvolume. |
| * |
| * The last stage is to deal with directories and links and extents |
| * and all the other fun semantics |
| */ |
| enum { |
| LOG_WALK_PIN_ONLY, |
| LOG_WALK_REPLAY_INODES, |
| LOG_WALK_REPLAY_DIR_INDEX, |
| LOG_WALK_REPLAY_ALL, |
| }; |
| |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| int inode_only, |
| struct btrfs_log_ctx *ctx); |
| static int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, u64 objectid); |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 dirid, int del_all); |
| static void wait_log_commit(struct btrfs_root *root, int transid); |
| |
| /* |
| * tree logging is a special write ahead log used to make sure that |
| * fsyncs and O_SYNCs can happen without doing full tree commits. |
| * |
| * Full tree commits are expensive because they require commonly |
| * modified blocks to be recowed, creating many dirty pages in the |
| * extent tree an 4x-6x higher write load than ext3. |
| * |
| * Instead of doing a tree commit on every fsync, we use the |
| * key ranges and transaction ids to find items for a given file or directory |
| * that have changed in this transaction. Those items are copied into |
| * a special tree (one per subvolume root), that tree is written to disk |
| * and then the fsync is considered complete. |
| * |
| * After a crash, items are copied out of the log-tree back into the |
| * subvolume tree. Any file data extents found are recorded in the extent |
| * allocation tree, and the log-tree freed. |
| * |
| * The log tree is read three times, once to pin down all the extents it is |
| * using in ram and once, once to create all the inodes logged in the tree |
| * and once to do all the other items. |
| */ |
| |
| /* |
| * start a sub transaction and setup the log tree |
| * this increments the log tree writer count to make the people |
| * syncing the tree wait for us to finish |
| */ |
| static int start_log_trans(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| const bool zoned = btrfs_is_zoned(fs_info); |
| int ret = 0; |
| bool created = false; |
| |
| /* |
| * First check if the log root tree was already created. If not, create |
| * it before locking the root's log_mutex, just to keep lockdep happy. |
| */ |
| if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { |
| mutex_lock(&tree_root->log_mutex); |
| if (!fs_info->log_root_tree) { |
| ret = btrfs_init_log_root_tree(trans, fs_info); |
| if (!ret) { |
| set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); |
| created = true; |
| } |
| } |
| mutex_unlock(&tree_root->log_mutex); |
| if (ret) |
| return ret; |
| } |
| |
| mutex_lock(&root->log_mutex); |
| |
| again: |
| if (root->log_root) { |
| int index = (root->log_transid + 1) % 2; |
| |
| if (btrfs_need_log_full_commit(trans)) { |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| goto out; |
| } |
| |
| if (zoned && atomic_read(&root->log_commit[index])) { |
| wait_log_commit(root, root->log_transid - 1); |
| goto again; |
| } |
| |
| if (!root->log_start_pid) { |
| clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| root->log_start_pid = current->pid; |
| } else if (root->log_start_pid != current->pid) { |
| set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| } |
| } else { |
| /* |
| * This means fs_info->log_root_tree was already created |
| * for some other FS trees. Do the full commit not to mix |
| * nodes from multiple log transactions to do sequential |
| * writing. |
| */ |
| if (zoned && !created) { |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| goto out; |
| } |
| |
| ret = btrfs_add_log_tree(trans, root); |
| if (ret) |
| goto out; |
| |
| set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); |
| clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| root->log_start_pid = current->pid; |
| } |
| |
| atomic_inc(&root->log_writers); |
| if (!ctx->logging_new_name) { |
| int index = root->log_transid % 2; |
| list_add_tail(&ctx->list, &root->log_ctxs[index]); |
| ctx->log_transid = root->log_transid; |
| } |
| |
| out: |
| mutex_unlock(&root->log_mutex); |
| return ret; |
| } |
| |
| /* |
| * returns 0 if there was a log transaction running and we were able |
| * to join, or returns -ENOENT if there were not transactions |
| * in progress |
| */ |
| static int join_running_log_trans(struct btrfs_root *root) |
| { |
| const bool zoned = btrfs_is_zoned(root->fs_info); |
| int ret = -ENOENT; |
| |
| if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) |
| return ret; |
| |
| mutex_lock(&root->log_mutex); |
| again: |
| if (root->log_root) { |
| int index = (root->log_transid + 1) % 2; |
| |
| ret = 0; |
| if (zoned && atomic_read(&root->log_commit[index])) { |
| wait_log_commit(root, root->log_transid - 1); |
| goto again; |
| } |
| atomic_inc(&root->log_writers); |
| } |
| mutex_unlock(&root->log_mutex); |
| return ret; |
| } |
| |
| /* |
| * This either makes the current running log transaction wait |
| * until you call btrfs_end_log_trans() or it makes any future |
| * log transactions wait until you call btrfs_end_log_trans() |
| */ |
| void btrfs_pin_log_trans(struct btrfs_root *root) |
| { |
| atomic_inc(&root->log_writers); |
| } |
| |
| /* |
| * indicate we're done making changes to the log tree |
| * and wake up anyone waiting to do a sync |
| */ |
| void btrfs_end_log_trans(struct btrfs_root *root) |
| { |
| if (atomic_dec_and_test(&root->log_writers)) { |
| /* atomic_dec_and_test implies a barrier */ |
| cond_wake_up_nomb(&root->log_writer_wait); |
| } |
| } |
| |
| /* |
| * the walk control struct is used to pass state down the chain when |
| * processing the log tree. The stage field tells us which part |
| * of the log tree processing we are currently doing. The others |
| * are state fields used for that specific part |
| */ |
| struct walk_control { |
| /* should we free the extent on disk when done? This is used |
| * at transaction commit time while freeing a log tree |
| */ |
| int free; |
| |
| /* pin only walk, we record which extents on disk belong to the |
| * log trees |
| */ |
| int pin; |
| |
| /* what stage of the replay code we're currently in */ |
| int stage; |
| |
| /* |
| * Ignore any items from the inode currently being processed. Needs |
| * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in |
| * the LOG_WALK_REPLAY_INODES stage. |
| */ |
| bool ignore_cur_inode; |
| |
| /* the root we are currently replaying */ |
| struct btrfs_root *replay_dest; |
| |
| /* the trans handle for the current replay */ |
| struct btrfs_trans_handle *trans; |
| |
| /* the function that gets used to process blocks we find in the |
| * tree. Note the extent_buffer might not be up to date when it is |
| * passed in, and it must be checked or read if you need the data |
| * inside it |
| */ |
| int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, |
| struct walk_control *wc, u64 gen, int level); |
| }; |
| |
| /* |
| * process_func used to pin down extents, write them or wait on them |
| */ |
| static int process_one_buffer(struct btrfs_root *log, |
| struct extent_buffer *eb, |
| struct walk_control *wc, u64 gen, int level) |
| { |
| struct btrfs_fs_info *fs_info = log->fs_info; |
| int ret = 0; |
| |
| /* |
| * If this fs is mixed then we need to be able to process the leaves to |
| * pin down any logged extents, so we have to read the block. |
| */ |
| if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| struct btrfs_tree_parent_check check = { |
| .level = level, |
| .transid = gen |
| }; |
| |
| ret = btrfs_read_extent_buffer(eb, &check); |
| if (ret) |
| return ret; |
| } |
| |
| if (wc->pin) { |
| ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); |
| if (ret) |
| return ret; |
| |
| if (btrfs_buffer_uptodate(eb, gen, 0) && |
| btrfs_header_level(eb) == 0) |
| ret = btrfs_exclude_logged_extents(eb); |
| } |
| return ret; |
| } |
| |
| /* |
| * Item overwrite used by replay and tree logging. eb, slot and key all refer |
| * to the src data we are copying out. |
| * |
| * root is the tree we are copying into, and path is a scratch |
| * path for use in this function (it should be released on entry and |
| * will be released on exit). |
| * |
| * If the key is already in the destination tree the existing item is |
| * overwritten. If the existing item isn't big enough, it is extended. |
| * If it is too large, it is truncated. |
| * |
| * If the key isn't in the destination yet, a new item is inserted. |
| */ |
| static int overwrite_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| int ret; |
| u32 item_size; |
| u64 saved_i_size = 0; |
| int save_old_i_size = 0; |
| unsigned long src_ptr; |
| unsigned long dst_ptr; |
| bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; |
| |
| /* |
| * This is only used during log replay, so the root is always from a |
| * fs/subvolume tree. In case we ever need to support a log root, then |
| * we'll have to clone the leaf in the path, release the path and use |
| * the leaf before writing into the log tree. See the comments at |
| * copy_items() for more details. |
| */ |
| ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); |
| |
| item_size = btrfs_item_size(eb, slot); |
| src_ptr = btrfs_item_ptr_offset(eb, slot); |
| |
| /* Look for the key in the destination tree. */ |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0) { |
| char *src_copy; |
| char *dst_copy; |
| u32 dst_size = btrfs_item_size(path->nodes[0], |
| path->slots[0]); |
| if (dst_size != item_size) |
| goto insert; |
| |
| if (item_size == 0) { |
| btrfs_release_path(path); |
| return 0; |
| } |
| dst_copy = kmalloc(item_size, GFP_NOFS); |
| src_copy = kmalloc(item_size, GFP_NOFS); |
| if (!dst_copy || !src_copy) { |
| btrfs_release_path(path); |
| kfree(dst_copy); |
| kfree(src_copy); |
| return -ENOMEM; |
| } |
| |
| read_extent_buffer(eb, src_copy, src_ptr, item_size); |
| |
| dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, |
| item_size); |
| ret = memcmp(dst_copy, src_copy, item_size); |
| |
| kfree(dst_copy); |
| kfree(src_copy); |
| /* |
| * they have the same contents, just return, this saves |
| * us from cowing blocks in the destination tree and doing |
| * extra writes that may not have been done by a previous |
| * sync |
| */ |
| if (ret == 0) { |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| /* |
| * We need to load the old nbytes into the inode so when we |
| * replay the extents we've logged we get the right nbytes. |
| */ |
| if (inode_item) { |
| struct btrfs_inode_item *item; |
| u64 nbytes; |
| u32 mode; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| nbytes = btrfs_inode_nbytes(path->nodes[0], item); |
| item = btrfs_item_ptr(eb, slot, |
| struct btrfs_inode_item); |
| btrfs_set_inode_nbytes(eb, item, nbytes); |
| |
| /* |
| * If this is a directory we need to reset the i_size to |
| * 0 so that we can set it up properly when replaying |
| * the rest of the items in this log. |
| */ |
| mode = btrfs_inode_mode(eb, item); |
| if (S_ISDIR(mode)) |
| btrfs_set_inode_size(eb, item, 0); |
| } |
| } else if (inode_item) { |
| struct btrfs_inode_item *item; |
| u32 mode; |
| |
| /* |
| * New inode, set nbytes to 0 so that the nbytes comes out |
| * properly when we replay the extents. |
| */ |
| item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); |
| btrfs_set_inode_nbytes(eb, item, 0); |
| |
| /* |
| * If this is a directory we need to reset the i_size to 0 so |
| * that we can set it up properly when replaying the rest of |
| * the items in this log. |
| */ |
| mode = btrfs_inode_mode(eb, item); |
| if (S_ISDIR(mode)) |
| btrfs_set_inode_size(eb, item, 0); |
| } |
| insert: |
| btrfs_release_path(path); |
| /* try to insert the key into the destination tree */ |
| path->skip_release_on_error = 1; |
| ret = btrfs_insert_empty_item(trans, root, path, |
| key, item_size); |
| path->skip_release_on_error = 0; |
| |
| /* make sure any existing item is the correct size */ |
| if (ret == -EEXIST || ret == -EOVERFLOW) { |
| u32 found_size; |
| found_size = btrfs_item_size(path->nodes[0], |
| path->slots[0]); |
| if (found_size > item_size) |
| btrfs_truncate_item(trans, path, item_size, 1); |
| else if (found_size < item_size) |
| btrfs_extend_item(trans, path, item_size - found_size); |
| } else if (ret) { |
| return ret; |
| } |
| dst_ptr = btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| |
| /* don't overwrite an existing inode if the generation number |
| * was logged as zero. This is done when the tree logging code |
| * is just logging an inode to make sure it exists after recovery. |
| * |
| * Also, don't overwrite i_size on directories during replay. |
| * log replay inserts and removes directory items based on the |
| * state of the tree found in the subvolume, and i_size is modified |
| * as it goes |
| */ |
| if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { |
| struct btrfs_inode_item *src_item; |
| struct btrfs_inode_item *dst_item; |
| |
| src_item = (struct btrfs_inode_item *)src_ptr; |
| dst_item = (struct btrfs_inode_item *)dst_ptr; |
| |
| if (btrfs_inode_generation(eb, src_item) == 0) { |
| struct extent_buffer *dst_eb = path->nodes[0]; |
| const u64 ino_size = btrfs_inode_size(eb, src_item); |
| |
| /* |
| * For regular files an ino_size == 0 is used only when |
| * logging that an inode exists, as part of a directory |
| * fsync, and the inode wasn't fsynced before. In this |
| * case don't set the size of the inode in the fs/subvol |
| * tree, otherwise we would be throwing valid data away. |
| */ |
| if (S_ISREG(btrfs_inode_mode(eb, src_item)) && |
| S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && |
| ino_size != 0) |
| btrfs_set_inode_size(dst_eb, dst_item, ino_size); |
| goto no_copy; |
| } |
| |
| if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && |
| S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { |
| save_old_i_size = 1; |
| saved_i_size = btrfs_inode_size(path->nodes[0], |
| dst_item); |
| } |
| } |
| |
| copy_extent_buffer(path->nodes[0], eb, dst_ptr, |
| src_ptr, item_size); |
| |
| if (save_old_i_size) { |
| struct btrfs_inode_item *dst_item; |
| dst_item = (struct btrfs_inode_item *)dst_ptr; |
| btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); |
| } |
| |
| /* make sure the generation is filled in */ |
| if (key->type == BTRFS_INODE_ITEM_KEY) { |
| struct btrfs_inode_item *dst_item; |
| dst_item = (struct btrfs_inode_item *)dst_ptr; |
| if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { |
| btrfs_set_inode_generation(path->nodes[0], dst_item, |
| trans->transid); |
| } |
| } |
| no_copy: |
| btrfs_mark_buffer_dirty(trans, path->nodes[0]); |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, |
| struct fscrypt_str *name) |
| { |
| char *buf; |
| |
| buf = kmalloc(len, GFP_NOFS); |
| if (!buf) |
| return -ENOMEM; |
| |
| read_extent_buffer(eb, buf, (unsigned long)start, len); |
| name->name = buf; |
| name->len = len; |
| return 0; |
| } |
| |
| /* |
| * simple helper to read an inode off the disk from a given root |
| * This can only be called for subvolume roots and not for the log |
| */ |
| static noinline struct inode *read_one_inode(struct btrfs_root *root, |
| u64 objectid) |
| { |
| struct inode *inode; |
| |
| inode = btrfs_iget(root->fs_info->sb, objectid, root); |
| if (IS_ERR(inode)) |
| inode = NULL; |
| return inode; |
| } |
| |
| /* replays a single extent in 'eb' at 'slot' with 'key' into the |
| * subvolume 'root'. path is released on entry and should be released |
| * on exit. |
| * |
| * extents in the log tree have not been allocated out of the extent |
| * tree yet. So, this completes the allocation, taking a reference |
| * as required if the extent already exists or creating a new extent |
| * if it isn't in the extent allocation tree yet. |
| * |
| * The extent is inserted into the file, dropping any existing extents |
| * from the file that overlap the new one. |
| */ |
| static noinline int replay_one_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int found_type; |
| u64 extent_end; |
| u64 start = key->offset; |
| u64 nbytes = 0; |
| struct btrfs_file_extent_item *item; |
| struct inode *inode = NULL; |
| unsigned long size; |
| int ret = 0; |
| |
| item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(eb, item); |
| |
| if (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| nbytes = btrfs_file_extent_num_bytes(eb, item); |
| extent_end = start + nbytes; |
| |
| /* |
| * We don't add to the inodes nbytes if we are prealloc or a |
| * hole. |
| */ |
| if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| nbytes = 0; |
| } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| size = btrfs_file_extent_ram_bytes(eb, item); |
| nbytes = btrfs_file_extent_ram_bytes(eb, item); |
| extent_end = ALIGN(start + size, |
| fs_info->sectorsize); |
| } else { |
| ret = 0; |
| goto out; |
| } |
| |
| inode = read_one_inode(root, key->objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* |
| * first check to see if we already have this extent in the |
| * file. This must be done before the btrfs_drop_extents run |
| * so we don't try to drop this extent. |
| */ |
| ret = btrfs_lookup_file_extent(trans, root, path, |
| btrfs_ino(BTRFS_I(inode)), start, 0); |
| |
| if (ret == 0 && |
| (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC)) { |
| struct btrfs_file_extent_item cmp1; |
| struct btrfs_file_extent_item cmp2; |
| struct btrfs_file_extent_item *existing; |
| struct extent_buffer *leaf; |
| |
| leaf = path->nodes[0]; |
| existing = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| |
| read_extent_buffer(eb, &cmp1, (unsigned long)item, |
| sizeof(cmp1)); |
| read_extent_buffer(leaf, &cmp2, (unsigned long)existing, |
| sizeof(cmp2)); |
| |
| /* |
| * we already have a pointer to this exact extent, |
| * we don't have to do anything |
| */ |
| if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { |
| btrfs_release_path(path); |
| goto out; |
| } |
| } |
| btrfs_release_path(path); |
| |
| /* drop any overlapping extents */ |
| drop_args.start = start; |
| drop_args.end = extent_end; |
| drop_args.drop_cache = true; |
| ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); |
| if (ret) |
| goto out; |
| |
| if (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 offset; |
| unsigned long dest_offset; |
| struct btrfs_key ins; |
| |
| if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && |
| btrfs_fs_incompat(fs_info, NO_HOLES)) |
| goto update_inode; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, key, |
| sizeof(*item)); |
| if (ret) |
| goto out; |
| dest_offset = btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| copy_extent_buffer(path->nodes[0], eb, dest_offset, |
| (unsigned long)item, sizeof(*item)); |
| |
| ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| offset = key->offset - btrfs_file_extent_offset(eb, item); |
| |
| /* |
| * Manually record dirty extent, as here we did a shallow |
| * file extent item copy and skip normal backref update, |
| * but modifying extent tree all by ourselves. |
| * So need to manually record dirty extent for qgroup, |
| * as the owner of the file extent changed from log tree |
| * (doesn't affect qgroup) to fs/file tree(affects qgroup) |
| */ |
| ret = btrfs_qgroup_trace_extent(trans, |
| btrfs_file_extent_disk_bytenr(eb, item), |
| btrfs_file_extent_disk_num_bytes(eb, item)); |
| if (ret < 0) |
| goto out; |
| |
| if (ins.objectid > 0) { |
| struct btrfs_ref ref = { 0 }; |
| u64 csum_start; |
| u64 csum_end; |
| LIST_HEAD(ordered_sums); |
| |
| /* |
| * is this extent already allocated in the extent |
| * allocation tree? If so, just add a reference |
| */ |
| ret = btrfs_lookup_data_extent(fs_info, ins.objectid, |
| ins.offset); |
| if (ret < 0) { |
| goto out; |
| } else if (ret == 0) { |
| btrfs_init_generic_ref(&ref, |
| BTRFS_ADD_DELAYED_REF, |
| ins.objectid, ins.offset, 0, |
| root->root_key.objectid); |
| btrfs_init_data_ref(&ref, |
| root->root_key.objectid, |
| key->objectid, offset, 0, false); |
| ret = btrfs_inc_extent_ref(trans, &ref); |
| if (ret) |
| goto out; |
| } else { |
| /* |
| * insert the extent pointer in the extent |
| * allocation tree |
| */ |
| ret = btrfs_alloc_logged_file_extent(trans, |
| root->root_key.objectid, |
| key->objectid, offset, &ins); |
| if (ret) |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| if (btrfs_file_extent_compression(eb, item)) { |
| csum_start = ins.objectid; |
| csum_end = csum_start + ins.offset; |
| } else { |
| csum_start = ins.objectid + |
| btrfs_file_extent_offset(eb, item); |
| csum_end = csum_start + |
| btrfs_file_extent_num_bytes(eb, item); |
| } |
| |
| ret = btrfs_lookup_csums_list(root->log_root, |
| csum_start, csum_end - 1, |
| &ordered_sums, 0, false); |
| if (ret) |
| goto out; |
| /* |
| * Now delete all existing cums in the csum root that |
| * cover our range. We do this because we can have an |
| * extent that is completely referenced by one file |
| * extent item and partially referenced by another |
| * file extent item (like after using the clone or |
| * extent_same ioctls). In this case if we end up doing |
| * the replay of the one that partially references the |
| * extent first, and we do not do the csum deletion |
| * below, we can get 2 csum items in the csum tree that |
| * overlap each other. For example, imagine our log has |
| * the two following file extent items: |
| * |
| * key (257 EXTENT_DATA 409600) |
| * extent data disk byte 12845056 nr 102400 |
| * extent data offset 20480 nr 20480 ram 102400 |
| * |
| * key (257 EXTENT_DATA 819200) |
| * extent data disk byte 12845056 nr 102400 |
| * extent data offset 0 nr 102400 ram 102400 |
| * |
| * Where the second one fully references the 100K extent |
| * that starts at disk byte 12845056, and the log tree |
| * has a single csum item that covers the entire range |
| * of the extent: |
| * |
| * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 |
| * |
| * After the first file extent item is replayed, the |
| * csum tree gets the following csum item: |
| * |
| * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 |
| * |
| * Which covers the 20K sub-range starting at offset 20K |
| * of our extent. Now when we replay the second file |
| * extent item, if we do not delete existing csum items |
| * that cover any of its blocks, we end up getting two |
| * csum items in our csum tree that overlap each other: |
| * |
| * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 |
| * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 |
| * |
| * Which is a problem, because after this anyone trying |
| * to lookup up for the checksum of any block of our |
| * extent starting at an offset of 40K or higher, will |
| * end up looking at the second csum item only, which |
| * does not contain the checksum for any block starting |
| * at offset 40K or higher of our extent. |
| */ |
| while (!list_empty(&ordered_sums)) { |
| struct btrfs_ordered_sum *sums; |
| struct btrfs_root *csum_root; |
| |
| sums = list_entry(ordered_sums.next, |
| struct btrfs_ordered_sum, |
| list); |
| csum_root = btrfs_csum_root(fs_info, |
| sums->logical); |
| if (!ret) |
| ret = btrfs_del_csums(trans, csum_root, |
| sums->logical, |
| sums->len); |
| if (!ret) |
| ret = btrfs_csum_file_blocks(trans, |
| csum_root, |
| sums); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| if (ret) |
| goto out; |
| } else { |
| btrfs_release_path(path); |
| } |
| } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| /* inline extents are easy, we just overwrite them */ |
| ret = overwrite_item(trans, root, path, eb, slot, key); |
| if (ret) |
| goto out; |
| } |
| |
| ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, |
| extent_end - start); |
| if (ret) |
| goto out; |
| |
| update_inode: |
| btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); |
| ret = btrfs_update_inode(trans, BTRFS_I(inode)); |
| out: |
| iput(inode); |
| return ret; |
| } |
| |
| static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, |
| struct btrfs_inode *inode, |
| const struct fscrypt_str *name) |
| { |
| int ret; |
| |
| ret = btrfs_unlink_inode(trans, dir, inode, name); |
| if (ret) |
| return ret; |
| /* |
| * Whenever we need to check if a name exists or not, we check the |
| * fs/subvolume tree. So after an unlink we must run delayed items, so |
| * that future checks for a name during log replay see that the name |
| * does not exists anymore. |
| */ |
| return btrfs_run_delayed_items(trans); |
| } |
| |
| /* |
| * when cleaning up conflicts between the directory names in the |
| * subvolume, directory names in the log and directory names in the |
| * inode back references, we may have to unlink inodes from directories. |
| * |
| * This is a helper function to do the unlink of a specific directory |
| * item |
| */ |
| static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_inode *dir, |
| struct btrfs_dir_item *di) |
| { |
| struct btrfs_root *root = dir->root; |
| struct inode *inode; |
| struct fscrypt_str name; |
| struct extent_buffer *leaf; |
| struct btrfs_key location; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| |
| btrfs_dir_item_key_to_cpu(leaf, di, &location); |
| ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); |
| if (ret) |
| return -ENOMEM; |
| |
| btrfs_release_path(path); |
| |
| inode = read_one_inode(root, location.objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| ret = link_to_fixup_dir(trans, root, path, location.objectid); |
| if (ret) |
| goto out; |
| |
| ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name); |
| out: |
| kfree(name.name); |
| iput(inode); |
| return ret; |
| } |
| |
| /* |
| * See if a given name and sequence number found in an inode back reference are |
| * already in a directory and correctly point to this inode. |
| * |
| * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it |
| * exists. |
| */ |
| static noinline int inode_in_dir(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 dirid, u64 objectid, u64 index, |
| struct fscrypt_str *name) |
| { |
| struct btrfs_dir_item *di; |
| struct btrfs_key location; |
| int ret = 0; |
| |
| di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, |
| index, name, 0); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } else if (di) { |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| if (location.objectid != objectid) |
| goto out; |
| } else { |
| goto out; |
| } |
| |
| btrfs_release_path(path); |
| di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } else if (di) { |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| if (location.objectid == objectid) |
| ret = 1; |
| } |
| out: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function to check a log tree for a named back reference in |
| * an inode. This is used to decide if a back reference that is |
| * found in the subvolume conflicts with what we find in the log. |
| * |
| * inode backreferences may have multiple refs in a single item, |
| * during replay we process one reference at a time, and we don't |
| * want to delete valid links to a file from the subvolume if that |
| * link is also in the log. |
| */ |
| static noinline int backref_in_log(struct btrfs_root *log, |
| struct btrfs_key *key, |
| u64 ref_objectid, |
| const struct fscrypt_str *name) |
| { |
| struct btrfs_path *path; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_search_slot(NULL, log, key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret == 1) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (key->type == BTRFS_INODE_EXTREF_KEY) |
| ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], |
| path->slots[0], |
| ref_objectid, name); |
| else |
| ret = !!btrfs_find_name_in_backref(path->nodes[0], |
| path->slots[0], name); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static inline int __add_inode_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_root *log_root, |
| struct btrfs_inode *dir, |
| struct btrfs_inode *inode, |
| u64 inode_objectid, u64 parent_objectid, |
| u64 ref_index, struct fscrypt_str *name) |
| { |
| int ret; |
| struct extent_buffer *leaf; |
| struct btrfs_dir_item *di; |
| struct btrfs_key search_key; |
| struct btrfs_inode_extref *extref; |
| |
| again: |
| /* Search old style refs */ |
| search_key.objectid = inode_objectid; |
| search_key.type = BTRFS_INODE_REF_KEY; |
| search_key.offset = parent_objectid; |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret == 0) { |
| struct btrfs_inode_ref *victim_ref; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| |
| leaf = path->nodes[0]; |
| |
| /* are we trying to overwrite a back ref for the root directory |
| * if so, just jump out, we're done |
| */ |
| if (search_key.objectid == search_key.offset) |
| return 1; |
| |
| /* check all the names in this back reference to see |
| * if they are in the log. if so, we allow them to stay |
| * otherwise they must be unlinked as a conflict |
| */ |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); |
| while (ptr < ptr_end) { |
| struct fscrypt_str victim_name; |
| |
| victim_ref = (struct btrfs_inode_ref *)ptr; |
| ret = read_alloc_one_name(leaf, (victim_ref + 1), |
| btrfs_inode_ref_name_len(leaf, victim_ref), |
| &victim_name); |
| if (ret) |
| return ret; |
| |
| ret = backref_in_log(log_root, &search_key, |
| parent_objectid, &victim_name); |
| if (ret < 0) { |
| kfree(victim_name.name); |
| return ret; |
| } else if (!ret) { |
| inc_nlink(&inode->vfs_inode); |
| btrfs_release_path(path); |
| |
| ret = unlink_inode_for_log_replay(trans, dir, inode, |
| &victim_name); |
| kfree(victim_name.name); |
| if (ret) |
| return ret; |
| goto again; |
| } |
| kfree(victim_name.name); |
| |
| ptr = (unsigned long)(victim_ref + 1) + victim_name.len; |
| } |
| } |
| btrfs_release_path(path); |
| |
| /* Same search but for extended refs */ |
| extref = btrfs_lookup_inode_extref(NULL, root, path, name, |
| inode_objectid, parent_objectid, 0, |
| 0); |
| if (IS_ERR(extref)) { |
| return PTR_ERR(extref); |
| } else if (extref) { |
| u32 item_size; |
| u32 cur_offset = 0; |
| unsigned long base; |
| struct inode *victim_parent; |
| |
| leaf = path->nodes[0]; |
| |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| base = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| |
| while (cur_offset < item_size) { |
| struct fscrypt_str victim_name; |
| |
| extref = (struct btrfs_inode_extref *)(base + cur_offset); |
| |
| if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) |
| goto next; |
| |
| ret = read_alloc_one_name(leaf, &extref->name, |
| btrfs_inode_extref_name_len(leaf, extref), |
| &victim_name); |
| if (ret) |
| return ret; |
| |
| search_key.objectid = inode_objectid; |
| search_key.type = BTRFS_INODE_EXTREF_KEY; |
| search_key.offset = btrfs_extref_hash(parent_objectid, |
| victim_name.name, |
| victim_name.len); |
| ret = backref_in_log(log_root, &search_key, |
| parent_objectid, &victim_name); |
| if (ret < 0) { |
| kfree(victim_name.name); |
| return ret; |
| } else if (!ret) { |
| ret = -ENOENT; |
| victim_parent = read_one_inode(root, |
| parent_objectid); |
| if (victim_parent) { |
| inc_nlink(&inode->vfs_inode); |
| btrfs_release_path(path); |
| |
| ret = unlink_inode_for_log_replay(trans, |
| BTRFS_I(victim_parent), |
| inode, &victim_name); |
| } |
| iput(victim_parent); |
| kfree(victim_name.name); |
| if (ret) |
| return ret; |
| goto again; |
| } |
| kfree(victim_name.name); |
| next: |
| cur_offset += victim_name.len + sizeof(*extref); |
| } |
| } |
| btrfs_release_path(path); |
| |
| /* look for a conflicting sequence number */ |
| di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), |
| ref_index, name, 0); |
| if (IS_ERR(di)) { |
| return PTR_ERR(di); |
| } else if (di) { |
| ret = drop_one_dir_item(trans, path, dir, di); |
| if (ret) |
| return ret; |
| } |
| btrfs_release_path(path); |
| |
| /* look for a conflicting name */ |
| di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); |
| if (IS_ERR(di)) { |
| return PTR_ERR(di); |
| } else if (di) { |
| ret = drop_one_dir_item(trans, path, dir, di); |
| if (ret) |
| return ret; |
| } |
| btrfs_release_path(path); |
| |
| return 0; |
| } |
| |
| static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, |
| struct fscrypt_str *name, u64 *index, |
| u64 *parent_objectid) |
| { |
| struct btrfs_inode_extref *extref; |
| int ret; |
| |
| extref = (struct btrfs_inode_extref *)ref_ptr; |
| |
| ret = read_alloc_one_name(eb, &extref->name, |
| btrfs_inode_extref_name_len(eb, extref), name); |
| if (ret) |
| return ret; |
| |
| if (index) |
| *index = btrfs_inode_extref_index(eb, extref); |
| if (parent_objectid) |
| *parent_objectid = btrfs_inode_extref_parent(eb, extref); |
| |
| return 0; |
| } |
| |
| static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, |
| struct fscrypt_str *name, u64 *index) |
| { |
| struct btrfs_inode_ref *ref; |
| int ret; |
| |
| ref = (struct btrfs_inode_ref *)ref_ptr; |
| |
| ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), |
| name); |
| if (ret) |
| return ret; |
| |
| if (index) |
| *index = btrfs_inode_ref_index(eb, ref); |
| |
| return 0; |
| } |
| |
| /* |
| * Take an inode reference item from the log tree and iterate all names from the |
| * inode reference item in the subvolume tree with the same key (if it exists). |
| * For any name that is not in the inode reference item from the log tree, do a |
| * proper unlink of that name (that is, remove its entry from the inode |
| * reference item and both dir index keys). |
| */ |
| static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_inode *inode, |
| struct extent_buffer *log_eb, |
| int log_slot, |
| struct btrfs_key *key) |
| { |
| int ret; |
| unsigned long ref_ptr; |
| unsigned long ref_end; |
| struct extent_buffer *eb; |
| |
| again: |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret > 0) { |
| ret = 0; |
| goto out; |
| } |
| if (ret < 0) |
| goto out; |
| |
| eb = path->nodes[0]; |
| ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); |
| ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); |
| while (ref_ptr < ref_end) { |
| struct fscrypt_str name; |
| u64 parent_id; |
| |
| if (key->type == BTRFS_INODE_EXTREF_KEY) { |
| ret = extref_get_fields(eb, ref_ptr, &name, |
| NULL, &parent_id); |
| } else { |
| parent_id = key->offset; |
| ret = ref_get_fields(eb, ref_ptr, &name, NULL); |
| } |
| if (ret) |
| goto out; |
| |
| if (key->type == BTRFS_INODE_EXTREF_KEY) |
| ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, |
| parent_id, &name); |
| else |
| ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); |
| |
| if (!ret) { |
| struct inode *dir; |
| |
| btrfs_release_path(path); |
| dir = read_one_inode(root, parent_id); |
| if (!dir) { |
| ret = -ENOENT; |
| kfree(name.name); |
| goto out; |
| } |
| ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), |
| inode, &name); |
| kfree(name.name); |
| iput(dir); |
| if (ret) |
| goto out; |
| goto again; |
| } |
| |
| kfree(name.name); |
| ref_ptr += name.len; |
| if (key->type == BTRFS_INODE_EXTREF_KEY) |
| ref_ptr += sizeof(struct btrfs_inode_extref); |
| else |
| ref_ptr += sizeof(struct btrfs_inode_ref); |
| } |
| ret = 0; |
| out: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| /* |
| * replay one inode back reference item found in the log tree. |
| * eb, slot and key refer to the buffer and key found in the log tree. |
| * root is the destination we are replaying into, and path is for temp |
| * use by this function. (it should be released on return). |
| */ |
| static noinline int add_inode_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| struct inode *dir = NULL; |
| struct inode *inode = NULL; |
| unsigned long ref_ptr; |
| unsigned long ref_end; |
| struct fscrypt_str name; |
| int ret; |
| int log_ref_ver = 0; |
| u64 parent_objectid; |
| u64 inode_objectid; |
| u64 ref_index = 0; |
| int ref_struct_size; |
| |
| ref_ptr = btrfs_item_ptr_offset(eb, slot); |
| ref_end = ref_ptr + btrfs_item_size(eb, slot); |
| |
| if (key->type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *r; |
| |
| ref_struct_size = sizeof(struct btrfs_inode_extref); |
| log_ref_ver = 1; |
| r = (struct btrfs_inode_extref *)ref_ptr; |
| parent_objectid = btrfs_inode_extref_parent(eb, r); |
| } else { |
| ref_struct_size = sizeof(struct btrfs_inode_ref); |
| parent_objectid = key->offset; |
| } |
| inode_objectid = key->objectid; |
| |
| /* |
| * it is possible that we didn't log all the parent directories |
| * for a given inode. If we don't find the dir, just don't |
| * copy the back ref in. The link count fixup code will take |
| * care of the rest |
| */ |
| dir = read_one_inode(root, parent_objectid); |
| if (!dir) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| inode = read_one_inode(root, inode_objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| while (ref_ptr < ref_end) { |
| if (log_ref_ver) { |
| ret = extref_get_fields(eb, ref_ptr, &name, |
| &ref_index, &parent_objectid); |
| /* |
| * parent object can change from one array |
| * item to another. |
| */ |
| if (!dir) |
| dir = read_one_inode(root, parent_objectid); |
| if (!dir) { |
| ret = -ENOENT; |
| goto out; |
| } |
| } else { |
| ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); |
| } |
| if (ret) |
| goto out; |
| |
| ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), |
| btrfs_ino(BTRFS_I(inode)), ref_index, &name); |
| if (ret < 0) { |
| goto out; |
| } else if (ret == 0) { |
| /* |
| * look for a conflicting back reference in the |
| * metadata. if we find one we have to unlink that name |
| * of the file before we add our new link. Later on, we |
| * overwrite any existing back reference, and we don't |
| * want to create dangling pointers in the directory. |
| */ |
| ret = __add_inode_ref(trans, root, path, log, |
| BTRFS_I(dir), BTRFS_I(inode), |
| inode_objectid, parent_objectid, |
| ref_index, &name); |
| if (ret) { |
| if (ret == 1) |
| ret = 0; |
| goto out; |
| } |
| |
| /* insert our name */ |
| ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), |
| &name, 0, ref_index); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_update_inode(trans, BTRFS_I(inode)); |
| if (ret) |
| goto out; |
| } |
| /* Else, ret == 1, we already have a perfect match, we're done. */ |
| |
| ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; |
| kfree(name.name); |
| name.name = NULL; |
| if (log_ref_ver) { |
| iput(dir); |
| dir = NULL; |
| } |
| } |
| |
| /* |
| * Before we overwrite the inode reference item in the subvolume tree |
| * with the item from the log tree, we must unlink all names from the |
| * parent directory that are in the subvolume's tree inode reference |
| * item, otherwise we end up with an inconsistent subvolume tree where |
| * dir index entries exist for a name but there is no inode reference |
| * item with the same name. |
| */ |
| ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, |
| key); |
| if (ret) |
| goto out; |
| |
| /* finally write the back reference in the inode */ |
| ret = overwrite_item(trans, root, path, eb, slot, key); |
| out: |
| btrfs_release_path(path); |
| kfree(name.name); |
| iput(dir); |
| iput(inode); |
| return ret; |
| } |
| |
| static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) |
| { |
| int ret = 0; |
| int name_len; |
| unsigned int nlink = 0; |
| u32 item_size; |
| u32 cur_offset = 0; |
| u64 inode_objectid = btrfs_ino(inode); |
| u64 offset = 0; |
| unsigned long ptr; |
| struct btrfs_inode_extref *extref; |
| struct extent_buffer *leaf; |
| |
| while (1) { |
| ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, |
| path, &extref, &offset); |
| if (ret) |
| break; |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| cur_offset = 0; |
| |
| while (cur_offset < item_size) { |
| extref = (struct btrfs_inode_extref *) (ptr + cur_offset); |
| name_len = btrfs_inode_extref_name_len(leaf, extref); |
| |
| nlink++; |
| |
| cur_offset += name_len + sizeof(*extref); |
| } |
| |
| offset++; |
| btrfs_release_path(path); |
| } |
| btrfs_release_path(path); |
| |
| if (ret < 0 && ret != -ENOENT) |
| return ret; |
| return nlink; |
| } |
| |
| static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) |
| { |
| int ret; |
| struct btrfs_key key; |
| unsigned int nlink = 0; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| int name_len; |
| u64 ino = btrfs_ino(inode); |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| process_slot: |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid != ino || |
| key.type != BTRFS_INODE_REF_KEY) |
| break; |
| ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| ptr_end = ptr + btrfs_item_size(path->nodes[0], |
| path->slots[0]); |
| while (ptr < ptr_end) { |
| struct btrfs_inode_ref *ref; |
| |
| ref = (struct btrfs_inode_ref *)ptr; |
| name_len = btrfs_inode_ref_name_len(path->nodes[0], |
| ref); |
| ptr = (unsigned long)(ref + 1) + name_len; |
| nlink++; |
| } |
| |
| if (key.offset == 0) |
| break; |
| if (path->slots[0] > 0) { |
| path->slots[0]--; |
| goto process_slot; |
| } |
| key.offset--; |
| btrfs_release_path(path); |
| } |
| btrfs_release_path(path); |
| |
| return nlink; |
| } |
| |
| /* |
| * There are a few corners where the link count of the file can't |
| * be properly maintained during replay. So, instead of adding |
| * lots of complexity to the log code, we just scan the backrefs |
| * for any file that has been through replay. |
| * |
| * The scan will update the link count on the inode to reflect the |
| * number of back refs found. If it goes down to zero, the iput |
| * will free the inode. |
| */ |
| static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, |
| struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_path *path; |
| int ret; |
| u64 nlink = 0; |
| u64 ino = btrfs_ino(BTRFS_I(inode)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = count_inode_refs(BTRFS_I(inode), path); |
| if (ret < 0) |
| goto out; |
| |
| nlink = ret; |
| |
| ret = count_inode_extrefs(BTRFS_I(inode), path); |
| if (ret < 0) |
| goto out; |
| |
| nlink += ret; |
| |
| ret = 0; |
| |
| if (nlink != inode->i_nlink) { |
| set_nlink(inode, nlink); |
| ret = btrfs_update_inode(trans, BTRFS_I(inode)); |
| if (ret) |
| goto out; |
| } |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| |
| if (inode->i_nlink == 0) { |
| if (S_ISDIR(inode->i_mode)) { |
| ret = replay_dir_deletes(trans, root, NULL, path, |
| ino, 1); |
| if (ret) |
| goto out; |
| } |
| ret = btrfs_insert_orphan_item(trans, root, ino); |
| if (ret == -EEXIST) |
| ret = 0; |
| } |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct inode *inode; |
| |
| key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = (u64)-1; |
| while (1) { |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| break; |
| |
| if (ret == 1) { |
| ret = 0; |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || |
| key.type != BTRFS_ORPHAN_ITEM_KEY) |
| break; |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) |
| break; |
| |
| btrfs_release_path(path); |
| inode = read_one_inode(root, key.offset); |
| if (!inode) { |
| ret = -EIO; |
| break; |
| } |
| |
| ret = fixup_inode_link_count(trans, inode); |
| iput(inode); |
| if (ret) |
| break; |
| |
| /* |
| * fixup on a directory may create new entries, |
| * make sure we always look for the highset possible |
| * offset |
| */ |
| key.offset = (u64)-1; |
| } |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| |
| /* |
| * record a given inode in the fixup dir so we can check its link |
| * count when replay is done. The link count is incremented here |
| * so the inode won't go away until we check it |
| */ |
| static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid) |
| { |
| struct btrfs_key key; |
| int ret = 0; |
| struct inode *inode; |
| |
| inode = read_one_inode(root, objectid); |
| if (!inode) |
| return -EIO; |
| |
| key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = objectid; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, 0); |
| |
| btrfs_release_path(path); |
| if (ret == 0) { |
| if (!inode->i_nlink) |
| set_nlink(inode, 1); |
| else |
| inc_nlink(inode); |
| ret = btrfs_update_inode(trans, BTRFS_I(inode)); |
| } else if (ret == -EEXIST) { |
| ret = 0; |
| } |
| iput(inode); |
| |
| return ret; |
| } |
| |
| /* |
| * when replaying the log for a directory, we only insert names |
| * for inodes that actually exist. This means an fsync on a directory |
| * does not implicitly fsync all the new files in it |
| */ |
| static noinline int insert_one_name(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 dirid, u64 index, |
| const struct fscrypt_str *name, |
| struct btrfs_key *location) |
| { |
| struct inode *inode; |
| struct inode *dir; |
| int ret; |
| |
| inode = read_one_inode(root, location->objectid); |
| if (!inode) |
| return -ENOENT; |
| |
| dir = read_one_inode(root, dirid); |
| if (!dir) { |
| iput(inode); |
| return -EIO; |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, |
| 1, index); |
| |
| /* FIXME, put inode into FIXUP list */ |
| |
| iput(inode); |
| iput(dir); |
| return ret; |
| } |
| |
| static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, |
| struct btrfs_path *path, |
| struct btrfs_dir_item *dst_di, |
| const struct btrfs_key *log_key, |
| u8 log_flags, |
| bool exists) |
| { |
| struct btrfs_key found_key; |
| |
| btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); |
| /* The existing dentry points to the same inode, don't delete it. */ |
| if (found_key.objectid == log_key->objectid && |
| found_key.type == log_key->type && |
| found_key.offset == log_key->offset && |
| btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) |
| return 1; |
| |
| /* |
| * Don't drop the conflicting directory entry if the inode for the new |
| * entry doesn't exist. |
| */ |
| if (!exists) |
| return 0; |
| |
| return drop_one_dir_item(trans, path, dir, dst_di); |
| } |
| |
| /* |
| * take a single entry in a log directory item and replay it into |
| * the subvolume. |
| * |
| * if a conflicting item exists in the subdirectory already, |
| * the inode it points to is unlinked and put into the link count |
| * fix up tree. |
| * |
| * If a name from the log points to a file or directory that does |
| * not exist in the FS, it is skipped. fsyncs on directories |
| * do not force down inodes inside that directory, just changes to the |
| * names or unlinks in a directory. |
| * |
| * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a |
| * non-existing inode) and 1 if the name was replayed. |
| */ |
| static noinline int replay_one_name(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, |
| struct btrfs_dir_item *di, |
| struct btrfs_key *key) |
| { |
| struct fscrypt_str name; |
| struct btrfs_dir_item *dir_dst_di; |
| struct btrfs_dir_item *index_dst_di; |
| bool dir_dst_matches = false; |
| bool index_dst_matches = false; |
| struct btrfs_key log_key; |
| struct btrfs_key search_key; |
| struct inode *dir; |
| u8 log_flags; |
| bool exists; |
| int ret; |
| bool update_size = true; |
| bool name_added = false; |
| |
| dir = read_one_inode(root, key->objectid); |
| if (!dir) |
| return -EIO; |
| |
| ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); |
| if (ret) |
| goto out; |
| |
| log_flags = btrfs_dir_flags(eb, di); |
| btrfs_dir_item_key_to_cpu(eb, di, &log_key); |
| ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); |
| btrfs_release_path(path); |
| if (ret < 0) |
| goto out; |
| exists = (ret == 0); |
| ret = 0; |
| |
| dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, |
| &name, 1); |
| if (IS_ERR(dir_dst_di)) { |
| ret = PTR_ERR(dir_dst_di); |
| goto out; |
| } else if (dir_dst_di) { |
| ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, |
| dir_dst_di, &log_key, |
| log_flags, exists); |
| if (ret < 0) |
| goto out; |
| dir_dst_matches = (ret == 1); |
| } |
| |
| btrfs_release_path(path); |
| |
| index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, |
| key->objectid, key->offset, |
| &name, 1); |
| if (IS_ERR(index_dst_di)) { |
| ret = PTR_ERR(index_dst_di); |
| goto out; |
| } else if (index_dst_di) { |
| ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, |
| index_dst_di, &log_key, |
| log_flags, exists); |
| if (ret < 0) |
| goto out; |
| index_dst_matches = (ret == 1); |
| } |
| |
| btrfs_release_path(path); |
| |
| if (dir_dst_matches && index_dst_matches) { |
| ret = 0; |
| update_size = false; |
| goto out; |
| } |
| |
| /* |
| * Check if the inode reference exists in the log for the given name, |
| * inode and parent inode |
| */ |
| search_key.objectid = log_key.objectid; |
| search_key.type = BTRFS_INODE_REF_KEY; |
| search_key.offset = key->objectid; |
| ret = backref_in_log(root->log_root, &search_key, 0, &name); |
| if (ret < 0) { |
| goto out; |
| } else if (ret) { |
| /* The dentry will be added later. */ |
| ret = 0; |
| update_size = false; |
| goto out; |
| } |
| |
| search_key.objectid = log_key.objectid; |
| search_key.type = BTRFS_INODE_EXTREF_KEY; |
| search_key.offset = key->objectid; |
| ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); |
| if (ret < 0) { |
| goto out; |
| } else if (ret) { |
| /* The dentry will be added later. */ |
| ret = 0; |
| update_size = false; |
| goto out; |
| } |
| btrfs_release_path(path); |
| ret = insert_one_name(trans, root, key->objectid, key->offset, |
| &name, &log_key); |
| if (ret && ret != -ENOENT && ret != -EEXIST) |
| goto out; |
| if (!ret) |
| name_added = true; |
| update_size = false; |
| ret = 0; |
| |
| out: |
| if (!ret && update_size) { |
| btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2); |
| ret = btrfs_update_inode(trans, BTRFS_I(dir)); |
| } |
| kfree(name.name); |
| iput(dir); |
| if (!ret && name_added) |
| ret = 1; |
| return ret; |
| } |
| |
| /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ |
| static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| int ret; |
| struct btrfs_dir_item *di; |
| |
| /* We only log dir index keys, which only contain a single dir item. */ |
| ASSERT(key->type == BTRFS_DIR_INDEX_KEY); |
| |
| di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); |
| ret = replay_one_name(trans, root, path, eb, di, key); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * If this entry refers to a non-directory (directories can not have a |
| * link count > 1) and it was added in the transaction that was not |
| * committed, make sure we fixup the link count of the inode the entry |
| * points to. Otherwise something like the following would result in a |
| * directory pointing to an inode with a wrong link that does not account |
| * for this dir entry: |
| * |
| * mkdir testdir |
| * touch testdir/foo |
| * touch testdir/bar |
| * sync |
| * |
| * ln testdir/bar testdir/bar_link |
| * ln testdir/foo testdir/foo_link |
| * xfs_io -c "fsync" testdir/bar |
| * |
| * <power failure> |
| * |
| * mount fs, log replay happens |
| * |
| * File foo would remain with a link count of 1 when it has two entries |
| * pointing to it in the directory testdir. This would make it impossible |
| * to ever delete the parent directory has it would result in stale |
| * dentries that can never be deleted. |
| */ |
| if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { |
| struct btrfs_path *fixup_path; |
| struct btrfs_key di_key; |
| |
| fixup_path = btrfs_alloc_path(); |
| if (!fixup_path) |
| return -ENOMEM; |
| |
| btrfs_dir_item_key_to_cpu(eb, di, &di_key); |
| ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); |
| btrfs_free_path(fixup_path); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * directory replay has two parts. There are the standard directory |
| * items in the log copied from the subvolume, and range items |
| * created in the log while the subvolume was logged. |
| * |
| * The range items tell us which parts of the key space the log |
| * is authoritative for. During replay, if a key in the subvolume |
| * directory is in a logged range item, but not actually in the log |
| * that means it was deleted from the directory before the fsync |
| * and should be removed. |
| */ |
| static noinline int find_dir_range(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 dirid, |
| u64 *start_ret, u64 *end_ret) |
| { |
| struct btrfs_key key; |
| u64 found_end; |
| struct btrfs_dir_log_item *item; |
| int ret; |
| int nritems; |
| |
| if (*start_ret == (u64)-1) |
| return 1; |
| |
| key.objectid = dirid; |
| key.type = BTRFS_DIR_LOG_INDEX_KEY; |
| key.offset = *start_ret; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| goto out; |
| path->slots[0]--; |
| } |
| if (ret != 0) |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| |
| if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { |
| ret = 1; |
| goto next; |
| } |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_log_item); |
| found_end = btrfs_dir_log_end(path->nodes[0], item); |
| |
| if (*start_ret >= key.offset && *start_ret <= found_end) { |
| ret = 0; |
| *start_ret = key.offset; |
| *end_ret = found_end; |
| goto out; |
| } |
| ret = 1; |
| next: |
| /* check the next slot in the tree to see if it is a valid item */ |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| path->slots[0]++; |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret) |
| goto out; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| |
| if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { |
| ret = 1; |
| goto out; |
| } |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_log_item); |
| found_end = btrfs_dir_log_end(path->nodes[0], item); |
| *start_ret = key.offset; |
| *end_ret = found_end; |
| ret = 0; |
| out: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| /* |
| * this looks for a given directory item in the log. If the directory |
| * item is not in the log, the item is removed and the inode it points |
| * to is unlinked |
| */ |
| static noinline int check_item_in_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| struct btrfs_path *log_path, |
| struct inode *dir, |
| struct btrfs_key *dir_key) |
| { |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| int ret; |
| struct extent_buffer *eb; |
| int slot; |
| struct btrfs_dir_item *di; |
| struct fscrypt_str name; |
| struct inode *inode = NULL; |
| struct btrfs_key location; |
| |
| /* |
| * Currently we only log dir index keys. Even if we replay a log created |
| * by an older kernel that logged both dir index and dir item keys, all |
| * we need to do is process the dir index keys, we (and our caller) can |
| * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). |
| */ |
| ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); |
| |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); |
| ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); |
| if (ret) |
| goto out; |
| |
| if (log) { |
| struct btrfs_dir_item *log_di; |
| |
| log_di = btrfs_lookup_dir_index_item(trans, log, log_path, |
| dir_key->objectid, |
| dir_key->offset, &name, 0); |
| if (IS_ERR(log_di)) { |
| ret = PTR_ERR(log_di); |
| goto out; |
| } else if (log_di) { |
| /* The dentry exists in the log, we have nothing to do. */ |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| btrfs_dir_item_key_to_cpu(eb, di, &location); |
| btrfs_release_path(path); |
| btrfs_release_path(log_path); |
| inode = read_one_inode(root, location.objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| ret = link_to_fixup_dir(trans, root, path, location.objectid); |
| if (ret) |
| goto out; |
| |
| inc_nlink(inode); |
| ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode), |
| &name); |
| /* |
| * Unlike dir item keys, dir index keys can only have one name (entry) in |
| * them, as there are no key collisions since each key has a unique offset |
| * (an index number), so we're done. |
| */ |
| out: |
| btrfs_release_path(path); |
| btrfs_release_path(log_path); |
| kfree(name.name); |
| iput(inode); |
| return ret; |
| } |
| |
| static int replay_xattr_deletes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| const u64 ino) |
| { |
| struct btrfs_key search_key; |
| struct btrfs_path *log_path; |
| int i; |
| int nritems; |
| int ret; |
| |
| log_path = btrfs_alloc_path(); |
| if (!log_path) |
| return -ENOMEM; |
| |
| search_key.objectid = ino; |
| search_key.type = BTRFS_XATTR_ITEM_KEY; |
| search_key.offset = 0; |
| again: |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| process_leaf: |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| for (i = path->slots[0]; i < nritems; i++) { |
| struct btrfs_key key; |
| struct btrfs_dir_item *di; |
| struct btrfs_dir_item *log_di; |
| u32 total_size; |
| u32 cur; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, i); |
| if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { |
| ret = 0; |
| goto out; |
| } |
| |
| di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); |
| total_size = btrfs_item_size(path->nodes[0], i); |
| cur = 0; |
| while (cur < total_size) { |
| u16 name_len = btrfs_dir_name_len(path->nodes[0], di); |
| u16 data_len = btrfs_dir_data_len(path->nodes[0], di); |
| u32 this_len = sizeof(*di) + name_len + data_len; |
| char *name; |
| |
| name = kmalloc(name_len, GFP_NOFS); |
| if (!name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| read_extent_buffer(path->nodes[0], name, |
| (unsigned long)(di + 1), name_len); |
| |
| log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, |
| name, name_len, 0); |
| btrfs_release_path(log_path); |
| if (!log_di) { |
| /* Doesn't exist in log tree, so delete it. */ |
| btrfs_release_path(path); |
| di = btrfs_lookup_xattr(trans, root, path, ino, |
| name, name_len, -1); |
| kfree(name); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| ASSERT(di); |
| ret = btrfs_delete_one_dir_name(trans, root, |
| path, di); |
| if (ret) |
| goto out; |
| btrfs_release_path(path); |
| search_key = key; |
| goto again; |
| } |
| kfree(name); |
| if (IS_ERR(log_di)) { |
| ret = PTR_ERR(log_di); |
| goto out; |
| } |
| cur += this_len; |
| di = (struct btrfs_dir_item *)((char *)di + this_len); |
| } |
| } |
| ret = btrfs_next_leaf(root, path); |
| if (ret > 0) |
| ret = 0; |
| else if (ret == 0) |
| goto process_leaf; |
| out: |
| btrfs_free_path(log_path); |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| |
| /* |
| * deletion replay happens before we copy any new directory items |
| * out of the log or out of backreferences from inodes. It |
| * scans the log to find ranges of keys that log is authoritative for, |
| * and then scans the directory to find items in those ranges that are |
| * not present in the log. |
| * |
| * Anything we don't find in the log is unlinked and removed from the |
| * directory. |
| */ |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 dirid, int del_all) |
| { |
| u64 range_start; |
| u64 range_end; |
| int ret = 0; |
| struct btrfs_key dir_key; |
| struct btrfs_key found_key; |
| struct btrfs_path *log_path; |
| struct inode *dir; |
| |
| dir_key.objectid = dirid; |
| dir_key.type = BTRFS_DIR_INDEX_KEY; |
| log_path = btrfs_alloc_path(); |
| if (!log_path) |
| return -ENOMEM; |
| |
| dir = read_one_inode(root, dirid); |
| /* it isn't an error if the inode isn't there, that can happen |
| * because we replay the deletes before we copy in the inode item |
| * from the log |
| */ |
| if (!dir) { |
| btrfs_free_path(log_path); |
| return 0; |
| } |
| |
| range_start = 0; |
| range_end = 0; |
| while (1) { |
| if (del_all) |
| range_end = (u64)-1; |
| else { |
| ret = find_dir_range(log, path, dirid, |
| &range_start, &range_end); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| } |
| |
| dir_key.offset = range_start; |
| while (1) { |
| int nritems; |
| ret = btrfs_search_slot(NULL, root, &dir_key, path, |
| 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 1) |
| break; |
| else if (ret < 0) |
| goto out; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| if (found_key.objectid != dirid || |
| found_key.type != dir_key.type) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (found_key.offset > range_end) |
| break; |
| |
| ret = check_item_in_log(trans, log, path, |
| log_path, dir, |
| &found_key); |
| if (ret) |
| goto out; |
| if (found_key.offset == (u64)-1) |
| break; |
| dir_key.offset = found_key.offset + 1; |
| } |
| btrfs_release_path(path); |
| if (range_end == (u64)-1) |
| break; |
| range_start = range_end + 1; |
| } |
| ret = 0; |
| out: |
| btrfs_release_path(path); |
| btrfs_free_path(log_path); |
| iput(dir); |
| return ret; |
| } |
| |
| /* |
| * the process_func used to replay items from the log tree. This |
| * gets called in two different stages. The first stage just looks |
| * for inodes and makes sure they are all copied into the subvolume. |
| * |
| * The second stage copies all the other item types from the log into |
| * the subvolume. The two stage approach is slower, but gets rid of |
| * lots of complexity around inodes referencing other inodes that exist |
| * only in the log (references come from either directory items or inode |
| * back refs). |
| */ |
| static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, |
| struct walk_control *wc, u64 gen, int level) |
| { |
| int nritems; |
| struct btrfs_tree_parent_check check = { |
| .transid = gen, |
| .level = level |
| }; |
| struct btrfs_path *path; |
| struct btrfs_root *root = wc->replay_dest; |
| struct btrfs_key key; |
| int i; |
| int ret; |
| |
| ret = btrfs_read_extent_buffer(eb, &check); |
| if (ret) |
| return ret; |
| |
| level = btrfs_header_level(eb); |
| |
| if (level != 0) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| nritems = btrfs_header_nritems(eb); |
| for (i = 0; i < nritems; i++) { |
| btrfs_item_key_to_cpu(eb, &key, i); |
| |
| /* inode keys are done during the first stage */ |
| if (key.type == BTRFS_INODE_ITEM_KEY && |
| wc->stage == LOG_WALK_REPLAY_INODES) { |
| struct btrfs_inode_item *inode_item; |
| u32 mode; |
| |
| inode_item = btrfs_item_ptr(eb, i, |
| struct btrfs_inode_item); |
| /* |
| * If we have a tmpfile (O_TMPFILE) that got fsync'ed |
| * and never got linked before the fsync, skip it, as |
| * replaying it is pointless since it would be deleted |
| * later. We skip logging tmpfiles, but it's always |
| * possible we are replaying a log created with a kernel |
| * that used to log tmpfiles. |
| */ |
| if (btrfs_inode_nlink(eb, inode_item) == 0) { |
| wc->ignore_cur_inode = true; |
| continue; |
| } else { |
| wc->ignore_cur_inode = false; |
| } |
| ret = replay_xattr_deletes(wc->trans, root, log, |
| path, key.objectid); |
| if (ret) |
| break; |
| mode = btrfs_inode_mode(eb, inode_item); |
| if (S_ISDIR(mode)) { |
| ret = replay_dir_deletes(wc->trans, |
| root, log, path, key.objectid, 0); |
| if (ret) |
| break; |
| } |
| ret = overwrite_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| |
| /* |
| * Before replaying extents, truncate the inode to its |
| * size. We need to do it now and not after log replay |
| * because before an fsync we can have prealloc extents |
| * added beyond the inode's i_size. If we did it after, |
| * through orphan cleanup for example, we would drop |
| * those prealloc extents just after replaying them. |
| */ |
| if (S_ISREG(mode)) { |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| struct inode *inode; |
| u64 from; |
| |
| inode = read_one_inode(root, key.objectid); |
| if (!inode) { |
| ret = -EIO; |
| break; |
| } |
| from = ALIGN(i_size_read(inode), |
| root->fs_info->sectorsize); |
| drop_args.start = from; |
| drop_args.end = (u64)-1; |
| drop_args.drop_cache = true; |
| ret = btrfs_drop_extents(wc->trans, root, |
| BTRFS_I(inode), |
| &drop_args); |
| if (!ret) { |
| inode_sub_bytes(inode, |
| drop_args.bytes_found); |
| /* Update the inode's nbytes. */ |
| ret = btrfs_update_inode(wc->trans, |
| BTRFS_I(inode)); |
| } |
| iput(inode); |
| if (ret) |
| break; |
| } |
| |
| ret = link_to_fixup_dir(wc->trans, root, |
| path, key.objectid); |
| if (ret) |
| break; |
| } |
| |
| if (wc->ignore_cur_inode) |
| continue; |
| |
| if (key.type == BTRFS_DIR_INDEX_KEY && |
| wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { |
| ret = replay_one_dir_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } |
| |
| if (wc->stage < LOG_WALK_REPLAY_ALL) |
| continue; |
| |
| /* these keys are simply copied */ |
| if (key.type == BTRFS_XATTR_ITEM_KEY) { |
| ret = overwrite_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } else if (key.type == BTRFS_INODE_REF_KEY || |
| key.type == BTRFS_INODE_EXTREF_KEY) { |
| ret = add_inode_ref(wc->trans, root, log, path, |
| eb, i, &key); |
| if (ret && ret != -ENOENT) |
| break; |
| ret = 0; |
| } else if (key.type == BTRFS_EXTENT_DATA_KEY) { |
| ret = replay_one_extent(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } |
| /* |
| * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the |
| * BTRFS_DIR_INDEX_KEY items which we use to derive the |
| * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an |
| * older kernel with such keys, ignore them. |
| */ |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Correctly adjust the reserved bytes occupied by a log tree extent buffer |
| */ |
| static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) |
| { |
| struct btrfs_block_group *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, start); |
| if (!cache) { |
| btrfs_err(fs_info, "unable to find block group for %llu", start); |
| return; |
| } |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->reserved -= fs_info->nodesize; |
| cache->space_info->bytes_reserved -= fs_info->nodesize; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| btrfs_put_block_group(cache); |
| } |
| |
| static int clean_log_buffer(struct btrfs_trans_handle *trans, |
| struct extent_buffer *eb) |
| { |
| int ret; |
| |
| btrfs_tree_lock(eb); |
| btrfs_clear_buffer_dirty(trans, eb); |
| wait_on_extent_buffer_writeback(eb); |
| btrfs_tree_unlock(eb); |
| |
| if (trans) { |
| ret = btrfs_pin_reserved_extent(trans, eb); |
| if (ret) |
| return ret; |
| } else { |
| unaccount_log_buffer(eb->fs_info, eb->start); |
| } |
| |
| return 0; |
| } |
| |
| static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int *level, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 bytenr; |
| u64 ptr_gen; |
| struct extent_buffer *next; |
| struct extent_buffer *cur; |
| int ret = 0; |
| |
| while (*level > 0) { |
| struct btrfs_tree_parent_check check = { 0 }; |
| |
| cur = path->nodes[*level]; |
| |
| WARN_ON(btrfs_header_level(cur) != *level); |
| |
| if (path->slots[*level] >= |
| btrfs_header_nritems(cur)) |
| break; |
| |
| bytenr = btrfs_node_blockptr(cur, path->slots[*level]); |
| ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); |
| check.transid = ptr_gen; |
| check.level = *level - 1; |
| check.has_first_key = true; |
| btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); |
| |
| next = btrfs_find_create_tree_block(fs_info, bytenr, |
| btrfs_header_owner(cur), |
| *level - 1); |
| if (IS_ERR(next)) |
| return PTR_ERR(next); |
| |
| if (*level == 1) { |
| ret = wc->process_func(root, next, wc, ptr_gen, |
| *level - 1); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| |
| path->slots[*level]++; |
| if (wc->free) { |
| ret = btrfs_read_extent_buffer(next, &check); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| |
| ret = clean_log_buffer(trans, next); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| } |
| free_extent_buffer(next); |
| continue; |
| } |
| ret = btrfs_read_extent_buffer(next, &check); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| |
| if (path->nodes[*level-1]) |
| free_extent_buffer(path->nodes[*level-1]); |
| path->nodes[*level-1] = next; |
| *level = btrfs_header_level(next); |
| path->slots[*level] = 0; |
| cond_resched(); |
| } |
| path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); |
| |
| cond_resched(); |
| return 0; |
| } |
| |
| static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int *level, |
| struct walk_control *wc) |
| { |
| int i; |
| int slot; |
| int ret; |
| |
| for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { |
| slot = path->slots[i]; |
| if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { |
| path->slots[i]++; |
| *level = i; |
| WARN_ON(*level == 0); |
| return 0; |
| } else { |
| ret = wc->process_func(root, path->nodes[*level], wc, |
| btrfs_header_generation(path->nodes[*level]), |
| *level); |
| if (ret) |
| return ret; |
| |
| if (wc->free) { |
| ret = clean_log_buffer(trans, path->nodes[*level]); |
| if (ret) |
| return ret; |
| } |
| free_extent_buffer(path->nodes[*level]); |
| path->nodes[*level] = NULL; |
| *level = i + 1; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * drop the reference count on the tree rooted at 'snap'. This traverses |
| * the tree freeing any blocks that have a ref count of zero after being |
| * decremented. |
| */ |
| static int walk_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, struct walk_control *wc) |
| { |
| int ret = 0; |
| int wret; |
| int level; |
| struct btrfs_path *path; |
| int orig_level; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| level = btrfs_header_level(log->node); |
| orig_level = level; |
| path->nodes[level] = log->node; |
| atomic_inc(&log->node->refs); |
| path->slots[level] = 0; |
| |
| while (1) { |
| wret = walk_down_log_tree(trans, log, path, &level, wc); |
| if (wret > 0) |
| break; |
| if (wret < 0) { |
| ret = wret; |
| goto out; |
| } |
| |
| wret = walk_up_log_tree(trans, log, path, &level, wc); |
| if (wret > 0) |
| break; |
| if (wret < 0) { |
| ret = wret; |
| goto out; |
| } |
| } |
| |
| /* was the root node processed? if not, catch it here */ |
| if (path->nodes[orig_level]) { |
| ret = wc->process_func(log, path->nodes[orig_level], wc, |
| btrfs_header_generation(path->nodes[orig_level]), |
| orig_level); |
| if (ret) |
| goto out; |
| if (wc->free) |
| ret = clean_log_buffer(trans, path->nodes[orig_level]); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function to update the item for a given subvolumes log root |
| * in the tree of log roots |
| */ |
| static int update_log_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_root_item *root_item) |
| { |
| struct btrfs_fs_info *fs_info = log->fs_info; |
| int ret; |
| |
| if (log->log_transid == 1) { |
| /* insert root item on the first sync */ |
| ret = btrfs_insert_root(trans, fs_info->log_root_tree, |
| &log->root_key, root_item); |
| } else { |
| ret = btrfs_update_root(trans, fs_info->log_root_tree, |
| &log->root_key, root_item); |
| } |
| return ret; |
| } |
| |
| static void wait_log_commit(struct btrfs_root *root, int transid) |
| { |
| DEFINE_WAIT(wait); |
| int index = transid % 2; |
| |
| /* |
| * we only allow two pending log transactions at a time, |
| * so we know that if ours is more than 2 older than the |
| * current transaction, we're done |
| */ |
| for (;;) { |
| prepare_to_wait(&root->log_commit_wait[index], |
| &wait, TASK_UNINTERRUPTIBLE); |
| |
| if (!(root->log_transid_committed < transid && |
| atomic_read(&root->log_commit[index]))) |
| break; |
| |
| mutex_unlock(&root->log_mutex); |
| schedule(); |
| mutex_lock(&root->log_mutex); |
| } |
| finish_wait(&root->log_commit_wait[index], &wait); |
| } |
| |
| static void wait_for_writer(struct btrfs_root *root) |
| { |
| DEFINE_WAIT(wait); |
| |
| for (;;) { |
| prepare_to_wait(&root->log_writer_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| if (!atomic_read(&root->log_writers)) |
| break; |
| |
| mutex_unlock(&root->log_mutex); |
| schedule(); |
| mutex_lock(&root->log_mutex); |
| } |
| finish_wait(&root->log_writer_wait, &wait); |
| } |
| |
| void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode) |
| { |
| ctx->log_ret = 0; |
| ctx->log_transid = 0; |
| ctx->log_new_dentries = false; |
| ctx->logging_new_name = false; |
| ctx->logging_new_delayed_dentries = false; |
| ctx->logged_before = false; |
| ctx->inode = inode; |
| INIT_LIST_HEAD(&ctx->list); |
| INIT_LIST_HEAD(&ctx->ordered_extents); |
| INIT_LIST_HEAD(&ctx->conflict_inodes); |
| ctx->num_conflict_inodes = 0; |
| ctx->logging_conflict_inodes = false; |
| ctx->scratch_eb = NULL; |
| } |
| |
| void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_inode *inode = BTRFS_I(ctx->inode); |
| |
| if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && |
| !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) |
| return; |
| |
| /* |
| * Don't care about allocation failure. This is just for optimization, |
| * if we fail to allocate here, we will try again later if needed. |
| */ |
| ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); |
| } |
| |
| void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_ordered_extent *tmp; |
| |
| ASSERT(inode_is_locked(ctx->inode)); |
| |
| list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { |
| list_del_init(&ordered->log_list); |
| btrfs_put_ordered_extent(ordered); |
| } |
| } |
| |
| |
| static inline void btrfs_remove_log_ctx(struct btrfs_root *root, |
| struct btrfs_log_ctx *ctx) |
| { |
| mutex_lock(&root->log_mutex); |
| list_del_init(&ctx->list); |
| mutex_unlock(&root->log_mutex); |
| } |
| |
| /* |
| * Invoked in log mutex context, or be sure there is no other task which |
| * can access the list. |
| */ |
| static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, |
| int index, int error) |
| { |
| struct btrfs_log_ctx *ctx; |
| struct btrfs_log_ctx *safe; |
| |
| list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { |
| list_del_init(&ctx->list); |
| ctx->log_ret = error; |
| } |
| } |
| |
| /* |
| * Sends a given tree log down to the disk and updates the super blocks to |
| * record it. When this call is done, you know that any inodes previously |
| * logged are safely on disk only if it returns 0. |
| * |
| * Any other return value means you need to call btrfs_commit_transaction. |
| * Some of the edge cases for fsyncing directories that have had unlinks |
| * or renames done in the past mean that sometimes the only safe |
| * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, |
| * that has happened. |
| */ |
| int btrfs_sync_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_log_ctx *ctx) |
| { |
| int index1; |
| int index2; |
| int mark; |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *log = root->log_root; |
| struct btrfs_root *log_root_tree = fs_info->log_root_tree; |
| struct btrfs_root_item new_root_item; |
| int log_transid = 0; |
| struct btrfs_log_ctx root_log_ctx; |
| struct blk_plug plug; |
| u64 log_root_start; |
| u64 log_root_level; |
| |
| mutex_lock(&root->log_mutex); |
| log_transid = ctx->log_transid; |
| if (root->log_transid_committed >= log_transid) { |
| mutex_unlock(&root->log_mutex); |
| return ctx->log_ret; |
| } |
| |
| index1 = log_transid % 2; |
| if (atomic_read(&root->log_commit[index1])) { |
| wait_log_commit(root, log_transid); |
| mutex_unlock(&root->log_mutex); |
| return ctx->log_ret; |
| } |
| ASSERT(log_transid == root->log_transid); |
| atomic_set(&root->log_commit[index1], 1); |
| |
| /* wait for previous tree log sync to complete */ |
| if (atomic_read(&root->log_commit[(index1 + 1) % 2])) |
| wait_log_commit(root, log_transid - 1); |
| |
| while (1) { |
| int batch = atomic_read(&root->log_batch); |
| /* when we're on an ssd, just kick the log commit out */ |
| if (!btrfs_test_opt(fs_info, SSD) && |
| test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { |
| mutex_unlock(&root->log_mutex); |
| schedule_timeout_uninterruptible(1); |
| mutex_lock(&root->log_mutex); |
| } |
| wait_for_writer(root); |
| if (batch == atomic_read(&root->log_batch)) |
| break; |
| } |
| |
| /* bail out if we need to do a full commit */ |
| if (btrfs_need_log_full_commit(trans)) { |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| mutex_unlock(&root->log_mutex); |
| goto out; |
| } |
| |
| if (log_transid % 2 == 0) |
| mark = EXTENT_DIRTY; |
| else |
| mark = EXTENT_NEW; |
| |
| /* we start IO on all the marked extents here, but we don't actually |
| * wait for them until later. |
| */ |
| blk_start_plug(&plug); |
| ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); |
| /* |
| * -EAGAIN happens when someone, e.g., a concurrent transaction |
| * commit, writes a dirty extent in this tree-log commit. This |
| * concurrent write will create a hole writing out the extents, |
| * and we cannot proceed on a zoned filesystem, requiring |
| * sequential writing. While we can bail out to a full commit |
| * here, but we can continue hoping the concurrent writing fills |
| * the hole. |
| */ |
| if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) |
| ret = 0; |
| if (ret) { |
| blk_finish_plug(&plug); |
| btrfs_set_log_full_commit(trans); |
| mutex_unlock(&root->log_mutex); |
| goto out; |
| } |
| |
| /* |
| * We _must_ update under the root->log_mutex in order to make sure we |
| * have a consistent view of the log root we are trying to commit at |
| * this moment. |
| * |
| * We _must_ copy this into a local copy, because we are not holding the |
| * log_root_tree->log_mutex yet. This is important because when we |
| * commit the log_root_tree we must have a consistent view of the |
| * log_root_tree when we update the super block to point at the |
| * log_root_tree bytenr. If we update the log_root_tree here we'll race |
| * with the commit and possibly point at the new block which we may not |
| * have written out. |
| */ |
| btrfs_set_root_node(&log->root_item, log->node); |
| memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); |
| |
| btrfs_set_root_log_transid(root, root->log_transid + 1); |
| log->log_transid = root->log_transid; |
| root->log_start_pid = 0; |
| /* |
| * IO has been started, blocks of the log tree have WRITTEN flag set |
| * in their headers. new modifications of the log will be written to |
| * new positions. so it's safe to allow log writers to go in. |
| */ |
| mutex_unlock(&root->log_mutex); |
| |
| if (btrfs_is_zoned(fs_info)) { |
| mutex_lock(&fs_info->tree_root->log_mutex); |
| if (!log_root_tree->node) { |
| ret = btrfs_alloc_log_tree_node(trans, log_root_tree); |
| if (ret) { |
| mutex_unlock(&fs_info->tree_root->log_mutex); |
| blk_finish_plug(&plug); |
| goto out; |
| } |
| } |
| mutex_unlock(&fs_info->tree_root->log_mutex); |
| } |
| |
| btrfs_init_log_ctx(&root_log_ctx, NULL); |
| |
| mutex_lock(&log_root_tree->log_mutex); |
| |
| index2 = log_root_tree->log_transid % 2; |
| list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); |
| root_log_ctx.log_transid = log_root_tree->log_transid; |
| |
| /* |
| * Now we are safe to update the log_root_tree because we're under the |
| * log_mutex, and we're a current writer so we're holding the commit |
| * open until we drop the log_mutex. |
| */ |
| ret = update_log_root(trans, log, &new_root_item); |
| if (ret) { |
| list_del_init(&root_log_ctx.list); |
| blk_finish_plug(&plug); |
| btrfs_set_log_full_commit(trans); |
| if (ret != -ENOSPC) |
| btrfs_err(fs_info, |
| "failed to update log for root %llu ret %d", |
| root->root_key.objectid, ret); |
| btrfs_wait_tree_log_extents(log, mark); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out; |
| } |
| |
| if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { |
| blk_finish_plug(&plug); |
| list_del_init(&root_log_ctx.list); |
| mutex_unlock(&log_root_tree->log_mutex); |
| ret = root_log_ctx.log_ret; |
| goto out; |
| } |
| |
| if (atomic_read(&log_root_tree->log_commit[index2])) { |
| blk_finish_plug(&plug); |
| ret = btrfs_wait_tree_log_extents(log, mark); |
| wait_log_commit(log_root_tree, |
| root_log_ctx.log_transid); |
| mutex_unlock(&log_root_tree->log_mutex); |
| if (!ret) |
| ret = root_log_ctx.log_ret; |
| goto out; |
| } |
| ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); |
| atomic_set(&log_root_tree->log_commit[index2], 1); |
| |
| if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { |
| wait_log_commit(log_root_tree, |
| root_log_ctx.log_transid - 1); |
| } |
| |
| /* |
| * now that we've moved on to the tree of log tree roots, |
| * check the full commit flag again |
| */ |
| if (btrfs_need_log_full_commit(trans)) { |
| blk_finish_plug(&plug); |
| btrfs_wait_tree_log_extents(log, mark); |
| mutex_unlock(&log_root_tree->log_mutex); |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| goto out_wake_log_root; |
| } |
| |
| ret = btrfs_write_marked_extents(fs_info, |
| &log_root_tree->dirty_log_pages, |
| EXTENT_DIRTY | EXTENT_NEW); |
| blk_finish_plug(&plug); |
| /* |
| * As described above, -EAGAIN indicates a hole in the extents. We |
| * cannot wait for these write outs since the waiting cause a |
| * deadlock. Bail out to the full commit instead. |
| */ |
| if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { |
| btrfs_set_log_full_commit(trans); |
| btrfs_wait_tree_log_extents(log, mark); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out_wake_log_root; |
| } else if (ret) { |
| btrfs_set_log_full_commit(trans); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out_wake_log_root; |
| } |
| ret = btrfs_wait_tree_log_extents(log, mark); |
| if (!ret) |
| ret = btrfs_wait_tree_log_extents(log_root_tree, |
| EXTENT_NEW | EXTENT_DIRTY); |
| if (ret) { |
| btrfs_set_log_full_commit(trans); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out_wake_log_root; |
| } |
| |
| log_root_start = log_root_tree->node->start; |
| log_root_level = btrfs_header_level(log_root_tree->node); |
| log_root_tree->log_transid++; |
| mutex_unlock(&log_root_tree->log_mutex); |
| |
| /* |
| * Here we are guaranteed that nobody is going to write the superblock |
| * for the current transaction before us and that neither we do write |
| * our superblock before the previous transaction finishes its commit |
| * and writes its superblock, because: |
| * |
| * 1) We are holding a handle on the current transaction, so no body |
| * can commit it until we release the handle; |
| * |
| * 2) Before writing our superblock we acquire the tree_log_mutex, so |
| * if the previous transaction is still committing, and hasn't yet |
| * written its superblock, we wait for it to do it, because a |
| * transaction commit acquires the tree_log_mutex when the commit |
| * begins and releases it only after writing its superblock. |
| */ |
| mutex_lock(&fs_info->tree_log_mutex); |
| |
| /* |
| * The previous transaction writeout phase could have failed, and thus |
| * marked the fs in an error state. We must not commit here, as we |
| * could have updated our generation in the super_for_commit and |
| * writing the super here would result in transid mismatches. If there |
| * is an error here just bail. |
| */ |
| if (BTRFS_FS_ERROR(fs_info)) { |
| ret = -EIO; |
| btrfs_set_log_full_commit(trans); |
| btrfs_abort_transaction(trans, ret); |
| mutex_unlock(&fs_info->tree_log_mutex); |
| goto out_wake_log_root; |
| } |
| |
| btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); |
| btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); |
| ret = write_all_supers(fs_info, 1); |
| mutex_unlock(&fs_info->tree_log_mutex); |
| if (ret) { |
| btrfs_set_log_full_commit(trans); |
| btrfs_abort_transaction(trans, ret); |
| goto out_wake_log_root; |
| } |
| |
| /* |
| * We know there can only be one task here, since we have not yet set |
| * root->log_commit[index1] to 0 and any task attempting to sync the |
| * log must wait for the previous log transaction to commit if it's |
| * still in progress or wait for the current log transaction commit if |
| * someone else already started it. We use <= and not < because the |
| * first log transaction has an ID of 0. |
| */ |
| ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); |
| btrfs_set_root_last_log_commit(root, log_transid); |
| |
| out_wake_log_root: |
| mutex_lock(&log_root_tree->log_mutex); |
| btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); |
| |
| log_root_tree->log_transid_committed++; |
| atomic_set(&log_root_tree->log_commit[index2], 0); |
| mutex_unlock(&log_root_tree->log_mutex); |
| |
| /* |
| * The barrier before waitqueue_active (in cond_wake_up) is needed so |
| * all the updates above are seen by the woken threads. It might not be |
| * necessary, but proving that seems to be hard. |
| */ |
| cond_wake_up(&log_root_tree->log_commit_wait[index2]); |
| out: |
| mutex_lock(&root->log_mutex); |
| btrfs_remove_all_log_ctxs(root, index1, ret); |
| root->log_transid_committed++; |
| atomic_set(&root->log_commit[index1], 0); |
| mutex_unlock(&root->log_mutex); |
| |
| /* |
| * The barrier before waitqueue_active (in cond_wake_up) is needed so |
| * all the updates above are seen by the woken threads. It might not be |
| * necessary, but proving that seems to be hard. |
| */ |
| cond_wake_up(&root->log_commit_wait[index1]); |
| return ret; |
| } |
| |
| static void free_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log) |
| { |
| int ret; |
| struct walk_control wc = { |
| .free = 1, |
| .process_func = process_one_buffer |
| }; |
| |
| if (log->node) { |
| ret = walk_log_tree(trans, log, &wc); |
| if (ret) { |
| /* |
| * We weren't able to traverse the entire log tree, the |
| * typical scenario is getting an -EIO when reading an |
| * extent buffer of the tree, due to a previous writeback |
| * failure of it. |
| */ |
| set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, |
| &log->fs_info->fs_state); |
| |
| /* |
| * Some extent buffers of the log tree may still be dirty |
| * and not yet written back to storage, because we may |
| * have updates to a log tree without syncing a log tree, |
| * such as during rename and link operations. So flush |
| * them out and wait for their writeback to complete, so |
| * that we properly cleanup their state and pages. |
| */ |
| btrfs_write_marked_extents(log->fs_info, |
| &log->dirty_log_pages, |
| EXTENT_DIRTY | EXTENT_NEW); |
| btrfs_wait_tree_log_extents(log, |
| EXTENT_DIRTY | EXTENT_NEW); |
| |
| if (trans) |
| btrfs_abort_transaction(trans, ret); |
| else |
| btrfs_handle_fs_error(log->fs_info, ret, NULL); |
| } |
| } |
| |
| extent_io_tree_release(&log->dirty_log_pages); |
| extent_io_tree_release(&log->log_csum_range); |
| |
| btrfs_put_root(log); |
| } |
| |
| /* |
| * free all the extents used by the tree log. This should be called |
| * at commit time of the full transaction |
| */ |
| int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) |
| { |
| if (root->log_root) { |
| free_log_tree(trans, root->log_root); |
| root->log_root = NULL; |
| clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); |
| } |
| return 0; |
| } |
| |
| int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| if (fs_info->log_root_tree) { |
| free_log_tree(trans, fs_info->log_root_tree); |
| fs_info->log_root_tree = NULL; |
| clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); |
| } |
| return 0; |
| } |
| |
| /* |
| * Check if an inode was logged in the current transaction. This correctly deals |
| * with the case where the inode was logged but has a logged_trans of 0, which |
| * happens if the inode is evicted and loaded again, as logged_trans is an in |
| * memory only field (not persisted). |
| * |
| * Returns 1 if the inode was logged before in the transaction, 0 if it was not, |
| * and < 0 on error. |
| */ |
| static int inode_logged(const struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path_in) |
| { |
| struct btrfs_path *path = path_in; |
| struct btrfs_key key; |
| int ret; |
| |
| if (inode->logged_trans == trans->transid) |
| return 1; |
| |
| /* |
| * If logged_trans is not 0, then we know the inode logged was not logged |
| * in this transaction, so we can return false right away. |
| */ |
| if (inode->logged_trans > 0) |
| return 0; |
| |
| /* |
| * If no log tree was created for this root in this transaction, then |
| * the inode can not have been logged in this transaction. In that case |
| * set logged_trans to anything greater than 0 and less than the current |
| * transaction's ID, to avoid the search below in a future call in case |
| * a log tree gets created after this. |
| */ |
| if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { |
| inode->logged_trans = trans->transid - 1; |
| return 0; |
| } |
| |
| /* |
| * We have a log tree and the inode's logged_trans is 0. We can't tell |
| * for sure if the inode was logged before in this transaction by looking |
| * only at logged_trans. We could be pessimistic and assume it was, but |
| * that can lead to unnecessarily logging an inode during rename and link |
| * operations, and then further updating the log in followup rename and |
| * link operations, specially if it's a directory, which adds latency |
| * visible to applications doing a series of rename or link operations. |
| * |
| * A logged_trans of 0 here can mean several things: |
| * |
| * 1) The inode was never logged since the filesystem was mounted, and may |
| * or may have not been evicted and loaded again; |
| * |
| * 2) The inode was logged in a previous transaction, then evicted and |
| * then loaded again; |
| * |
| * 3) The inode was logged in the current transaction, then evicted and |
| * then loaded again. |
| * |
| * For cases 1) and 2) we don't want to return true, but we need to detect |
| * case 3) and return true. So we do a search in the log root for the inode |
| * item. |
| */ |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| if (!path) { |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| } |
| |
| ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); |
| |
| if (path_in) |
| btrfs_release_path(path); |
| else |
| btrfs_free_path(path); |
| |
| /* |
| * Logging an inode always results in logging its inode item. So if we |
| * did not find the item we know the inode was not logged for sure. |
| */ |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0) { |
| /* |
| * Set logged_trans to a value greater than 0 and less then the |
| * current transaction to avoid doing the search in future calls. |
| */ |
| inode->logged_trans = trans->transid - 1; |
| return 0; |
| } |
| |
| /* |
| * The inode was previously logged and then evicted, set logged_trans to |
| * the current transacion's ID, to avoid future tree searches as long as |
| * the inode is not evicted again. |
| */ |
| inode->logged_trans = trans->transid; |
| |
| /* |
| * If it's a directory, then we must set last_dir_index_offset to the |
| * maximum possible value, so that the next attempt to log the inode does |
| * not skip checking if dir index keys found in modified subvolume tree |
| * leaves have been logged before, otherwise it would result in attempts |
| * to insert duplicate dir index keys in the log tree. This must be done |
| * because last_dir_index_offset is an in-memory only field, not persisted |
| * in the inode item or any other on-disk structure, so its value is lost |
| * once the inode is evicted. |
| */ |
| if (S_ISDIR(inode->vfs_inode.i_mode)) |
| inode->last_dir_index_offset = (u64)-1; |
| |
| return 1; |
| } |
| |
| /* |
| * Delete a directory entry from the log if it exists. |
| * |
| * Returns < 0 on error |
| * 1 if the entry does not exists |
| * 0 if the entry existed and was successfully deleted |
| */ |
| static int del_logged_dentry(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 dir_ino, |
| const struct fscrypt_str *name, |
| u64 index) |
| { |
| struct btrfs_dir_item *di; |
| |
| /* |
| * We only log dir index items of a directory, so we don't need to look |
| * for dir item keys. |
| */ |
| di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, |
| index, name, -1); |
| if (IS_ERR(di)) |
| return PTR_ERR(di); |
| else if (!di) |
| return 1; |
| |
| /* |
| * We do not need to update the size field of the directory's |
| * inode item because on log replay we update the field to reflect |
| * all existing entries in the directory (see overwrite_item()). |
| */ |
| return btrfs_delete_one_dir_name(trans, log, path, di); |
| } |
| |
| /* |
| * If both a file and directory are logged, and unlinks or renames are |
| * mixed in, we have a few interesting corners: |
| * |
| * create file X in dir Y |
| * link file X to X.link in dir Y |
| * fsync file X |
| * unlink file X but leave X.link |
| * fsync dir Y |
| * |
| * After a crash we would expect only X.link to exist. But file X |
| * didn't get fsync'd again so the log has back refs for X and X.link. |
| * |
| * We solve this by removing directory entries and inode backrefs from the |
| * log when a file that was logged in the current transaction is |
| * unlinked. Any later fsync will include the updated log entries, and |
| * we'll be able to reconstruct the proper directory items from backrefs. |
| * |
| * This optimizations allows us to avoid relogging the entire inode |
| * or the entire directory. |
| */ |
| void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| const struct fscrypt_str *name, |
| struct btrfs_inode *dir, u64 index) |
| { |
| struct btrfs_path *path; |
| int ret; |
| |
| ret = inode_logged(trans, dir, NULL); |
| if (ret == 0) |
| return; |
| else if (ret < 0) { |
| btrfs_set_log_full_commit(trans); |
| return; |
| } |
| |
| ret = join_running_log_trans(root); |
| if (ret) |
| return; |
| |
| mutex_lock(&dir->log_mutex); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), |
| name, index); |
| btrfs_free_path(path); |
| out_unlock: |
| mutex_unlock(&dir->log_mutex); |
| if (ret < 0) |
| btrfs_set_log_full_commit(trans); |
| btrfs_end_log_trans(root); |
| } |
| |
| /* see comments for btrfs_del_dir_entries_in_log */ |
| void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| const struct fscrypt_str *name, |
| struct btrfs_inode *inode, u64 dirid) |
| { |
| struct btrfs_root *log; |
| u64 index; |
| int ret; |
| |
| ret = inode_logged(trans, inode, NULL); |
| if (ret == 0) |
| return; |
| else if (ret < 0) { |
| btrfs_set_log_full_commit(trans); |
| return; |
| } |
| |
| ret = join_running_log_trans(root); |
| if (ret) |
| return; |
| log = root->log_root; |
| mutex_lock(&inode->log_mutex); |
| |
| ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), |
| dirid, &index); |
| mutex_unlock(&inode->log_mutex); |
| if (ret < 0 && ret != -ENOENT) |
| btrfs_set_log_full_commit(trans); |
| btrfs_end_log_trans(root); |
| } |
| |
| /* |
| * creates a range item in the log for 'dirid'. first_offset and |
| * last_offset tell us which parts of the key space the log should |
| * be considered authoritative for. |
| */ |
| static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 dirid, |
| u64 first_offset, u64 last_offset) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_dir_log_item *item; |
| |
| key.objectid = dirid; |
| key.offset = first_offset; |
| key.type = BTRFS_DIR_LOG_INDEX_KEY; |
| ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); |
| /* |
| * -EEXIST is fine and can happen sporadically when we are logging a |
| * directory and have concurrent insertions in the subvolume's tree for |
| * items from other inodes and that result in pushing off some dir items |
| * from one leaf to another in order to accommodate for the new items. |
| * This results in logging the same dir index range key. |
| */ |
| if (ret && ret != -EEXIST) |
| return ret; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_log_item); |
| if (ret == -EEXIST) { |
| const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); |
| |
| /* |
| * btrfs_del_dir_entries_in_log() might have been called during |
| * an unlink between the initial insertion of this key and the |
| * current update, or we might be logging a single entry deletion |
| * during a rename, so set the new last_offset to the max value. |
| */ |
| last_offset = max(last_offset, curr_end); |
| } |
| btrfs_set_dir_log_end(path->nodes[0], item, last_offset); |
| btrfs_mark_buffer_dirty(trans, path->nodes[0]); |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| static int flush_dir_items_batch(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct extent_buffer *src, |
| struct btrfs_path *dst_path, |
| int start_slot, |
| int count) |
| { |
| struct btrfs_root *log = inode->root->log_root; |
| char *ins_data = NULL; |
| struct btrfs_item_batch batch; |
| struct extent_buffer *dst; |
| unsigned long src_offset; |
| unsigned long dst_offset; |
| u64 last_index; |
| struct btrfs_key key; |
| u32 item_size; |
| int ret; |
| int i; |
| |
| ASSERT(count > 0); |
| batch.nr = count; |
| |
| if (count == 1) { |
| btrfs_item_key_to_cpu(src, &key, start_slot); |
| item_size = btrfs_item_size(src, start_slot); |
| batch.keys = &key; |
| batch.data_sizes = &item_size; |
| batch.total_data_size = item_size; |
| } else { |
| struct btrfs_key *ins_keys; |
| u32 *ins_sizes; |
| |
| ins_data = kmalloc(count * sizeof(u32) + |
| count * sizeof(struct btrfs_key), GFP_NOFS); |
| if (!ins_data) |
| return -ENOMEM; |
| |
| ins_sizes = (u32 *)ins_data; |
| ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); |
| batch.keys = ins_keys; |
| batch.data_sizes = ins_sizes; |
| batch.total_data_size = 0; |
| |
| for (i = 0; i < count; i++) { |
| const int slot = start_slot + i; |
| |
| btrfs_item_key_to_cpu(src, &ins_keys[i], slot); |
| ins_sizes[i] = btrfs_item_size(src, slot); |
| batch.total_data_size += ins_sizes[i]; |
| } |
| } |
| |
| ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); |
| if (ret) |
| goto out; |
| |
| dst = dst_path->nodes[0]; |
| /* |
| * Copy all the items in bulk, in a single copy operation. Item data is |
| * organized such that it's placed at the end of a leaf and from right |
| * to left. For example, the data for the second item ends at an offset |
| * that matches the offset where the data for the first item starts, the |
| * data for the third item ends at an offset that matches the offset |
| * where the data of the second items starts, and so on. |
| * Therefore our source and destination start offsets for copy match the |
| * offsets of the last items (highest slots). |
| */ |
| dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); |
| src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); |
| copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); |
| btrfs_release_path(dst_path); |
| |
| last_index = batch.keys[count - 1].offset; |
| ASSERT(last_index > inode->last_dir_index_offset); |
| |
| /* |
| * If for some unexpected reason the last item's index is not greater |
| * than the last index we logged, warn and force a transaction commit. |
| */ |
| if (WARN_ON(last_index <= inode->last_dir_index_offset)) |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| else |
| inode->last_dir_index_offset = last_index; |
| |
| if (btrfs_get_first_dir_index_to_log(inode) == 0) |
| btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); |
| out: |
| kfree(ins_data); |
| |
| return ret; |
| } |
| |
| static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) |
| { |
| const int slot = path->slots[0]; |
| |
| if (ctx->scratch_eb) { |
| copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); |
| } else { |
| ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); |
| if (!ctx->scratch_eb) |
| return -ENOMEM; |
| } |
| |
| btrfs_release_path(path); |
| path->nodes[0] = ctx->scratch_eb; |
| path->slots[0] = slot; |
| /* |
| * Add extra ref to scratch eb so that it is not freed when callers |
| * release the path, so we can reuse it later if needed. |
| */ |
| atomic_inc(&ctx->scratch_eb->refs); |
| |
| return 0; |
| } |
| |
| static int process_dir_items_leaf(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, |
| struct btrfs_log_ctx *ctx, |
| u64 *last_old_dentry_offset) |
| { |
| struct btrfs_root *log = inode->root->log_root; |
| struct extent_buffer *src; |
| const int nritems = btrfs_header_nritems(path->nodes[0]); |
| const u64 ino = btrfs_ino(inode); |
| bool last_found = false; |
| int batch_start = 0; |
| int batch_size = 0; |
| int ret; |
| |
| /* |
| * We need to clone the leaf, release the read lock on it, and use the |
| * clone before modifying the log tree. See the comment at copy_items() |
| * about why we need to do this. |
| */ |
| ret = clone_leaf(path, ctx); |
| if (ret < 0) |
| return ret; |
| |
| src = path->nodes[0]; |
| |
| for (int i = path->slots[0]; i < nritems; i++) { |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| int ret; |
| |
| btrfs_item_key_to_cpu(src, &key, i); |
| |
| if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { |
| last_found = true; |
| break; |
| } |
| |
| di = btrfs_item_ptr(src, i, struct btrfs_dir_item); |
| |
| /* |
| * Skip ranges of items that consist only of dir item keys created |
| * in past transactions. However if we find a gap, we must log a |
| * dir index range item for that gap, so that index keys in that |
| * gap are deleted during log replay. |
| */ |
| if (btrfs_dir_transid(src, di) < trans->transid) { |
| if (key.offset > *last_old_dentry_offset + 1) { |
| ret = insert_dir_log_key(trans, log, dst_path, |
| ino, *last_old_dentry_offset + 1, |
| key.offset - 1); |
| if (ret < 0) |
| return ret; |
| } |
| |
| *last_old_dentry_offset = key.offset; |
| continue; |
| } |
| |
| /* If we logged this dir index item before, we can skip it. */ |
| if (key.offset <= inode->last_dir_index_offset) |
| continue; |
| |
| /* |
| * We must make sure that when we log a directory entry, the |
| * corresponding inode, after log replay, has a matching link |
| * count. For example: |
| * |
| * touch foo |
| * mkdir mydir |
| * sync |
| * ln foo mydir/bar |
| * xfs_io -c "fsync" mydir |
| * <crash> |
| * <mount fs and log replay> |
| * |
| * Would result in a fsync log that when replayed, our file inode |
| * would have a link count of 1, but we get two directory entries |
| * pointing to the same inode. After removing one of the names, |
| * it would not be possible to remove the other name, which |
| * resulted always in stale file handle errors, and would not be |
| * possible to rmdir the parent directory, since its i_size could |
| * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, |
| * resulting in -ENOTEMPTY errors. |
| */ |
| if (!ctx->log_new_dentries) { |
| struct btrfs_key di_key; |
| |
| btrfs_dir_item_key_to_cpu(src, di, &di_key); |
| if (di_key.type != BTRFS_ROOT_ITEM_KEY) |
| ctx->log_new_dentries = true; |
| } |
| |
| if (batch_size == 0) |
| batch_start = i; |
| batch_size++; |
| } |
| |
| if (batch_size > 0) { |
| int ret; |
| |
| ret = flush_dir_items_batch(trans, inode, src, dst_path, |
| batch_start, batch_size); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return last_found ? 1 : 0; |
| } |
| |
| /* |
| * log all the items included in the current transaction for a given |
| * directory. This also creates the range items in the log tree required |
| * to replay anything deleted before the fsync |
| */ |
| static noinline int log_dir_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, |
| struct btrfs_log_ctx *ctx, |
| u64 min_offset, u64 *last_offset_ret) |
| { |
| struct btrfs_key min_key; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_root *log = root->log_root; |
| int ret; |
| u64 last_old_dentry_offset = min_offset - 1; |
| u64 last_offset = (u64)-1; |
| u64 ino = btrfs_ino(inode); |
| |
| min_key.objectid = ino; |
| min_key.type = BTRFS_DIR_INDEX_KEY; |
| min_key.offset = min_offset; |
| |
| ret = btrfs_search_forward(root, &min_key, path, trans->transid); |
| |
| /* |
| * we didn't find anything from this transaction, see if there |
| * is anything at all |
| */ |
| if (ret != 0 || min_key.objectid != ino || |
| min_key.type != BTRFS_DIR_INDEX_KEY) { |
| min_key.objectid = ino; |
| min_key.type = BTRFS_DIR_INDEX_KEY; |
| min_key.offset = (u64)-1; |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
| if (ret < 0) { |
| btrfs_release_path(path); |
| return ret; |
| } |
| ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); |
| |
| /* if ret == 0 there are items for this type, |
| * create a range to tell us the last key of this type. |
| * otherwise, there are no items in this directory after |
| * *min_offset, and we create a range to indicate that. |
| */ |
| if (ret == 0) { |
| struct btrfs_key tmp; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &tmp, |
| path->slots[0]); |
| if (tmp.type == BTRFS_DIR_INDEX_KEY) |
| last_old_dentry_offset = tmp.offset; |
| } else if (ret > 0) { |
| ret = 0; |
| } |
| |
| goto done; |
| } |
| |
| /* go backward to find any previous key */ |
| ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); |
| if (ret == 0) { |
| struct btrfs_key tmp; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); |
| /* |
| * The dir index key before the first one we found that needs to |
| * be logged might be in a previous leaf, and there might be a |
| * gap between these keys, meaning that we had deletions that |
| * happened. So the key range item we log (key type |
| * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the |
| * previous key's offset plus 1, so that those deletes are replayed. |
| */ |
| if (tmp.type == BTRFS_DIR_INDEX_KEY) |
| last_old_dentry_offset = tmp.offset; |
| } else if (ret < 0) { |
| goto done; |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Find the first key from this transaction again or the one we were at |
| * in the loop below in case we had to reschedule. We may be logging the |
| * directory without holding its VFS lock, which happen when logging new |
| * dentries (through log_new_dir_dentries()) or in some cases when we |
| * need to log the parent directory of an inode. This means a dir index |
| * key might be deleted from the inode's root, and therefore we may not |
| * find it anymore. If we can't find it, just move to the next key. We |
| * can not bail out and ignore, because if we do that we will simply |
| * not log dir index keys that come after the one that was just deleted |
| * and we can end up logging a dir index range that ends at (u64)-1 |
| * (@last_offset is initialized to that), resulting in removing dir |
| * entries we should not remove at log replay time. |
| */ |
| search: |
| ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
| if (ret > 0) { |
| ret = btrfs_next_item(root, path); |
| if (ret > 0) { |
| /* There are no more keys in the inode's root. */ |
| ret = 0; |
| goto done; |
| } |
| } |
| if (ret < 0) |
| goto done; |
| |
| /* |
| * we have a block from this transaction, log every item in it |
| * from our directory |
| */ |
| while (1) { |
| ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, |
| &last_old_dentry_offset); |
| if (ret != 0) { |
| if (ret > 0) |
| ret = 0; |
| goto done; |
| } |
| path->slots[0] = btrfs_header_nritems(path->nodes[0]); |
| |
| /* |
| * look ahead to the next item and see if it is also |
| * from this directory and from this transaction |
| */ |
| ret = btrfs_next_leaf(root, path); |
| if (ret) { |
| if (ret == 1) { |
| last_offset = (u64)-1; |
| ret = 0; |
| } |
| goto done; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); |
| if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { |
| last_offset = (u64)-1; |
| goto done; |
| } |
| if (btrfs_header_generation(path->nodes[0]) != trans->transid) { |
| /* |
| * The next leaf was not changed in the current transaction |
| * and has at least one dir index key. |
| * We check for the next key because there might have been |
| * one or more deletions between the last key we logged and |
| * that next key. So the key range item we log (key type |
| * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's |
| * offset minus 1, so that those deletes are replayed. |
| */ |
| last_offset = min_key.offset - 1; |
| goto done; |
| } |
| if (need_resched()) { |
| btrfs_release_path(path); |
| cond_resched(); |
| goto search; |
| } |
| } |
| done: |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| |
| if (ret == 0) { |
| *last_offset_ret = last_offset; |
| /* |
| * In case the leaf was changed in the current transaction but |
| * all its dir items are from a past transaction, the last item |
| * in the leaf is a dir item and there's no gap between that last |
| * dir item and the first one on the next leaf (which did not |
| * change in the current transaction), then we don't need to log |
| * a range, last_old_dentry_offset is == to last_offset. |
| */ |
| ASSERT(last_old_dentry_offset <= last_offset); |
| if (last_old_dentry_offset < last_offset) |
| ret = insert_dir_log_key(trans, log, path, ino, |
| last_old_dentry_offset + 1, |
| last_offset); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * If the inode was logged before and it was evicted, then its |
| * last_dir_index_offset is (u64)-1, so we don't the value of the last index |
| * key offset. If that's the case, search for it and update the inode. This |
| * is to avoid lookups in the log tree every time we try to insert a dir index |
| * key from a leaf changed in the current transaction, and to allow us to always |
| * do batch insertions of dir index keys. |
| */ |
| static int update_last_dir_index_offset(struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| const struct btrfs_log_ctx *ctx) |
| { |
| const u64 ino = btrfs_ino(inode); |
| struct btrfs_key key; |
| int ret; |
| |
| lockdep_assert_held(&inode->log_mutex); |
| |
| if (inode->last_dir_index_offset != (u64)-1) |
| return 0; |
| |
| if (!ctx->logged_before) { |
| inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; |
| return 0; |
| } |
| |
| key.objectid = ino; |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); |
| /* |
| * An error happened or we actually have an index key with an offset |
| * value of (u64)-1. Bail out, we're done. |
| */ |
| if (ret <= 0) |
| goto out; |
| |
| ret = 0; |
| inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; |
| |
| /* |
| * No dir index items, bail out and leave last_dir_index_offset with |
| * the value right before the first valid index value. |
| */ |
| if (path->slots[0] == 0) |
| goto out; |
| |
| /* |
| * btrfs_search_slot() left us at one slot beyond the slot with the last |
| * index key, or beyond the last key of the directory that is not an |
| * index key. If we have an index key before, set last_dir_index_offset |
| * to its offset value, otherwise leave it with a value right before the |
| * first valid index value, as it means we have an empty directory. |
| */ |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); |
| if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) |
| inode->last_dir_index_offset = key.offset; |
| |
| out: |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| /* |
| * logging directories is very similar to logging inodes, We find all the items |
| * from the current transaction and write them to the log. |
| * |
| * The recovery code scans the directory in the subvolume, and if it finds a |
| * key in the range logged that is not present in the log tree, then it means |
| * that dir entry was unlinked during the transaction. |
| * |
| * In order for that scan to work, we must include one key smaller than |
| * the smallest logged by this transaction and one key larger than the largest |
| * key logged by this transaction. |
| */ |
| static noinline int log_directory_changes(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, |
| struct btrfs_log_ctx *ctx) |
| { |
| u64 min_key; |
| u64 max_key; |
| int ret; |
| |
| ret = update_last_dir_index_offset(inode, path, ctx); |
| if (ret) |
| return ret; |
| |
| min_key = BTRFS_DIR_START_INDEX; |
| max_key = 0; |
| |
| while (1) { |
| ret = log_dir_items(trans, inode, path, dst_path, |
| ctx, min_key, &max_key); |
| if (ret) |
| return ret; |
| if (max_key == (u64)-1) |
| break; |
| min_key = max_key + 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * a helper function to drop items from the log before we relog an |
| * inode. max_key_type indicates the highest item type to remove. |
| * This cannot be run for file data extents because it does not |
| * free the extents they point to. |
| */ |
| static int drop_inode_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| struct btrfs_inode *inode, |
| int max_key_type) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| int start_slot; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = max_key_type; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
| if (ret < 0) { |
| break; |
| } else if (ret > 0) { |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| |
| if (found_key.objectid != key.objectid) |
| break; |
| |
| found_key.offset = 0; |
| found_key.type = 0; |
| ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); |
| if (ret < 0) |
| break; |
| |
| ret = btrfs_del_items(trans, log, path, start_slot, |
| path->slots[0] - start_slot + 1); |
| /* |
| * If start slot isn't 0 then we don't need to re-search, we've |
| * found the last guy with the objectid in this tree. |
| */ |
| if (ret || start_slot != 0) |
| break; |
| btrfs_release_path(path); |
| } |
| btrfs_release_path(path); |
| if (ret > 0) |
| ret = 0; |
| return ret; |
| } |
| |
| static int truncate_inode_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log_root, |
| struct btrfs_inode *inode, |
| u64 new_size, u32 min_type) |
| { |
| struct btrfs_truncate_control control = { |
| .new_size = new_size, |
| .ino = btrfs_ino(inode), |
| .min_type = min_type, |
| .skip_ref_updates = true, |
| }; |
| |
| return btrfs_truncate_inode_items(trans, log_root, &control); |
| } |
| |
| static void fill_inode_item(struct btrfs_trans_handle *trans, |
| struct extent_buffer *leaf, |
| struct btrfs_inode_item *item, |
| struct inode *inode, int log_inode_only, |
| u64 logged_isize) |
| { |
| struct btrfs_map_token token; |
| u64 flags; |
| |
| btrfs_init_map_token(&token, leaf); |
| |
| if (log_inode_only) { |
| /* set the generation to zero so the recover code |
| * can tell the difference between an logging |
| * just to say 'this inode exists' and a logging |
| * to say 'update this inode with these values' |
| */ |
| btrfs_set_token_inode_generation(&token, item, 0); |
| btrfs_set_token_inode_size(&token, item, logged_isize); |
| } else { |
| btrfs_set_token_inode_generation(&token, item, |
| BTRFS_I(inode)->generation); |
| btrfs_set_token_inode_size(&token, item, inode->i_size); |
| } |
| |
| btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); |
| btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); |
| btrfs_set_token_inode_mode(&token, item, inode->i_mode); |
| btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); |
| |
| btrfs_set_token_timespec_sec(&token, &item->atime, |
| inode_get_atime_sec(inode)); |
| btrfs_set_token_timespec_nsec(&token, &item->atime, |
| inode_get_atime_nsec(inode)); |
| |
| btrfs_set_token_timespec_sec(&token, &item->mtime, |
| inode_get_mtime_sec(inode)); |
| btrfs_set_token_timespec_nsec(&token, &item->mtime, |
| inode_get_mtime_nsec(inode)); |
| |
| btrfs_set_token_timespec_sec(&token, &item->ctime, |
| inode_get_ctime_sec(inode)); |
| btrfs_set_token_timespec_nsec(&token, &item->ctime, |
| inode_get_ctime_nsec(inode)); |
| |
| /* |
| * We do not need to set the nbytes field, in fact during a fast fsync |
| * its value may not even be correct, since a fast fsync does not wait |
| * for ordered extent completion, which is where we update nbytes, it |
| * only waits for writeback to complete. During log replay as we find |
| * file extent items and replay them, we adjust the nbytes field of the |
| * inode item in subvolume tree as needed (see overwrite_item()). |
| */ |
| |
| btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); |
| btrfs_set_token_inode_transid(&token, item, trans->transid); |
| btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); |
| flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, |
| BTRFS_I(inode)->ro_flags); |
| btrfs_set_token_inode_flags(&token, item, flags); |
| btrfs_set_token_inode_block_group(&token, item, 0); |
| } |
| |
| static int log_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, struct btrfs_path *path, |
| struct btrfs_inode *inode, bool inode_item_dropped) |
| { |
| struct btrfs_inode_item *inode_item; |
| int ret; |
| |
| /* |
| * If we are doing a fast fsync and the inode was logged before in the |
| * current transaction, then we know the inode was previously logged and |
| * it exists in the log tree. For performance reasons, in this case use |
| * btrfs_search_slot() directly with ins_len set to 0 so that we never |
| * attempt a write lock on the leaf's parent, which adds unnecessary lock |
| * contention in case there are concurrent fsyncs for other inodes of the |
| * same subvolume. Using btrfs_insert_empty_item() when the inode item |
| * already exists can also result in unnecessarily splitting a leaf. |
| */ |
| if (!inode_item_dropped && inode->logged_trans == trans->transid) { |
| ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); |
| ASSERT(ret <= 0); |
| if (ret > 0) |
| ret = -ENOENT; |
| } else { |
| /* |
| * This means it is the first fsync in the current transaction, |
| * so the inode item is not in the log and we need to insert it. |
| * We can never get -EEXIST because we are only called for a fast |
| * fsync and in case an inode eviction happens after the inode was |
| * logged before in the current transaction, when we load again |
| * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime |
| * flags and set ->logged_trans to 0. |
| */ |
| ret = btrfs_insert_empty_item(trans, log, path, &inode->location, |
| sizeof(*inode_item)); |
| ASSERT(ret != -EEXIST); |
| } |
| if (ret) |
| return ret; |
| inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, |
| 0, 0); |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| static int log_csums(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_root *log_root, |
| struct btrfs_ordered_sum *sums) |
| { |
| const u64 lock_end = sums->logical + sums->len - 1; |
| struct extent_state *cached_state = NULL; |
| int ret; |
| |
| /* |
| * If this inode was not used for reflink operations in the current |
| * transaction with new extents, then do the fast path, no need to |
| * worry about logging checksum items with overlapping ranges. |
| */ |
| if (inode->last_reflink_trans < trans->transid) |
| return btrfs_csum_file_blocks(trans, log_root, sums); |
| |
| /* |
| * Serialize logging for checksums. This is to avoid racing with the |
| * same checksum being logged by another task that is logging another |
| * file which happens to refer to the same extent as well. Such races |
| * can leave checksum items in the log with overlapping ranges. |
| */ |
| ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end, |
| &cached_state); |
| if (ret) |
| return ret; |
| /* |
| * Due to extent cloning, we might have logged a csum item that covers a |
| * subrange of a cloned extent, and later we can end up logging a csum |
| * item for a larger subrange of the same extent or the entire range. |
| * This would leave csum items in the log tree that cover the same range |
| * and break the searches for checksums in the log tree, resulting in |
| * some checksums missing in the fs/subvolume tree. So just delete (or |
| * trim and adjust) any existing csum items in the log for this range. |
| */ |
| ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); |
| if (!ret) |
| ret = btrfs_csum_file_blocks(trans, log_root, sums); |
| |
| unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, |
| &cached_state); |
| |
| return ret; |
| } |
| |
| static noinline int copy_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *dst_path, |
| struct btrfs_path *src_path, |
| int start_slot, int nr, int inode_only, |
| u64 logged_isize, struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *log = inode->root->log_root; |
| struct btrfs_file_extent_item *extent; |
| struct extent_buffer *src; |
| int ret; |
| struct btrfs_key *ins_keys; |
| u32 *ins_sizes; |
| struct btrfs_item_batch batch; |
| char *ins_data; |
| int dst_index; |
| const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); |
| const u64 i_size = i_size_read(&inode->vfs_inode); |
| |
| /* |
| * To keep lockdep happy and avoid deadlocks, clone the source leaf and |
| * use the clone. This is because otherwise we would be changing the log |
| * tree, to insert items from the subvolume tree or insert csum items, |
| * while holding a read lock on a leaf from the subvolume tree, which |
| * creates a nasty lock dependency when COWing log tree nodes/leaves: |
| * |
| * 1) Modifying the log tree triggers an extent buffer allocation while |
| * holding a write lock on a parent extent buffer from the log tree. |
| * Allocating the pages for an extent buffer, or the extent buffer |
| * struct, can trigger inode eviction and finally the inode eviction |
| * will trigger a release/remove of a delayed node, which requires |
| * taking the delayed node's mutex; |
| * |
| * 2) Allocating a metadata extent for a log tree can trigger the async |
| * reclaim thread and make us wait for it to release enough space and |
| * unblock our reservation ticket. The reclaim thread can start |
| * flushing delayed items, and that in turn results in the need to |
| * lock delayed node mutexes and in the need to write lock extent |
| * buffers of a subvolume tree - all this while holding a write lock |
| * on the parent extent buffer in the log tree. |
| * |
| * So one task in scenario 1) running in parallel with another task in |
| * scenario 2) could lead to a deadlock, one wanting to lock a delayed |
| * node mutex while having a read lock on a leaf from the subvolume, |
| * while the other is holding the delayed node's mutex and wants to |
| * write lock the same subvolume leaf for flushing delayed items. |
| */ |
| ret = clone_leaf(src_path, ctx); |
| if (ret < 0) |
| return ret; |
| |
| src = src_path->nodes[0]; |
| |
| ins_data = kmalloc(nr * sizeof(struct btrfs_key) + |
| nr * sizeof(u32), GFP_NOFS); |
| if (!ins_data) |
| return -ENOMEM; |
| |
| ins_sizes = (u32 *)ins_data; |
| ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); |
| batch.keys = ins_keys; |
| batch.data_sizes = ins_sizes; |
| batch.total_data_size = 0; |
| batch.nr = 0; |
| |
| dst_index = 0; |
| for (int i = 0; i < nr; i++) { |
| const int src_slot = start_slot + i; |
| struct btrfs_root *csum_root; |
| struct btrfs_ordered_sum *sums; |
| struct btrfs_ordered_sum *sums_next; |
| LIST_HEAD(ordered_sums); |
| u64 disk_bytenr; |
| u64 disk_num_bytes; |
| u64 extent_offset; |
| u64 extent_num_bytes; |
| bool is_old_extent; |
| |
| btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); |
| |
| if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) |
| goto add_to_batch; |
| |
| extent = btrfs_item_ptr(src, src_slot, |
| struct btrfs_file_extent_item); |
| |
| is_old_extent = (btrfs_file_extent_generation(src, extent) < |
| trans->transid); |
| |
| /* |
| * Don't copy extents from past generations. That would make us |
| * log a lot more metadata for common cases like doing only a |
| * few random writes into a file and then fsync it for the first |
| * time or after the full sync flag is set on the inode. We can |
| * get leaves full of extent items, most of which are from past |
| * generations, so we can skip them - as long as the inode has |
| * not been the target of a reflink operation in this transaction, |
| * as in that case it might have had file extent items with old |
| * generations copied into it. We also must always log prealloc |
| * extents that start at or beyond eof, otherwise we would lose |
| * them on log replay. |
| */ |
| if (is_old_extent && |
| ins_keys[dst_index].offset < i_size && |
| inode->last_reflink_trans < trans->transid) |
| continue; |
| |
| if (skip_csum) |
| goto add_to_batch; |
| |
| /* Only regular extents have checksums. */ |
| if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) |
| goto add_to_batch; |
| |
| /* |
| * If it's an extent created in a past transaction, then its |
| * checksums are already accessible from the committed csum tree, |
| * no need to log them. |
| */ |
| if (is_old_extent) |
| goto add_to_batch; |
| |
| disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); |
| /* If it's an explicit hole, there are no checksums. */ |
| if (disk_bytenr == 0) |
| goto add_to_batch; |
| |
| disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); |
| |
| if (btrfs_file_extent_compression(src, extent)) { |
| extent_offset = 0; |
| extent_num_bytes = disk_num_bytes; |
| } else { |
| extent_offset = btrfs_file_extent_offset(src, extent); |
| extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); |
| } |
| |
| csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); |
| disk_bytenr += extent_offset; |
| ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, |
| disk_bytenr + extent_num_bytes - 1, |
| &ordered_sums, 0, false); |
| if (ret) |
| goto out; |
| |
| list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { |
| if (!ret) |
| ret = log_csums(trans, inode, log, sums); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| if (ret) |
| goto out; |
| |
| add_to_batch: |
| ins_sizes[dst_index] = btrfs_item_size(src, src_slot); |
| batch.total_data_size += ins_sizes[dst_index]; |
| batch.nr++; |
| dst_index++; |
| } |
| |
| /* |
| * We have a leaf full of old extent items that don't need to be logged, |
| * so we don't need to do anything. |
| */ |
| if (batch.nr == 0) |
| goto out; |
| |
| ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); |
| if (ret) |
| goto out; |
| |
| dst_index = 0; |
| for (int i = 0; i < nr; i++) { |
| const int src_slot = start_slot + i; |
| const int dst_slot = dst_path->slots[0] + dst_index; |
| struct btrfs_key key; |
| unsigned long src_offset; |
| unsigned long dst_offset; |
| |
| /* |
| * We're done, all the remaining items in the source leaf |
| * correspond to old file extent items. |
| */ |
| if (dst_index >= batch.nr) |
| break; |
| |
| btrfs_item_key_to_cpu(src, &key, src_slot); |
| |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| goto copy_item; |
| |
| extent = btrfs_item_ptr(src, src_slot, |
| struct btrfs_file_extent_item); |
| |
| /* See the comment in the previous loop, same logic. */ |
| if (btrfs_file_extent_generation(src, extent) < trans->transid && |
| key.offset < i_size && |
| inode->last_reflink_trans < trans->transid) |
| continue; |
| |
| copy_item: |
| dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); |
| src_offset = btrfs_item_ptr_offset(src, src_slot); |
| |
| if (key.type == BTRFS_INODE_ITEM_KEY) { |
| struct btrfs_inode_item *inode_item; |
| |
| inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, |
| struct btrfs_inode_item); |
| fill_inode_item(trans, dst_path->nodes[0], inode_item, |
| &inode->vfs_inode, |
| inode_only == LOG_INODE_EXISTS, |
| logged_isize); |
| } else { |
| copy_extent_buffer(dst_path->nodes[0], src, dst_offset, |
| src_offset, ins_sizes[dst_index]); |
| } |
| |
| dst_index++; |
| } |
| |
| btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]); |
| btrfs_release_path(dst_path); |
| out: |
| kfree(ins_data); |
| |
| return ret; |
| } |
| |
| static int extent_cmp(void *priv, const struct list_head *a, |
| const struct list_head *b) |
| { |
| const struct extent_map *em1, *em2; |
| |
| em1 = list_entry(a, struct extent_map, list); |
| em2 = list_entry(b, struct extent_map, list); |
| |
| if (em1->start < em2->start) |
| return -1; |
| else if (em1->start > em2->start) |
| return 1; |
| return 0; |
| } |
| |
| static int log_extent_csums(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_root *log_root, |
| const struct extent_map *em, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_root *csum_root; |
| u64 csum_offset; |
| u64 csum_len; |
| u64 mod_start = em->mod_start; |
| u64 mod_len = em->mod_len; |
| LIST_HEAD(ordered_sums); |
| int ret = 0; |
| |
| if (inode->flags & BTRFS_INODE_NODATASUM || |
| (em->flags & EXTENT_FLAG_PREALLOC) || |
| em->block_start == EXTENT_MAP_HOLE) |
| return 0; |
| |
| list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { |
| const u64 ordered_end = ordered->file_offset + ordered->num_bytes; |
| const u64 mod_end = mod_start + mod_len; |
| struct btrfs_ordered_sum *sums; |
| |
| if (mod_len == 0) |
| break; |
| |
| if (ordered_end <= mod_start) |
| continue; |
| if (mod_end <= ordered->file_offset) |
| break; |
| |
| /* |
| * We are going to copy all the csums on this ordered extent, so |
| * go ahead and adjust mod_start and mod_len in case this ordered |
| * extent has already been logged. |
| */ |
| if (ordered->file_offset > mod_start) { |
| if (ordered_end >= mod_end) |
| mod_len = ordered->file_offset - mod_start; |
| /* |
| * If we have this case |
| * |
| * |--------- logged extent ---------| |
| * |----- ordered extent ----| |
| * |
| * Just don't mess with mod_start and mod_len, we'll |
| * just end up logging more csums than we need and it |
| * will be ok. |
| */ |
| } else { |
| if (ordered_end < mod_end) { |
| mod_len = mod_end - ordered_end; |
| mod_start = ordered_end; |
| } else { |
| mod_len = 0; |
| } |
| } |
| |
| /* |
| * To keep us from looping for the above case of an ordered |
| * extent that falls inside of the logged extent. |
| */ |
| if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) |
| continue; |
| |
| list_for_each_entry(sums, &ordered->list, list) { |
| ret = log_csums(trans, inode, log_root, sums); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| /* We're done, found all csums in the ordered extents. */ |
| if (mod_len == 0) |
| return 0; |
| |
| /* If we're compressed we have to save the entire range of csums. */ |
| if (extent_map_is_compressed(em)) { |
| csum_offset = 0; |
| csum_len = max(em->block_len, em->orig_block_len); |
| } else { |
| csum_offset = mod_start - em->start; |
| csum_len = mod_len; |
| } |
| |
| /* block start is already adjusted for the file extent offset. */ |
| csum_root = btrfs_csum_root(trans->fs_info, em->block_start); |
| ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset, |
| em->block_start + csum_offset + |
| csum_len - 1, &ordered_sums, 0, false); |
| if (ret) |
| return ret; |
| |
| while (!list_empty(&ordered_sums)) { |
| struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, |
| struct btrfs_ordered_sum, |
| list); |
| if (!ret) |
| ret = log_csums(trans, inode, log_root, sums); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| |
| return ret; |
| } |
| |
| static int log_one_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| const struct extent_map *em, |
| struct btrfs_path *path, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| struct btrfs_root *log = inode->root->log_root; |
| struct btrfs_file_extent_item fi = { 0 }; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| enum btrfs_compression_type compress_type; |
| u64 extent_offset = em->start - em->orig_start; |
| u64 block_len; |
| int ret; |
| |
| btrfs_set_stack_file_extent_generation(&fi, trans->transid); |
| if (em->flags & EXTENT_FLAG_PREALLOC) |
| btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); |
| else |
| btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); |
| |
| block_len = max(em->block_len, em->orig_block_len); |
| compress_type = extent_map_compression(em); |
| if (compress_type != BTRFS_COMPRESS_NONE) { |
| btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start); |
| btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); |
| } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { |
| btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start - |
| extent_offset); |
| btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); |
| } |
| |
| btrfs_set_stack_file_extent_offset(&fi, extent_offset); |
| btrfs_set_stack_file_extent_num_bytes(&fi, em->len); |
| btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); |
| btrfs_set_stack_file_extent_compression(&fi, compress_type); |
| |
| ret = log_extent_csums(trans, inode, log, em, ctx); |
| if (ret) |
| return ret; |
| |
| /* |
| * If this is the first time we are logging the inode in the current |
| * transaction, we can avoid btrfs_drop_extents(), which is expensive |
| * because it does a deletion search, which always acquires write locks |
| * for extent buffers at levels 2, 1 and 0. This not only wastes time |
| * but also adds significant contention in a log tree, since log trees |
| * are small, with a root at level 2 or 3 at most, due to their short |
| * life span. |
| */ |
| if (ctx->logged_before) { |
| drop_args.path = path; |
| drop_args.start = em->start; |
| drop_args.end = em->start + em->len; |
| drop_args.replace_extent = true; |
| drop_args.extent_item_size = sizeof(fi); |
| ret = btrfs_drop_extents(trans, log, inode, &drop_args); |
| if (ret) |
| return ret; |
| } |
| |
| if (!drop_args.extent_inserted) { |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = em->start; |
| |
| ret = btrfs_insert_empty_item(trans, log, path, &key, |
| sizeof(fi)); |
| if (ret) |
| return ret; |
| } |
| leaf = path->nodes[0]; |
| write_extent_buffer(leaf, &fi, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| sizeof(fi)); |
| btrfs_mark_buffer_dirty(trans, leaf); |
| |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| /* |
| * Log all prealloc extents beyond the inode's i_size to make sure we do not |
| * lose them after doing a full/fast fsync and replaying the log. We scan the |
| * subvolume's root instead of iterating the inode's extent map tree because |
| * otherwise we can log incorrect extent items based on extent map conversion. |
| * That can happen due to the fact that extent maps are merged when they |
| * are not in the extent map tree's list of modified extents. |
| */ |
| static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_key key; |
| const u64 i_size = i_size_read(&inode->vfs_inode); |
| const u64 ino = btrfs_ino(inode); |
| struct btrfs_path *dst_path = NULL; |
| bool dropped_extents = false; |
| u64 truncate_offset = i_size; |
| struct extent_buffer *leaf; |
| int slot; |
| int ins_nr = 0; |
| int start_slot = 0; |
| int ret; |
| |
| if (!(inode->flags & BTRFS_INODE_PREALLOC)) |
| return 0; |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = i_size; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * We must check if there is a prealloc extent that starts before the |
| * i_size and crosses the i_size boundary. This is to ensure later we |
| * truncate down to the end of that extent and not to the i_size, as |
| * otherwise we end up losing part of the prealloc extent after a log |
| * replay and with an implicit hole if there is another prealloc extent |
| * that starts at an offset beyond i_size. |
| */ |
| ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); |
| if (ret < 0) |
| goto out; |
| |
| if (ret == 0) { |
| struct btrfs_file_extent_item *ei; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_type(leaf, ei) == |
| BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 extent_end; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| extent_end = key.offset + |
| btrfs_file_extent_num_bytes(leaf, ei); |
| |
| if (extent_end > i_size) |
| truncate_offset = extent_end; |
| } |
| } else { |
| ret = 0; |
| } |
| |
| while (true) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0, ctx); |
| if (ret < 0) |
| goto out; |
| ins_nr = 0; |
| } |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid > ino) |
| break; |
| if (WARN_ON_ONCE(key.objectid < ino) || |
| key.type < BTRFS_EXTENT_DATA_KEY || |
| key.offset < i_size) { |
| path->slots[0]++; |
| continue; |
| } |
| if (!dropped_extents) { |
| /* |
| * Avoid logging extent items logged in past fsync calls |
| * and leading to duplicate keys in the log tree. |
| */ |
| ret = truncate_inode_items(trans, root->log_root, inode, |
| truncate_offset, |
| BTRFS_EXTENT_DATA_KEY); |
| if (ret) |
| goto out; |
| dropped_extents = true; |
| } |
| if (ins_nr == 0) |
| start_slot = slot; |
| ins_nr++; |
| path->slots[0]++; |
| if (!dst_path) { |
| dst_path = btrfs_alloc_path(); |
| if (!dst_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| } |
| } |
| if (ins_nr > 0) |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0, ctx); |
| out: |
| btrfs_release_path(path); |
| btrfs_free_path(dst_path); |
| return ret; |
| } |
| |
| static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_ordered_extent *tmp; |
| struct extent_map *em, *n; |
| LIST_HEAD(extents); |
| struct extent_map_tree *tree = &inode->extent_tree; |
| int ret = 0; |
| int num = 0; |
| |
| write_lock(&tree->lock); |
| |
| list_for_each_entry_safe(em, n, &tree->modified_extents, list) { |
| list_del_init(&em->list); |
| /* |
| * Just an arbitrary number, this can be really CPU intensive |
| * once we start getting a lot of extents, and really once we |
| * have a bunch of extents we just want to commit since it will |
| * be faster. |
| */ |
| if (++num > 32768) { |
| list_del_init(&tree->modified_extents); |
| ret = -EFBIG; |
| goto process; |
| } |
| |
| if (em->generation < trans->transid) |
| continue; |
| |
| /* We log prealloc extents beyond eof later. */ |
| if ((em->flags & EXTENT_FLAG_PREALLOC) && |
| em->start >= i_size_read(&inode->vfs_inode)) |
| continue; |
| |
| /* Need a ref to keep it from getting evicted from cache */ |
| refcount_inc(&em->refs); |
| em->flags |= EXTENT_FLAG_LOGGING; |
| list_add_tail(&em->list, &extents); |
| num++; |
| } |
| |
| list_sort(NULL, &extents, extent_cmp); |
| process: |
| while (!list_empty(&extents)) { |
| em = list_entry(extents.next, struct extent_map, list); |
| |
| list_del_init(&em->list); |
| |
| /* |
| * If we had an error we just need to delete everybody from our |
| * private list. |
| */ |
| if (ret) { |
| clear_em_logging(tree, em); |
| free_extent_map(em); |
| continue; |
| } |
| |
| write_unlock(&tree->lock); |
| |
| ret = log_one_extent(trans, inode, em, path, ctx); |
| write_lock(&tree->lock); |
| clear_em_logging(tree, em); |
| free_extent_map(em); |
| } |
| WARN_ON(!list_empty(&extents)); |
| write_unlock(&tree->lock); |
| |
| if (!ret) |
| ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); |
| if (ret) |
| return ret; |
| |
| /* |
| * We have logged all extents successfully, now make sure the commit of |
| * the current transaction waits for the ordered extents to complete |
| * before it commits and wipes out the log trees, otherwise we would |
| * lose data if an ordered extents completes after the transaction |
| * commits and a power failure happens after the transaction commit. |
| */ |
| list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { |
| list_del_init(&ordered->log_list); |
| set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); |
| |
| if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { |
| spin_lock_irq(&inode->ordered_tree_lock); |
| if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { |
| set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); |
| atomic_inc(&trans->transaction->pending_ordered); |
| } |
| spin_unlock_irq(&inode->ordered_tree_lock); |
| } |
| btrfs_put_ordered_extent(ordered); |
| } |
| |
| return 0; |
| } |
| |
| static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, |
| struct btrfs_path *path, u64 *size_ret) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0) { |
| *size_ret = 0; |
| } else { |
| struct btrfs_inode_item *item; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| *size_ret = btrfs_inode_size(path->nodes[0], item); |
| /* |
| * If the in-memory inode's i_size is smaller then the inode |
| * size stored in the btree, return the inode's i_size, so |
| * that we get a correct inode size after replaying the log |
| * when before a power failure we had a shrinking truncate |
| * followed by addition of a new name (rename / new hard link). |
| * Otherwise return the inode size from the btree, to avoid |
| * data loss when replaying a log due to previously doing a |
| * write that expands the inode's size and logging a new name |
| * immediately after. |
| */ |
| if (*size_ret > inode->vfs_inode.i_size) |
| *size_ret = inode->vfs_inode.i_size; |
| } |
| |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| /* |
| * At the moment we always log all xattrs. This is to figure out at log replay |
| * time which xattrs must have their deletion replayed. If a xattr is missing |
| * in the log tree and exists in the fs/subvol tree, we delete it. This is |
| * because if a xattr is deleted, the inode is fsynced and a power failure |
| * happens, causing the log to be replayed the next time the fs is mounted, |
| * we want the xattr to not exist anymore (same behaviour as other filesystems |
| * with a journal, ext3/4, xfs, f2fs, etc). |
| */ |
| static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *root = inode->root; |
| int ret; |
| struct btrfs_key key; |
| const u64 ino = btrfs_ino(inode); |
| int ins_nr = 0; |
| int start_slot = 0; |
| bool found_xattrs = false; |
| |
| if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) |
| return 0; |
| |
| key.objectid = ino; |
| key.type = BTRFS_XATTR_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| while (true) { |
| int slot = path->slots[0]; |
| struct extent_buffer *leaf = path->nodes[0]; |
| int nritems = btrfs_header_nritems(leaf); |
| |
| if (slot >= nritems) { |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0, ctx); |
| if (ret < 0) |
| return ret; |
| ins_nr = 0; |
| } |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) |
| break; |
| |
| if (ins_nr == 0) |
| start_slot = slot; |
| ins_nr++; |
| path->slots[0]++; |
| found_xattrs = true; |
| cond_resched(); |
| } |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0, ctx); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (!found_xattrs) |
| set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); |
| |
| return 0; |
| } |
| |
| /* |
| * When using the NO_HOLES feature if we punched a hole that causes the |
| * deletion of entire leafs or all the extent items of the first leaf (the one |
| * that contains the inode item and references) we may end up not processing |
| * any extents, because there are no leafs with a generation matching the |
| * current transaction that have extent items for our inode. So we need to find |
| * if any holes exist and then log them. We also need to log holes after any |
| * truncate operation that changes the inode's size. |
| */ |
| static int btrfs_log_holes(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| const u64 ino = btrfs_ino(inode); |
| const u64 i_size = i_size_read(&inode->vfs_inode); |
| u64 prev_extent_end = 0; |
| int ret; |
| |
| if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) |
| return 0; |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| while (true) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) |
| break; |
| |
| /* We have a hole, log it. */ |
| if (prev_extent_end < key.offset) { |
| const u64 hole_len = key.offset - prev_extent_end; |
| |
| /* |
| * Release the path to avoid deadlocks with other code |
| * paths that search the root while holding locks on |
| * leafs from the log root. |
| */ |
| btrfs_release_path(path); |
| ret = btrfs_insert_hole_extent(trans, root->log_root, |
| ino, prev_extent_end, |
| hole_len); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Search for the same key again in the root. Since it's |
| * an extent item and we are holding the inode lock, the |
| * key must still exist. If it doesn't just emit warning |
| * and return an error to fall back to a transaction |
| * commit. |
| */ |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| if (WARN_ON(ret > 0)) |
| return -ENOENT; |
| leaf = path->nodes[0]; |
| } |
| |
| prev_extent_end = btrfs_file_extent_end(path); |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| if (prev_extent_end < i_size) { |
| u64 hole_len; |
| |
| btrfs_release_path(path); |
| hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); |
| ret = btrfs_insert_hole_extent(trans, root->log_root, ino, |
| prev_extent_end, hole_len); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When we are logging a new inode X, check if it doesn't have a reference that |
| * matches the reference from some other inode Y created in a past transaction |
| * and that was renamed in the current transaction. If we don't do this, then at |
| * log replay time we can lose inode Y (and all its files if it's a directory): |
| * |
| * mkdir /mnt/x |
| * echo "hello world" > /mnt/x/foobar |
| * sync |
| * mv /mnt/x /mnt/y |
| * mkdir /mnt/x # or touch /mnt/x |
| * xfs_io -c fsync /mnt/x |
| * <power fail> |
| * mount fs, trigger log replay |
| * |
| * After the log replay procedure, we would lose the first directory and all its |
| * files (file foobar). |
| * For the case where inode Y is not a directory we simply end up losing it: |
| * |
| * echo "123" > /mnt/foo |
| * sync |
| * mv /mnt/foo /mnt/bar |
| * echo "abc" > /mnt/foo |
| * xfs_io -c fsync /mnt/foo |
| * <power fail> |
| * |
| * We also need this for cases where a snapshot entry is replaced by some other |
| * entry (file or directory) otherwise we end up with an unreplayable log due to |
| * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as |
| * if it were a regular entry: |
| * |
| * mkdir /mnt/x |
| * btrfs subvolume snapshot /mnt /mnt/x/snap |
| * btrfs subvolume delete /mnt/x/snap |
| * rmdir /mnt/x |
| * mkdir /mnt/x |
| * fsync /mnt/x or fsync some new file inside it |
| * <power fail> |
| * |
| * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in |
| * the same transaction. |
| */ |
| static int btrfs_check_ref_name_override(struct extent_buffer *eb, |
| const int slot, |
| const struct btrfs_key *key, |
| struct btrfs_inode *inode, |
| u64 *other_ino, u64 *other_parent) |
| { |
| int ret; |
| struct btrfs_path *search_path; |
| char *name = NULL; |
| u32 name_len = 0; |
| u32 item_size = btrfs_item_size(eb, slot); |
| u32 cur_offset = 0; |
| unsigned long ptr = btrfs_item_ptr_offset(eb, slot); |
| |
| search_path = btrfs_alloc_path(); |
| if (!search_path) |
| return -ENOMEM; |
| search_path->search_commit_root = 1; |
| search_path->skip_locking = 1; |
| |
| while (cur_offset < item_size) { |
| u64 parent; |
| u32 this_name_len; |
| u32 this_len; |
| unsigned long name_ptr; |
| struct btrfs_dir_item *di; |
| struct fscrypt_str name_str; |
| |
| if (key->type == BTRFS_INODE_REF_KEY) { |
| struct btrfs_inode_ref *iref; |
| |
| iref = (struct btrfs_inode_ref *)(ptr + cur_offset); |
| parent = key->offset; |
| this_name_len = btrfs_inode_ref_name_len(eb, iref); |
| name_ptr = (unsigned long)(iref + 1); |
| this_len = sizeof(*iref) + this_name_len; |
| } else { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *)(ptr + |
| cur_offset); |
| parent = btrfs_inode_extref_parent(eb, extref); |
| this_name_len = btrfs_inode_extref_name_len(eb, extref); |
| name_ptr = (unsigned long)&extref->name; |
| this_len = sizeof(*extref) + this_name_len; |
| } |
| |
| if (this_name_len > name_len) { |
| char *new_name; |
| |
| new_name = krealloc(name, this_name_len, GFP_NOFS); |
| if (!new_name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| name_len = this_name_len; |
| name = new_name; |
| } |
| |
| read_extent_buffer(eb, name, name_ptr, this_name_len); |
| |
| name_str.name = name; |
| name_str.len = this_name_len; |
| di = btrfs_lookup_dir_item(NULL, inode->root, search_path, |
| parent, &name_str, 0); |
| if (di && !IS_ERR(di)) { |
| struct btrfs_key di_key; |
| |
| btrfs_dir_item_key_to_cpu(search_path->nodes[0], |
| di, &di_key); |
| if (di_key.type == BTRFS_INODE_ITEM_KEY) { |
| if (di_key.objectid != key->objectid) { |
| ret = 1; |
| *other_ino = di_key.objectid; |
| *other_parent = parent; |
| } else { |
| ret = 0; |
| } |
| } else { |
| ret = -EAGAIN; |
| } |
| goto out; |
| } else if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| btrfs_release_path(search_path); |
| |
| cur_offset += this_len; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(search_path); |
| kfree(name); |
| return ret; |
| } |
| |
| /* |
| * Check if we need to log an inode. This is used in contexts where while |
| * logging an inode we need to log another inode (either that it exists or in |
| * full mode). This is used instead of btrfs_inode_in_log() because the later |
| * requires the inode to be in the log and have the log transaction committed, |
| * while here we do not care if the log transaction was already committed - our |
| * caller will commit the log later - and we want to avoid logging an inode |
| * multiple times when multiple tasks have joined the same log transaction. |
| */ |
| static bool need_log_inode(const struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| /* |
| * If a directory was not modified, no dentries added or removed, we can |
| * and should avoid logging it. |
| */ |
| if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) |
| return false; |
| |
| /* |
| * If this inode does not have new/updated/deleted xattrs since the last |
| * time it was logged and is flagged as logged in the current transaction, |
| * we can skip logging it. As for new/deleted names, those are updated in |
| * the log by link/unlink/rename operations. |
| * In case the inode was logged and then evicted and reloaded, its |
| * logged_trans will be 0, in which case we have to fully log it since |
| * logged_trans is a transient field, not persisted. |
| */ |
| if (inode_logged(trans, inode, NULL) == 1 && |
| !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) |
| return false; |
| |
| return true; |
| } |
| |
| struct btrfs_dir_list { |
| u64 ino; |
| struct list_head list; |
| }; |
| |
| /* |
| * Log the inodes of the new dentries of a directory. |
| * See process_dir_items_leaf() for details about why it is needed. |
| * This is a recursive operation - if an existing dentry corresponds to a |
| * directory, that directory's new entries are logged too (same behaviour as |
| * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes |
| * the dentries point to we do not acquire their VFS lock, otherwise lockdep |
| * complains about the following circular lock dependency / possible deadlock: |
| * |
| * CPU0 CPU1 |
| * ---- ---- |
| * lock(&type->i_mutex_dir_key#3/2); |
| * lock(sb_internal#2); |
| * lock(&type->i_mutex_dir_key#3/2); |
| * lock(&sb->s_type->i_mutex_key#14); |
| * |
| * Where sb_internal is the lock (a counter that works as a lock) acquired by |
| * sb_start_intwrite() in btrfs_start_transaction(). |
| * Not acquiring the VFS lock of the inodes is still safe because: |
| * |
| * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible |
| * that while logging the inode new references (names) are added or removed |
| * from the inode, leaving the logged inode item with a link count that does |
| * not match the number of logged inode reference items. This is fine because |
| * at log replay time we compute the real number of links and correct the |
| * link count in the inode item (see replay_one_buffer() and |
| * link_to_fixup_dir()); |
| * |
| * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that |
| * while logging the inode's items new index items (key type |
| * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item |
| * has a size that doesn't match the sum of the lengths of all the logged |
| * names - this is ok, not a problem, because at log replay time we set the |
| * directory's i_size to the correct value (see replay_one_name() and |
| * overwrite_item()). |
| */ |
| static int log_new_dir_dentries(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *start_inode, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *root = start_inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| LIST_HEAD(dir_list); |
| struct btrfs_dir_list *dir_elem; |
| u64 ino = btrfs_ino(start_inode); |
| struct btrfs_inode *curr_inode = start_inode; |
| int ret = 0; |
| |
| /* |
| * If we are logging a new name, as part of a link or rename operation, |
| * don't bother logging new dentries, as we just want to log the names |
| * of an inode and that any new parents exist. |
| */ |
| if (ctx->logging_new_name) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Pairs with btrfs_add_delayed_iput below. */ |
| ihold(&curr_inode->vfs_inode); |
| |
| while (true) { |
| struct inode *vfs_inode; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 next_index; |
| bool continue_curr_inode = true; |
| int iter_ret; |
| |
| key.objectid = ino; |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = btrfs_get_first_dir_index_to_log(curr_inode); |
| next_index = key.offset; |
| again: |
| btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_dir_item *di; |
| struct btrfs_key di_key; |
| struct inode *di_inode; |
| int log_mode = LOG_INODE_EXISTS; |
| int type; |
| |
| if (found_key.objectid != ino || |
| found_key.type != BTRFS_DIR_INDEX_KEY) { |
| continue_curr_inode = false; |
| break; |
| } |
| |
| next_index = found_key.offset + 1; |
| |
| di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); |
| type = btrfs_dir_ftype(leaf, di); |
| if (btrfs_dir_transid(leaf, di) < trans->transid) |
| continue; |
| btrfs_dir_item_key_to_cpu(leaf, di, &di_key); |
| if (di_key.type == BTRFS_ROOT_ITEM_KEY) |
| continue; |
| |
| btrfs_release_path(path); |
| di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); |
| if (IS_ERR(di_inode)) { |
| ret = PTR_ERR(di_inode); |
| goto out; |
| } |
| |
| if (!need_log_inode(trans, BTRFS_I(di_inode))) { |
| btrfs_add_delayed_iput(BTRFS_I(di_inode)); |
| break; |
| } |
| |
| ctx->log_new_dentries = false; |
| if (type == BTRFS_FT_DIR) |
| log_mode = LOG_INODE_ALL; |
| ret = btrfs_log_inode(trans, BTRFS_I(di_inode), |
| log_mode, ctx); |
| btrfs_add_delayed_iput(BTRFS_I(di_inode)); |
| if (ret) |
| goto out; |
| if (ctx->log_new_dentries) { |
| dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); |
| if (!dir_elem) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| dir_elem->ino = di_key.objectid; |
| list_add_tail(&dir_elem->list, &dir_list); |
| } |
| break; |
| } |
| |
| btrfs_release_path(path); |
| |
| if (iter_ret < 0) { |
| ret = iter_ret; |
| goto out; |
| } else if (iter_ret > 0) { |
| continue_curr_inode = false; |
| } else { |
| key = found_key; |
| } |
| |
| if (continue_curr_inode && key.offset < (u64)-1) { |
| key.offset++; |
| goto again; |
| } |
| |
| btrfs_set_first_dir_index_to_log(curr_inode, next_index); |
| |
| if (list_empty(&dir_list)) |
| break; |
| |
| dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); |
| ino = dir_elem->ino; |
| list_del(&dir_elem->list); |
| kfree(dir_elem); |
| |
| btrfs_add_delayed_iput(curr_inode); |
| curr_inode = NULL; |
| |
| vfs_inode = btrfs_iget(fs_info->sb, ino, root); |
| if (IS_ERR(vfs_inode)) { |
| ret = PTR_ERR(vfs_inode); |
| break; |
| } |
| curr_inode = BTRFS_I(vfs_inode); |
| } |
| out: |
| btrfs_free_path(path); |
| if (curr_inode) |
| btrfs_add_delayed_iput(curr_inode); |
| |
| if (ret) { |
| struct btrfs_dir_list *next; |
| |
| list_for_each_entry_safe(dir_elem, next, &dir_list, list) |
| kfree(dir_elem); |
| } |
| |
| return ret; |
| } |
| |
| struct btrfs_ino_list { |
| u64 ino; |
| u64 parent; |
| struct list_head list; |
| }; |
| |
| static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_ino_list *curr; |
| struct btrfs_ino_list *next; |
| |
| list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { |
| list_del(&curr->list); |
| kfree(curr); |
| } |
| } |
| |
| static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, |
| struct btrfs_path *path) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (WARN_ON_ONCE(ret > 0)) { |
| /* |
| * We have previously found the inode through the commit root |
| * so this should not happen. If it does, just error out and |
| * fallback to a transaction commit. |
| */ |
| ret = -ENOENT; |
| } else if (ret == 0) { |
| struct btrfs_inode_item *item; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) |
| ret = 1; |
| } |
| |
| btrfs_release_path(path); |
| path->search_commit_root = 0; |
| path->skip_locking = 0; |
| |
| return ret; |
| } |
| |
| static int add_conflicting_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 ino, u64 parent, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_ino_list *ino_elem; |
| struct inode *inode; |
| |
| /* |
| * It's rare to have a lot of conflicting inodes, in practice it is not |
| * common to have more than 1 or 2. We don't want to collect too many, |
| * as we could end up logging too many inodes (even if only in |
| * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction |
| * commits. |
| */ |
| if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) |
| return BTRFS_LOG_FORCE_COMMIT; |
| |
| inode = btrfs_iget(root->fs_info->sb, ino, root); |
| /* |
| * If the other inode that had a conflicting dir entry was deleted in |
| * the current transaction then we either: |
| * |
| * 1) Log the parent directory (later after adding it to the list) if |
| * the inode is a directory. This is because it may be a deleted |
| * subvolume/snapshot or it may be a regular directory that had |
| * deleted subvolumes/snapshots (or subdirectories that had them), |
| * and at the moment we can't deal with dropping subvolumes/snapshots |
| * during log replay. So we just log the parent, which will result in |
| * a fallback to a transaction commit if we are dealing with those |
| * cases (last_unlink_trans will match the current transaction); |
| * |
| * 2) Do nothing if it's not a directory. During log replay we simply |
| * unlink the conflicting dentry from the parent directory and then |
| * add the dentry for our inode. Like this we can avoid logging the |
| * parent directory (and maybe fallback to a transaction commit in |
| * case it has a last_unlink_trans == trans->transid, due to moving |
| * some inode from it to some other directory). |
| */ |
| if (IS_ERR(inode)) { |
| int ret = PTR_ERR(inode); |
| |
| if (ret != -ENOENT) |
| return ret; |
| |
| ret = conflicting_inode_is_dir(root, ino, path); |
| /* Not a directory or we got an error. */ |
| if (ret <= 0) |
| return ret; |
| |
| /* Conflicting inode is a directory, so we'll log its parent. */ |
| ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); |
| if (!ino_elem) |
| return -ENOMEM; |
| ino_elem->ino = ino; |
| ino_elem->parent = parent; |
| list_add_tail(&ino_elem->list, &ctx->conflict_inodes); |
| ctx->num_conflict_inodes++; |
| |
| return 0; |
| } |
| |
| /* |
| * If the inode was already logged skip it - otherwise we can hit an |
| * infinite loop. Example: |
| * |
| * From the commit root (previous transaction) we have the following |
| * inodes: |
| * |
| * inode 257 a directory |
| * inode 258 with references "zz" and "zz_link" on inode 257 |
| * inode 259 with reference "a" on inode 257 |
| * |
| * And in the current (uncommitted) transaction we have: |
| * |
| * inode 257 a directory, unchanged |
| * inode 258 with references "a" and "a2" on inode 257 |
| * inode 259 with reference "zz_link" on inode 257 |
| * inode 261 with reference "zz" on inode 257 |
| * |
| * When logging inode 261 the following infinite loop could |
| * happen if we don't skip already logged inodes: |
| * |
| * - we detect inode 258 as a conflicting inode, with inode 261 |
| * on reference "zz", and log it; |
| * |
| * - we detect inode 259 as a conflicting inode, with inode 258 |
| * on reference "a", and log it; |
| * |
| * - we detect inode 258 as a conflicting inode, with inode 259 |
| * on reference "zz_link", and log it - again! After this we |
| * repeat the above steps forever. |
| * |
| * Here we can use need_log_inode() because we only need to log the |
| * inode in LOG_INODE_EXISTS mode and rename operations update the log, |
| * so that the log ends up with the new name and without the old name. |
| */ |
| if (!need_log_inode(trans, BTRFS_I(inode))) { |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| return 0; |
| } |
| |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| |
| ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); |
| if (!ino_elem) |
| return -ENOMEM; |
| ino_elem->ino = ino; |
| ino_elem->parent = parent; |
| list_add_tail(&ino_elem->list, &ctx->conflict_inodes); |
| ctx->num_conflict_inodes++; |
| |
| return 0; |
| } |
| |
| static int log_conflicting_inodes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| |
| /* |
| * Conflicting inodes are logged by the first call to btrfs_log_inode(), |
| * otherwise we could have unbounded recursion of btrfs_log_inode() |
| * calls. This check guarantees we can have only 1 level of recursion. |
| */ |
| if (ctx->logging_conflict_inodes) |
| return 0; |
| |
| ctx->logging_conflict_inodes = true; |
| |
| /* |
| * New conflicting inodes may be found and added to the list while we |
| * are logging a conflicting inode, so keep iterating while the list is |
| * not empty. |
| */ |
| while (!list_empty(&ctx->conflict_inodes)) { |
| struct btrfs_ino_list *curr; |
| struct inode *inode; |
| u64 ino; |
| u64 parent; |
| |
| curr = list_first_entry(&ctx->conflict_inodes, |
| struct btrfs_ino_list, list); |
| ino = curr->ino; |
| parent = curr->parent; |
| list_del(&curr->list); |
| kfree(curr); |
| |
| inode = btrfs_iget(fs_info->sb, ino, root); |
| /* |
| * If the other inode that had a conflicting dir entry was |
| * deleted in the current transaction, we need to log its parent |
| * directory. See the comment at add_conflicting_inode(). |
| */ |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| if (ret != -ENOENT) |
| break; |
| |
| inode = btrfs_iget(fs_info->sb, parent, root); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| break; |
| } |
| |
| /* |
| * Always log the directory, we cannot make this |
| * conditional on need_log_inode() because the directory |
| * might have been logged in LOG_INODE_EXISTS mode or |
| * the dir index of the conflicting inode is not in a |
| * dir index key range logged for the directory. So we |
| * must make sure the deletion is recorded. |
| */ |
| ret = btrfs_log_inode(trans, BTRFS_I(inode), |
| LOG_INODE_ALL, ctx); |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| if (ret) |
| break; |
| continue; |
| } |
| |
| /* |
| * Here we can use need_log_inode() because we only need to log |
| * the inode in LOG_INODE_EXISTS mode and rename operations |
| * update the log, so that the log ends up with the new name and |
| * without the old name. |
| * |
| * We did this check at add_conflicting_inode(), but here we do |
| * it again because if some other task logged the inode after |
| * that, we can avoid doing it again. |
| */ |
| if (!need_log_inode(trans, BTRFS_I(inode))) { |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| continue; |
| } |
| |
| /* |
| * We are safe logging the other inode without acquiring its |
| * lock as long as we log with the LOG_INODE_EXISTS mode. We |
| * are safe against concurrent renames of the other inode as |
| * well because during a rename we pin the log and update the |
| * log with the new name before we unpin it. |
| */ |
| ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx); |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| if (ret) |
| break; |
| } |
| |
| ctx->logging_conflict_inodes = false; |
| if (ret) |
| free_conflicting_inodes(ctx); |
| |
| return ret; |
| } |
| |
| static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_key *min_key, |
| const struct btrfs_key *max_key, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, |
| const u64 logged_isize, |
| const int inode_only, |
| struct btrfs_log_ctx *ctx, |
| bool *need_log_inode_item) |
| { |
| const u64 i_size = i_size_read(&inode->vfs_inode); |
| struct btrfs_root *root = inode->root; |
| int ins_start_slot = 0; |
| int ins_nr = 0; |
| int ret; |
| |
| while (1) { |
| ret = btrfs_search_forward(root, min_key, path, trans->transid); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| again: |
| /* Note, ins_nr might be > 0 here, cleanup outside the loop */ |
| if (min_key->objectid != max_key->objectid) |
| break; |
| if (min_key->type > max_key->type) |
| break; |
| |
| if (min_key->type == BTRFS_INODE_ITEM_KEY) { |
| *need_log_inode_item = false; |
| } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && |
| min_key->offset >= i_size) { |
| /* |
| * Extents at and beyond eof are logged with |
| * btrfs_log_prealloc_extents(). |
| * Only regular files have BTRFS_EXTENT_DATA_KEY keys, |
| * and no keys greater than that, so bail out. |
| */ |
| break; |
| } else if ((min_key->type == BTRFS_INODE_REF_KEY || |
| min_key->type == BTRFS_INODE_EXTREF_KEY) && |
| (inode->generation == trans->transid || |
| ctx->logging_conflict_inodes)) { |
| u64 other_ino = 0; |
| u64 other_parent = 0; |
| |
| ret = btrfs_check_ref_name_override(path->nodes[0], |
| path->slots[0], min_key, inode, |
| &other_ino, &other_parent); |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0 && |
| other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { |
| if (ins_nr > 0) { |
| ins_nr++; |
| } else { |
| ins_nr = 1; |
| ins_start_slot = path->slots[0]; |
| } |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, ins_nr, |
| inode_only, logged_isize, ctx); |
| if (ret < 0) |
| return ret; |
| ins_nr = 0; |
| |
| btrfs_release_path(path); |
| ret = add_conflicting_inode(trans, root, path, |
| other_ino, |
| other_parent, ctx); |
| if (ret) |
| return ret; |
| goto next_key; |
| } |
| } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { |
| /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ |
| if (ins_nr == 0) |
| goto next_slot; |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, |
| ins_nr, inode_only, logged_isize, ctx); |
| if (ret < 0) |
| return ret; |
| ins_nr = 0; |
| goto next_slot; |
| } |
| |
| if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { |
| ins_nr++; |
| goto next_slot; |
| } else if (!ins_nr) { |
| ins_start_slot = path->slots[0]; |
| ins_nr = 1; |
| goto next_slot; |
| } |
| |
| ret = copy_items(trans, inode, dst_path, path, ins_start_slot, |
| ins_nr, inode_only, logged_isize, ctx); |
| if (ret < 0) |
| return ret; |
| ins_nr = 1; |
| ins_start_slot = path->slots[0]; |
| next_slot: |
| path->slots[0]++; |
| if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { |
| btrfs_item_key_to_cpu(path->nodes[0], min_key, |
| path->slots[0]); |
| goto again; |
| } |
| if (ins_nr) { |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, ins_nr, inode_only, |
| logged_isize, ctx); |
| if (ret < 0) |
| return ret; |
| ins_nr = 0; |
| } |
| btrfs_release_path(path); |
| next_key: |
| if (min_key->offset < (u64)-1) { |
| min_key->offset++; |
| } else if (min_key->type < max_key->type) { |
| min_key->type++; |
| min_key->offset = 0; |
| } else { |
| break; |
| } |
| |
| /* |
| * We may process many leaves full of items for our inode, so |
| * avoid monopolizing a cpu for too long by rescheduling while |
| * not holding locks on any tree. |
| */ |
| cond_resched(); |
| } |
| if (ins_nr) { |
| ret = copy_items(trans, inode, dst_path, path, ins_start_slot, |
| ins_nr, inode_only, logged_isize, ctx); |
| if (ret) |
| return ret; |
| } |
| |
| if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { |
| /* |
| * Release the path because otherwise we might attempt to double |
| * lock the same leaf with btrfs_log_prealloc_extents() below. |
| */ |
| btrfs_release_path(path); |
| ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); |
| } |
| |
| return ret; |
| } |
| |
| static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| const struct btrfs_item_batch *batch, |
| const struct btrfs_delayed_item *first_item) |
| { |
| const struct btrfs_delayed_item *curr = first_item; |
| int ret; |
| |
| ret = btrfs_insert_empty_items(trans, log, path, batch); |
| if (ret) |
| return ret; |
| |
| for (int i = 0; i < batch->nr; i++) { |
| char *data_ptr; |
| |
| data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); |
| write_extent_buffer(path->nodes[0], &curr->data, |
| (unsigned long)data_ptr, curr->data_len); |
| curr = list_next_entry(curr, log_list); |
| path->slots[0]++; |
| } |
| |
| btrfs_release_path(path); |
| |
| return 0; |
| } |
| |
| static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| const struct list_head *delayed_ins_list, |
| struct btrfs_log_ctx *ctx) |
| { |
| /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ |
| const int max_batch_size = 195; |
| const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); |
| const u64 ino = btrfs_ino(inode); |
| struct btrfs_root *log = inode->root->log_root; |
| struct btrfs_item_batch batch = { |
| .nr = 0, |
| .total_data_size = 0, |
| }; |
| const struct btrfs_delayed_item *first = NULL; |
| const struct btrfs_delayed_item *curr; |
| char *ins_data; |
| struct btrfs_key *ins_keys; |
| u32 *ins_sizes; |
| u64 curr_batch_size = 0; |
| int batch_idx = 0; |
| int ret; |
| |
| /* We are adding dir index items to the log tree. */ |
| lockdep_assert_held(&inode->log_mutex); |
| |
| /* |
| * We collect delayed items before copying index keys from the subvolume |
| * to the log tree. However just after we collected them, they may have |
| * been flushed (all of them or just some of them), and therefore we |
| * could have copied them from the subvolume tree to the log tree. |
| * So find the first delayed item that was not yet logged (they are |
| * sorted by index number). |
| */ |
| list_for_each_entry(curr, delayed_ins_list, log_list) { |
| if (curr->index > inode->last_dir_index_offset) { |
| first = curr; |
| break; |
| } |
| } |
| |
| /* Empty list or all delayed items were already logged. */ |
| if (!first) |
| return 0; |
| |
| ins_data = kmalloc(max_batch_size * sizeof(u32) + |
| max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); |
| if (!ins_data) |
| return -ENOMEM; |
| ins_sizes = (u32 *)ins_data; |
| batch.data_sizes = ins_sizes; |
| ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); |
| batch.keys = ins_keys; |
| |
| curr = first; |
| while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { |
| const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); |
| |
| if (curr_batch_size + curr_size > leaf_data_size || |
| batch.nr == max_batch_size) { |
| ret = insert_delayed_items_batch(trans, log, path, |
| &batch, first); |
| if (ret) |
| goto out; |
| batch_idx = 0; |
| batch.nr = 0; |
| batch.total_data_size = 0; |
| curr_batch_size = 0; |
| first = curr; |
| } |
| |
| ins_sizes[batch_idx] = curr->data_len; |
| ins_keys[batch_idx].objectid = ino; |
| ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; |
| ins_keys[batch_idx].offset = curr->index; |
| curr_batch_size += curr_size; |
| batch.total_data_size += curr->data_len; |
| batch.nr++; |
| batch_idx++; |
| curr = list_next_entry(curr, log_list); |
| } |
| |
| ASSERT(batch.nr >= 1); |
| ret = insert_delayed_items_batch(trans, log, path, &batch, first); |
| |
| curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, |
| log_list); |
| inode->last_dir_index_offset = curr->index; |
| out: |
| kfree(ins_data); |
| |
| return ret; |
| } |
| |
| static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| const struct list_head *delayed_del_list, |
| struct btrfs_log_ctx *ctx) |
| { |
| const u64 ino = btrfs_ino(inode); |
| const struct btrfs_delayed_item *curr; |
| |
| curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, |
| log_list); |
| |
| while (!list_entry_is_head(curr, delayed_del_list, log_list)) { |
| u64 first_dir_index = curr->index; |
| u64 last_dir_index; |
| const struct btrfs_delayed_item *next; |
| int ret; |
| |
| /* |
| * Find a range of consecutive dir index items to delete. Like |
| * this we log a single dir range item spanning several contiguous |
| * dir items instead of logging one range item per dir index item. |
| */ |
| next = list_next_entry(curr, log_list); |
| while (!list_entry_is_head(next, delayed_del_list, log_list)) { |
| if (next->index != curr->index + 1) |
| break; |
| curr = next; |
| next = list_next_entry(next, log_list); |
| } |
| |
| last_dir_index = curr->index; |
| ASSERT(last_dir_index >= first_dir_index); |
| |
| ret = insert_dir_log_key(trans, inode->root->log_root, path, |
| ino, first_dir_index, last_dir_index); |
| if (ret) |
| return ret; |
| curr = list_next_entry(curr, log_list); |
| } |
| |
| return 0; |
| } |
| |
| static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_log_ctx *ctx, |
| const struct list_head *delayed_del_list, |
| const struct btrfs_delayed_item *first, |
| const struct btrfs_delayed_item **last_ret) |
| { |
| const struct btrfs_delayed_item *next; |
| struct extent_buffer *leaf = path->nodes[0]; |
| const int last_slot = btrfs_header_nritems(leaf) - 1; |
| int slot = path->slots[0] + 1; |
| const u64 ino = btrfs_ino(inode); |
| |
| next = list_next_entry(first, log_list); |
| |
| while (slot < last_slot && |
| !list_entry_is_head(next, delayed_del_list, log_list)) { |
| struct btrfs_key key; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != ino || |
| key.type != BTRFS_DIR_INDEX_KEY || |
| key.offset != next->index) |
| break; |
| |
| slot++; |
| *last_ret = next; |
| next = list_next_entry(next, log_list); |
| } |
| |
| return btrfs_del_items(trans, inode->root->log_root, path, |
| path->slots[0], slot - path->slots[0]); |
| } |
| |
| static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| const struct list_head *delayed_del_list, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *log = inode->root->log_root; |
| const struct btrfs_delayed_item *curr; |
| u64 last_range_start = 0; |
| u64 last_range_end = 0; |
| struct btrfs_key key; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_DIR_INDEX_KEY; |
| curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, |
| log_list); |
| |
| while (!list_entry_is_head(curr, delayed_del_list, log_list)) { |
| const struct btrfs_delayed_item *last = curr; |
| u64 first_dir_index = curr->index; |
| u64 last_dir_index; |
| bool deleted_items = false; |
| int ret; |
| |
| key.offset = curr->index; |
| ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
| if (ret < 0) { |
| return ret; |
| } else if (ret == 0) { |
| ret = batch_delete_dir_index_items(trans, inode, path, ctx, |
| delayed_del_list, curr, |
| &last); |
| if (ret) |
| return ret; |
| deleted_items = true; |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * If we deleted items from the leaf, it means we have a range |
| * item logging their range, so no need to add one or update an |
| * existing one. Otherwise we have to log a dir range item. |
| */ |
| if (deleted_items) |
| goto next_batch; |
| |
| last_dir_index = last->index; |
| ASSERT(last_dir_index >= first_dir_index); |
| /* |
| * If this range starts right after where the previous one ends, |
| * then we want to reuse the previous range item and change its |
| * end offset to the end of this range. This is just to minimize |
| * leaf space usage, by avoiding adding a new range item. |
| */ |
| if (last_range_end != 0 && first_dir_index == last_range_end + 1) |
| first_dir_index = last_range_start; |
| |
| ret = insert_dir_log_key(trans, log, path, key.objectid, |
| first_dir_index, last_dir_index); |
| if (ret) |
| return ret; |
| |
| last_range_start = first_dir_index; |
| last_range_end = last_dir_index; |
| next_batch: |
| curr = list_next_entry(last, log_list); |
| } |
| |
| return 0; |
| } |
| |
| static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| const struct list_head *delayed_del_list, |
| struct btrfs_log_ctx *ctx) |
| { |
| /* |
| * We are deleting dir index items from the log tree or adding range |
| * items to it. |
| */ |
| lockdep_assert_held(&inode->log_mutex); |
| |
| if (list_empty(delayed_del_list)) |
| return 0; |
| |
| if (ctx->logged_before) |
| return log_delayed_deletions_incremental(trans, inode, path, |
| delayed_del_list, ctx); |
| |
| return log_delayed_deletions_full(trans, inode, path, delayed_del_list, |
| ctx); |
| } |
| |
| /* |
| * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed |
| * items instead of the subvolume tree. |
| */ |
| static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| const struct list_head *delayed_ins_list, |
| struct btrfs_log_ctx *ctx) |
| { |
| const bool orig_log_new_dentries = ctx->log_new_dentries; |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_item *item; |
| int ret = 0; |
| |
| /* |
| * No need for the log mutex, plus to avoid potential deadlocks or |
| * lockdep annotations due to nesting of delayed inode mutexes and log |
| * mutexes. |
| */ |
| lockdep_assert_not_held(&inode->log_mutex); |
| |
| ASSERT(!ctx->logging_new_delayed_dentries); |
| ctx->logging_new_delayed_dentries = true; |
| |
| list_for_each_entry(item, delayed_ins_list, log_list) { |
| struct btrfs_dir_item *dir_item; |
| struct inode *di_inode; |
| struct btrfs_key key; |
| int log_mode = LOG_INODE_EXISTS; |
| |
| dir_item = (struct btrfs_dir_item *)item->data; |
| btrfs_disk_key_to_cpu(&key, &dir_item->location); |
| |
| if (key.type == BTRFS_ROOT_ITEM_KEY) |
| continue; |
| |
| di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root); |
| if (IS_ERR(di_inode)) { |
| ret = PTR_ERR(di_inode); |
| break; |
| } |
| |
| if (!need_log_inode(trans, BTRFS_I(di_inode))) { |
| btrfs_add_delayed_iput(BTRFS_I(di_inode)); |
| continue; |
| } |
| |
| if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) |
| log_mode = LOG_INODE_ALL; |
| |
| ctx->log_new_dentries = false; |
| ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx); |
| |
| if (!ret && ctx->log_new_dentries) |
| ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx); |
| |
| btrfs_add_delayed_iput(BTRFS_I(di_inode)); |
| |
| if (ret) |
| break; |
| } |
| |
| ctx->log_new_dentries = orig_log_new_dentries; |
| ctx->logging_new_delayed_dentries = false; |
| |
| return ret; |
| } |
| |
| /* log a single inode in the tree log. |
| * At least one parent directory for this inode must exist in the tree |
| * or be logged already. |
| * |
| * Any items from this inode changed by the current transaction are copied |
| * to the log tree. An extra reference is taken on any extents in this |
| * file, allowing us to avoid a whole pile of corner cases around logging |
| * blocks that have been removed from the tree. |
| * |
| * See LOG_INODE_ALL and related defines for a description of what inode_only |
| * does. |
| * |
| * This handles both files and directories. |
| */ |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| int inode_only, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_path *path; |
| struct btrfs_path *dst_path; |
| struct btrfs_key min_key; |
| struct btrfs_key max_key; |
| struct btrfs_root *log = inode->root->log_root; |
| int ret; |
| bool fast_search = false; |
| u64 ino = btrfs_ino(inode); |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| u64 logged_isize = 0; |
| bool need_log_inode_item = true; |
| bool xattrs_logged = false; |
| bool inode_item_dropped = true; |
| bool full_dir_logging = false; |
| LIST_HEAD(delayed_ins_list); |
| LIST_HEAD(delayed_del_list); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| dst_path = btrfs_alloc_path(); |
| if (!dst_path) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| min_key.objectid = ino; |
| min_key.type = BTRFS_INODE_ITEM_KEY; |
| min_key.offset = 0; |
| |
| max_key.objectid = ino; |
| |
| |
| /* today the code can only do partial logging of directories */ |
| if (S_ISDIR(inode->vfs_inode.i_mode) || |
| (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags) && |
| inode_only >= LOG_INODE_EXISTS)) |
| max_key.type = BTRFS_XATTR_ITEM_KEY; |
| else |
| max_key.type = (u8)-1; |
| max_key.offset = (u64)-1; |
| |
| if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) |
| full_dir_logging = true; |
| |
| /* |
| * If we are logging a directory while we are logging dentries of the |
| * delayed items of some other inode, then we need to flush the delayed |
| * items of this directory and not log the delayed items directly. This |
| * is to prevent more than one level of recursion into btrfs_log_inode() |
| * by having something like this: |
| * |
| * $ mkdir -p a/b/c/d/e/f/g/h/... |
| * $ xfs_io -c "fsync" a |
| * |
| * Where all directories in the path did not exist before and are |
| * created in the current transaction. |
| * So in such a case we directly log the delayed items of the main |
| * directory ("a") without flushing them first, while for each of its |
| * subdirectories we flush their delayed items before logging them. |
| * This prevents a potential unbounded recursion like this: |
| * |
| * btrfs_log_inode() |
| * log_new_delayed_dentries() |
| * btrfs_log_inode() |
| * log_new_delayed_dentries() |
| * btrfs_log_inode() |
| * log_new_delayed_dentries() |
| * (...) |
| * |
| * We have thresholds for the maximum number of delayed items to have in |
| * memory, and once they are hit, the items are flushed asynchronously. |
| * However the limit is quite high, so lets prevent deep levels of |
| * recursion to happen by limiting the maximum depth to be 1. |
| */ |
| if (full_dir_logging && ctx->logging_new_delayed_dentries) { |
| ret = btrfs_commit_inode_delayed_items(trans, inode); |
| if (ret) |
| goto out; |
| } |
| |
| mutex_lock(&inode->log_mutex); |
| |
| /* |
| * For symlinks, we must always log their content, which is stored in an |
| * inline extent, otherwise we could end up with an empty symlink after |
| * log replay, which is invalid on linux (symlink(2) returns -ENOENT if |
| * one attempts to create an empty symlink). |
| * We don't need to worry about flushing delalloc, because when we create |
| * the inline extent when the symlink is created (we never have delalloc |
| * for symlinks). |
| */ |
| if (S_ISLNK(inode->vfs_inode.i_mode)) |
| inode_only = LOG_INODE_ALL; |
| |
| /* |
| * Before logging the inode item, cache the value returned by |
| * inode_logged(), because after that we have the need to figure out if |
| * the inode was previously logged in this transaction. |
| */ |
| ret = inode_logged(trans, inode, path); |
| if (ret < 0) |
| goto out_unlock; |
| ctx->logged_before = (ret == 1); |
| ret = 0; |
| |
| /* |
| * This is for cases where logging a directory could result in losing a |
| * a file after replaying the log. For example, if we move a file from a |
| * directory A to a directory B, then fsync directory A, we have no way |
| * to known the file was moved from A to B, so logging just A would |
| * result in losing the file after a log replay. |
| */ |
| if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| goto out_unlock; |
| } |
| |
| /* |
| * a brute force approach to making sure we get the most uptodate |
| * copies of everything. |
| */ |
| if (S_ISDIR(inode->vfs_inode.i_mode)) { |
| clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); |
| if (ctx->logged_before) |
| ret = drop_inode_items(trans, log, path, inode, |
| BTRFS_XATTR_ITEM_KEY); |
| } else { |
| if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { |
| /* |
| * Make sure the new inode item we write to the log has |
| * the same isize as the current one (if it exists). |
| * This is necessary to prevent data loss after log |
| * replay, and also to prevent doing a wrong expanding |
| * truncate - for e.g. create file, write 4K into offset |
| * 0, fsync, write 4K into offset 4096, add hard link, |
| * fsync some other file (to sync log), power fail - if |
| * we use the inode's current i_size, after log replay |
| * we get a 8Kb file, with the last 4Kb extent as a hole |
| * (zeroes), as if an expanding truncate happened, |
| * instead of getting a file of 4Kb only. |
| */ |
| ret = logged_inode_size(log, inode, path, &logged_isize); |
| if (ret) |
| goto out_unlock; |
| } |
| if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags)) { |
| if (inode_only == LOG_INODE_EXISTS) { |
| max_key.type = BTRFS_XATTR_ITEM_KEY; |
| if (ctx->logged_before) |
| ret = drop_inode_items(trans, log, path, |
| inode, max_key.type); |
| } else { |
| clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags); |
| clear_bit(BTRFS_INODE_COPY_EVERYTHING, |
| &inode->runtime_flags); |
| if (ctx->logged_before) |
| ret = truncate_inode_items(trans, log, |
| inode, 0, 0); |
| } |
| } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, |
| &inode->runtime_flags) || |
| inode_only == LOG_INODE_EXISTS) { |
| if (inode_only == LOG_INODE_ALL) |
| fast_search = true; |
| max_key.type = BTRFS_XATTR_ITEM_KEY; |
| if (ctx->logged_before) |
| ret = drop_inode_items(trans, log, path, inode, |
| max_key.type); |
| } else { |
| if (inode_only == LOG_INODE_ALL) |
| fast_search = true; |
| inode_item_dropped = false; |
| goto log_extents; |
| } |
| |
| } |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * If we are logging a directory in full mode, collect the delayed items |
| * before iterating the subvolume tree, so that we don't miss any new |
| * dir index items in case they get flushed while or right after we are |
| * iterating the subvolume tree. |
| */ |
| if (full_dir_logging && !ctx->logging_new_delayed_dentries) |
| btrfs_log_get_delayed_items(inode, &delayed_ins_list, |
| &delayed_del_list); |
| |
| ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, |
| path, dst_path, logged_isize, |
| inode_only, ctx, |
| &need_log_inode_item); |
| if (ret) |
| goto out_unlock; |
| |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); |
| if (ret) |
| goto out_unlock; |
| xattrs_logged = true; |
| if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| ret = btrfs_log_holes(trans, inode, path); |
| if (ret) |
| goto out_unlock; |
| } |
| log_extents: |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| if (need_log_inode_item) { |
| ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); |
| if (ret) |
| goto out_unlock; |
| /* |
| * If we are doing a fast fsync and the inode was logged before |
| * in this transaction, we don't need to log the xattrs because |
| * they were logged before. If xattrs were added, changed or |
| * deleted since the last time we logged the inode, then we have |
| * already logged them because the inode had the runtime flag |
| * BTRFS_INODE_COPY_EVERYTHING set. |
| */ |
| if (!xattrs_logged && inode->logged_trans < trans->transid) { |
| ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); |
| if (ret) |
| goto out_unlock; |
| btrfs_release_path(path); |
| } |
| } |
| if (fast_search) { |
| ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); |
| if (ret) |
| goto out_unlock; |
| } else if (inode_only == LOG_INODE_ALL) { |
| struct extent_map *em, *n; |
| |
| write_lock(&em_tree->lock); |
| list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) |
| list_del_init(&em->list); |
| write_unlock(&em_tree->lock); |
| } |
| |
| if (full_dir_logging) { |
| ret = log_directory_changes(trans, inode, path, dst_path, ctx); |
| if (ret) |
| goto out_unlock; |
| ret = log_delayed_insertion_items(trans, inode, path, |
| &delayed_ins_list, ctx); |
| if (ret) |
| goto out_unlock; |
| ret = log_delayed_deletion_items(trans, inode, path, |
| &delayed_del_list, ctx); |
| if (ret) |
| goto out_unlock; |
| } |
| |
| spin_lock(&inode->lock); |
| inode->logged_trans = trans->transid; |
| /* |
| * Don't update last_log_commit if we logged that an inode exists. |
| * We do this for three reasons: |
| * |
| * 1) We might have had buffered writes to this inode that were |
| * flushed and had their ordered extents completed in this |
| * transaction, but we did not previously log the inode with |
| * LOG_INODE_ALL. Later the inode was evicted and after that |
| * it was loaded again and this LOG_INODE_EXISTS log operation |
| * happened. We must make sure that if an explicit fsync against |
| * the inode is performed later, it logs the new extents, an |
| * updated inode item, etc, and syncs the log. The same logic |
| * applies to direct IO writes instead of buffered writes. |
| * |
| * 2) When we log the inode with LOG_INODE_EXISTS, its inode item |
| * is logged with an i_size of 0 or whatever value was logged |
| * before. If later the i_size of the inode is increased by a |
| * truncate operation, the log is synced through an fsync of |
| * some other inode and then finally an explicit fsync against |
| * this inode is made, we must make sure this fsync logs the |
| * inode with the new i_size, the hole between old i_size and |
| * the new i_size, and syncs the log. |
| * |
| * 3) If we are logging that an ancestor inode exists as part of |
| * logging a new name from a link or rename operation, don't update |
| * its last_log_commit - otherwise if an explicit fsync is made |
| * against an ancestor, the fsync considers the inode in the log |
| * and doesn't sync the log, resulting in the ancestor missing after |
| * a power failure unless the log was synced as part of an fsync |
| * against any other unrelated inode. |
| */ |
| if (inode_only != LOG_INODE_EXISTS) |
| inode->last_log_commit = inode->last_sub_trans; |
| spin_unlock(&inode->lock); |
| |
| /* |
| * Reset the last_reflink_trans so that the next fsync does not need to |
| * go through the slower path when logging extents and their checksums. |
| */ |
| if (inode_only == LOG_INODE_ALL) |
| inode->last_reflink_trans = 0; |
| |
| out_unlock: |
| mutex_unlock(&inode->log_mutex); |
| out: |
| btrfs_free_path(path); |
| btrfs_free_path(dst_path); |
| |
| if (ret) |
| free_conflicting_inodes(ctx); |
| else |
| ret = log_conflicting_inodes(trans, inode->root, ctx); |
| |
| if (full_dir_logging && !ctx->logging_new_delayed_dentries) { |
| if (!ret) |
| ret = log_new_delayed_dentries(trans, inode, |
| &delayed_ins_list, ctx); |
| |
| btrfs_log_put_delayed_items(inode, &delayed_ins_list, |
| &delayed_del_list); |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root *root = inode->root; |
| const u64 ino = btrfs_ino(inode); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (true) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| u32 cur_offset = 0; |
| u32 item_size; |
| unsigned long ptr; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ |
| if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) |
| break; |
| |
| item_size = btrfs_item_size(leaf, slot); |
| ptr = btrfs_item_ptr_offset(leaf, slot); |
| while (cur_offset < item_size) { |
| struct btrfs_key inode_key; |
| struct inode *dir_inode; |
| |
| inode_key.type = BTRFS_INODE_ITEM_KEY; |
| inode_key.offset = 0; |
| |
| if (key.type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *) |
| (ptr + cur_offset); |
| inode_key.objectid = btrfs_inode_extref_parent( |
| leaf, extref); |
| cur_offset += sizeof(*extref); |
| cur_offset += btrfs_inode_extref_name_len(leaf, |
| extref); |
| } else { |
| inode_key.objectid = key.offset; |
| cur_offset = item_size; |
| } |
| |
| dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, |
| root); |
| /* |
| * If the parent inode was deleted, return an error to |
| * fallback to a transaction commit. This is to prevent |
| * getting an inode that was moved from one parent A to |
| * a parent B, got its former parent A deleted and then |
| * it got fsync'ed, from existing at both parents after |
| * a log replay (and the old parent still existing). |
| * Example: |
| * |
| * mkdir /mnt/A |
| * mkdir /mnt/B |
| * touch /mnt/B/bar |
| * sync |
| * mv /mnt/B/bar /mnt/A/bar |
| * mv -T /mnt/A /mnt/B |
| * fsync /mnt/B/bar |
| * <power fail> |
| * |
| * If we ignore the old parent B which got deleted, |
| * after a log replay we would have file bar linked |
| * at both parents and the old parent B would still |
| * exist. |
| */ |
| if (IS_ERR(dir_inode)) { |
| ret = PTR_ERR(dir_inode); |
| goto out; |
| } |
| |
| if (!need_log_inode(trans, BTRFS_I(dir_inode))) { |
| btrfs_add_delayed_iput(BTRFS_I(dir_inode)); |
| continue; |
| } |
| |
| ctx->log_new_dentries = false; |
| ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), |
| LOG_INODE_ALL, ctx); |
| if (!ret && ctx->log_new_dentries) |
| ret = log_new_dir_dentries(trans, |
| BTRFS_I(dir_inode), ctx); |
| btrfs_add_delayed_iput(BTRFS_I(dir_inode)); |
| if (ret) |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int log_new_ancestors(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_key found_key; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); |
| |
| while (true) { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *leaf; |
| int slot; |
| struct btrfs_key search_key; |
| struct inode *inode; |
| u64 ino; |
| int ret = 0; |
| |
| btrfs_release_path(path); |
| |
| ino = found_key.offset; |
| |
| search_key.objectid = found_key.offset; |
| search_key.type = BTRFS_INODE_ITEM_KEY; |
| search_key.offset = 0; |
| inode = btrfs_iget(fs_info->sb, ino, root); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| if (BTRFS_I(inode)->generation >= trans->transid && |
| need_log_inode(trans, BTRFS_I(inode))) |
| ret = btrfs_log_inode(trans, BTRFS_I(inode), |
| LOG_INODE_EXISTS, ctx); |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| if (ret) |
| return ret; |
| |
| if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) |
| break; |
| |
| search_key.type = BTRFS_INODE_REF_KEY; |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| else if (ret > 0) |
| return -ENOENT; |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| if (found_key.objectid != search_key.objectid || |
| found_key.type != BTRFS_INODE_REF_KEY) |
| return -ENOENT; |
| } |
| return 0; |
| } |
| |
| static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct dentry *parent, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *root = inode->root; |
| struct dentry *old_parent = NULL; |
| struct super_block *sb = inode->vfs_inode.i_sb; |
| int ret = 0; |
| |
| while (true) { |
| if (!parent || d_really_is_negative(parent) || |
| sb != parent->d_sb) |
| break; |
| |
| inode = BTRFS_I(d_inode(parent)); |
| if (root != inode->root) |
| break; |
| |
| if (inode->generation >= trans->transid && |
| need_log_inode(trans, inode)) { |
| ret = btrfs_log_inode(trans, inode, |
| LOG_INODE_EXISTS, ctx); |
| if (ret) |
| break; |
| } |
| if (IS_ROOT(parent)) |
| break; |
| |
| parent = dget_parent(parent); |
| dput(old_parent); |
| old_parent = parent; |
| } |
| dput(old_parent); |
| |
| return ret; |
| } |
| |
| static int log_all_new_ancestors(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct dentry *parent, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *root = inode->root; |
| const u64 ino = btrfs_ino(inode); |
| struct btrfs_path *path; |
| struct btrfs_key search_key; |
| int ret; |
| |
| /* |
| * For a single hard link case, go through a fast path that does not |
| * need to iterate the fs/subvolume tree. |
| */ |
| if (inode->vfs_inode.i_nlink < 2) |
| return log_new_ancestors_fast(trans, inode, parent, ctx); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| search_key.objectid = ino; |
| search_key.type = BTRFS_INODE_REF_KEY; |
| search_key.offset = 0; |
| again: |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret == 0) |
| path->slots[0]++; |
| |
| while (true) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| struct btrfs_key found_key; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| if (found_key.objectid != ino || |
| found_key.type > BTRFS_INODE_EXTREF_KEY) |
| break; |
| |
| /* |
| * Don't deal with extended references because they are rare |
| * cases and too complex to deal with (we would need to keep |
| * track of which subitem we are processing for each item in |
| * this loop, etc). So just return some error to fallback to |
| * a transaction commit. |
| */ |
| if (found_key.type == BTRFS_INODE_EXTREF_KEY) { |
| ret = -EMLINK; |
| goto out; |
| } |
| |
| /* |
| * Logging ancestors needs to do more searches on the fs/subvol |
| * tree, so it releases the path as needed to avoid deadlocks. |
| * Keep track of the last inode ref key and resume from that key |
| * after logging all new ancestors for the current hard link. |
| */ |
| memcpy(&search_key, &found_key, sizeof(search_key)); |
| |
| ret = log_new_ancestors(trans, root, path, ctx); |
| if (ret) |
| goto out; |
| btrfs_release_path(path); |
| goto again; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function around btrfs_log_inode to make sure newly created |
| * parent directories also end up in the log. A minimal inode and backref |
| * only logging is done of any parent directories that are older than |
| * the last committed transaction |
| */ |
| static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct dentry *parent, |
| int inode_only, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| bool log_dentries = false; |
| |
| if (btrfs_test_opt(fs_info, NOTREELOG)) { |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| goto end_no_trans; |
| } |
| |
| if (btrfs_root_refs(&root->root_item) == 0) { |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| goto end_no_trans; |
| } |
| |
| /* |
| * Skip already logged inodes or inodes corresponding to tmpfiles |
| * (since logging them is pointless, a link count of 0 means they |
| * will never be accessible). |
| */ |
| if ((btrfs_inode_in_log(inode, trans->transid) && |
| list_empty(&ctx->ordered_extents)) || |
| inode->vfs_inode.i_nlink == 0) { |
| ret = BTRFS_NO_LOG_SYNC; |
| goto end_no_trans; |
| } |
| |
| ret = start_log_trans(trans, root, ctx); |
| if (ret) |
| goto end_no_trans; |
| |
| ret = btrfs_log_inode(trans, inode, inode_only, ctx); |
| if (ret) |
| goto end_trans; |
| |
| /* |
| * for regular files, if its inode is already on disk, we don't |
| * have to worry about the parents at all. This is because |
| * we can use the last_unlink_trans field to record renames |
| * and other fun in this file. |
| */ |
| if (S_ISREG(inode->vfs_inode.i_mode) && |
| inode->generation < trans->transid && |
| inode->last_unlink_trans < trans->transid) { |
| ret = 0; |
| goto end_trans; |
| } |
| |
| if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) |
| log_dentries = true; |
| |
| /* |
| * On unlink we must make sure all our current and old parent directory |
| * inodes are fully logged. This is to prevent leaving dangling |
| * directory index entries in directories that were our parents but are |
| * not anymore. Not doing this results in old parent directory being |
| * impossible to delete after log replay (rmdir will always fail with |
| * error -ENOTEMPTY). |
| * |
| * Example 1: |
| * |
| * mkdir testdir |
| * touch testdir/foo |
| * ln testdir/foo testdir/bar |
| * sync |
| * unlink testdir/bar |
| * xfs_io -c fsync testdir/foo |
| * <power failure> |
| * mount fs, triggers log replay |
| * |
| * If we don't log the parent directory (testdir), after log replay the |
| * directory still has an entry pointing to the file inode using the bar |
| * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and |
| * the file inode has a link count of 1. |
| * |
| * Example 2: |
| * |
| * mkdir testdir |
| * touch foo |
| * ln foo testdir/foo2 |
| * ln foo testdir/foo3 |
| * sync |
| * unlink testdir/foo3 |
| * xfs_io -c fsync foo |
| * <power failure> |
| * mount fs, triggers log replay |
| * |
| * Similar as the first example, after log replay the parent directory |
| * testdir still has an entry pointing to the inode file with name foo3 |
| * but the file inode does not have a matching BTRFS_INODE_REF_KEY item |
| * and has a link count of 2. |
| */ |
| if (inode->last_unlink_trans >= trans->transid) { |
| ret = btrfs_log_all_parents(trans, inode, ctx); |
| if (ret) |
| goto end_trans; |
| } |
| |
| ret = log_all_new_ancestors(trans, inode, parent, ctx); |
| if (ret) |
| goto end_trans; |
| |
| if (log_dentries) |
| ret = log_new_dir_dentries(trans, inode, ctx); |
| else |
| ret = 0; |
| end_trans: |
| if (ret < 0) { |
| btrfs_set_log_full_commit(trans); |
| ret = BTRFS_LOG_FORCE_COMMIT; |
| } |
| |
| if (ret) |
| btrfs_remove_log_ctx(root, ctx); |
| btrfs_end_log_trans(root); |
| end_no_trans: |
| return ret; |
| } |
| |
| /* |
| * it is not safe to log dentry if the chunk root has added new |
| * chunks. This returns 0 if the dentry was logged, and 1 otherwise. |
| * If this returns 1, you must commit the transaction to safely get your |
| * data on disk. |
| */ |
| int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, |
| struct dentry *dentry, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct dentry *parent = dget_parent(dentry); |
| int ret; |
| |
| ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, |
| LOG_INODE_ALL, ctx); |
| dput(parent); |
| |
| return ret; |
| } |
| |
| /* |
| * should be called during mount to recover any replay any log trees |
| * from the FS |
| */ |
| int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_root *log; |
| struct btrfs_fs_info *fs_info = log_root_tree->fs_info; |
| struct walk_control wc = { |
| .process_func = process_one_buffer, |
| .stage = LOG_WALK_PIN_ONLY, |
| }; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| |
| trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto error; |
| } |
| |
| wc.trans = trans; |
| wc.pin = 1; |
| |
| ret = walk_log_tree(trans, log_root_tree, &wc); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error; |
| } |
| |
| again: |
| key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); |
| |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto error; |
| } |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| btrfs_release_path(path); |
| if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
| break; |
| |
| log = btrfs_read_tree_root(log_root_tree, &found_key); |
| if (IS_ERR(log)) { |
| ret = PTR_ERR(log); |
| btrfs_abort_transaction(trans, ret); |
| goto error; |
| } |
| |
| wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, |
| true); |
| if (IS_ERR(wc.replay_dest)) { |
| ret = PTR_ERR(wc.replay_dest); |
| |
| /* |
| * We didn't find the subvol, likely because it was |
| * deleted. This is ok, simply skip this log and go to |
| * the next one. |
| * |
| * We need to exclude the root because we can't have |
| * other log replays overwriting this log as we'll read |
| * it back in a few more times. This will keep our |
| * block from being modified, and we'll just bail for |
| * each subsequent pass. |
| */ |
| if (ret == -ENOENT) |
| ret = btrfs_pin_extent_for_log_replay(trans, log->node); |
| btrfs_put_root(log); |
| |
| if (!ret) |
| goto next; |
| btrfs_abort_transaction(trans, ret); |
| goto error; |
| } |
| |
| wc.replay_dest->log_root = log; |
| ret = btrfs_record_root_in_trans(trans, wc.replay_dest); |
| if (ret) |
| /* The loop needs to continue due to the root refs */ |
| btrfs_abort_transaction(trans, ret); |
| else |
| ret = walk_log_tree(trans, log, &wc); |
| |
| if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { |
| ret = fixup_inode_link_counts(trans, wc.replay_dest, |
| path); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| } |
| |
| if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { |
| struct btrfs_root *root = wc.replay_dest; |
| |
| btrfs_release_path(path); |
| |
| /* |
| * We have just replayed everything, and the highest |
| * objectid of fs roots probably has changed in case |
| * some inode_item's got replayed. |
| * |
| * root->objectid_mutex is not acquired as log replay |
| * could only happen during mount. |
| */ |
| ret = btrfs_init_root_free_objectid(root); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| } |
| |
| wc.replay_dest->log_root = NULL; |
| btrfs_put_root(wc.replay_dest); |
| btrfs_put_root(log); |
| |
| if (ret) |
| goto error; |
| next: |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| btrfs_release_path(path); |
| |
| /* step one is to pin it all, step two is to replay just inodes */ |
| if (wc.pin) { |
| wc.pin = 0; |
| wc.process_func = replay_one_buffer; |
| wc.stage = LOG_WALK_REPLAY_INODES; |
| goto again; |
| } |
| /* step three is to replay everything */ |
| if (wc.stage < LOG_WALK_REPLAY_ALL) { |
| wc.stage++; |
| goto again; |
| } |
| |
| btrfs_free_path(path); |
| |
| /* step 4: commit the transaction, which also unpins the blocks */ |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| return ret; |
| |
| log_root_tree->log_root = NULL; |
| clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| btrfs_put_root(log_root_tree); |
| |
| return 0; |
| error: |
| if (wc.trans) |
| btrfs_end_transaction(wc.trans); |
| clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * there are some corner cases where we want to force a full |
| * commit instead of allowing a directory to be logged. |
| * |
| * They revolve around files there were unlinked from the directory, and |
| * this function updates the parent directory so that a full commit is |
| * properly done if it is fsync'd later after the unlinks are done. |
| * |
| * Must be called before the unlink operations (updates to the subvolume tree, |
| * inodes, etc) are done. |
| */ |
| void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, struct btrfs_inode *inode, |
| bool for_rename) |
| { |
| /* |
| * when we're logging a file, if it hasn't been renamed |
| * or unlinked, and its inode is fully committed on disk, |
| * we don't have to worry about walking up the directory chain |
| * to log its parents. |
| * |
| * So, we use the last_unlink_trans field to put this transid |
| * into the file. When the file is logged we check it and |
| * don't log the parents if the file is fully on disk. |
| */ |
| mutex_lock(&inode->log_mutex); |
| inode->last_unlink_trans = trans->transid; |
| mutex_unlock(&inode->log_mutex); |
| |
| if (!for_rename) |
| return; |
| |
| /* |
| * If this directory was already logged, any new names will be logged |
| * with btrfs_log_new_name() and old names will be deleted from the log |
| * tree with btrfs_del_dir_entries_in_log() or with |
| * btrfs_del_inode_ref_in_log(). |
| */ |
| if (inode_logged(trans, dir, NULL) == 1) |
| return; |
| |
| /* |
| * If the inode we're about to unlink was logged before, the log will be |
| * properly updated with the new name with btrfs_log_new_name() and the |
| * old name removed with btrfs_del_dir_entries_in_log() or with |
| * btrfs_del_inode_ref_in_log(). |
| */ |
| if (inode_logged(trans, inode, NULL) == 1) |
| return; |
| |
| /* |
| * when renaming files across directories, if the directory |
| * there we're unlinking from gets fsync'd later on, there's |
| * no way to find the destination directory later and fsync it |
| * properly. So, we have to be conservative and force commits |
| * so the new name gets discovered. |
| */ |
| mutex_lock(&dir->log_mutex); |
| dir->last_unlink_trans = trans->transid; |
| mutex_unlock(&dir->log_mutex); |
| } |
| |
| /* |
| * Make sure that if someone attempts to fsync the parent directory of a deleted |
| * snapshot, it ends up triggering a transaction commit. This is to guarantee |
| * that after replaying the log tree of the parent directory's root we will not |
| * see the snapshot anymore and at log replay time we will not see any log tree |
| * corresponding to the deleted snapshot's root, which could lead to replaying |
| * it after replaying the log tree of the parent directory (which would replay |
| * the snapshot delete operation). |
| * |
| * Must be called before the actual snapshot destroy operation (updates to the |
| * parent root and tree of tree roots trees, etc) are done. |
| */ |
| void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir) |
| { |
| mutex_lock(&dir->log_mutex); |
| dir->last_unlink_trans = trans->transid; |
| mutex_unlock(&dir->log_mutex); |
| } |
| |
| /* |
| * Update the log after adding a new name for an inode. |
| * |
| * @trans: Transaction handle. |
| * @old_dentry: The dentry associated with the old name and the old |
| * parent directory. |
| * @old_dir: The inode of the previous parent directory for the case |
| * of a rename. For a link operation, it must be NULL. |
| * @old_dir_index: The index number associated with the old name, meaningful |
| * only for rename operations (when @old_dir is not NULL). |
| * Ignored for link operations. |
| * @parent: The dentry associated with the directory under which the |
| * new name is located. |
| * |
| * Call this after adding a new name for an inode, as a result of a link or |
| * rename operation, and it will properly update the log to reflect the new name. |
| */ |
| void btrfs_log_new_name(struct btrfs_trans_handle *trans, |
| struct dentry *old_dentry, struct btrfs_inode *old_dir, |
| u64 old_dir_index, struct dentry *parent) |
| { |
| struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); |
| struct btrfs_root *root = inode->root; |
| struct btrfs_log_ctx ctx; |
| bool log_pinned = false; |
| int ret; |
| |
| /* |
| * this will force the logging code to walk the dentry chain |
| * up for the file |
| */ |
| if (!S_ISDIR(inode->vfs_inode.i_mode)) |
| inode->last_unlink_trans = trans->transid; |
| |
| /* |
| * if this inode hasn't been logged and directory we're renaming it |
| * from hasn't been logged, we don't need to log it |
| */ |
| ret = inode_logged(trans, inode, NULL); |
| if (ret < 0) { |
| goto out; |
| } else if (ret == 0) { |
| if (!old_dir) |
| return; |
| /* |
| * If the inode was not logged and we are doing a rename (old_dir is not |
| * NULL), check if old_dir was logged - if it was not we can return and |
| * do nothing. |
| */ |
| ret = inode_logged(trans, old_dir, NULL); |
| if (ret < 0) |
| goto out; |
| else if (ret == 0) |
| return; |
| } |
| ret = 0; |
| |
| /* |
| * If we are doing a rename (old_dir is not NULL) from a directory that |
| * was previously logged, make sure that on log replay we get the old |
| * dir entry deleted. This is needed because we will also log the new |
| * name of the renamed inode, so we need to make sure that after log |
| * replay we don't end up with both the new and old dir entries existing. |
| */ |
| if (old_dir && old_dir->logged_trans == trans->transid) { |
| struct btrfs_root *log = old_dir->root->log_root; |
| struct btrfs_path *path; |
| struct fscrypt_name fname; |
| |
| ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); |
| |
| ret = fscrypt_setup_filename(&old_dir->vfs_inode, |
| &old_dentry->d_name, 0, &fname); |
| if (ret) |
| goto out; |
| /* |
| * We have two inodes to update in the log, the old directory and |
| * the inode that got renamed, so we must pin the log to prevent |
| * anyone from syncing the log until we have updated both inodes |
| * in the log. |
| */ |
| ret = join_running_log_trans(root); |
| /* |
| * At least one of the inodes was logged before, so this should |
| * not fail, but if it does, it's not serious, just bail out and |
| * mark the log for a full commit. |
| */ |
| if (WARN_ON_ONCE(ret < 0)) { |
| fscrypt_free_filename(&fname); |
| goto out; |
| } |
| |
| log_pinned = true; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| fscrypt_free_filename(&fname); |
| goto out; |
| } |
| |
| /* |
| * Other concurrent task might be logging the old directory, |
| * as it can be triggered when logging other inode that had or |
| * still has a dentry in the old directory. We lock the old |
| * directory's log_mutex to ensure the deletion of the old |
| * name is persisted, because during directory logging we |
| * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of |
| * the old name's dir index item is in the delayed items, so |
| * it could be missed by an in progress directory logging. |
| */ |
| mutex_lock(&old_dir->log_mutex); |
| ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), |
| &fname.disk_name, old_dir_index); |
| if (ret > 0) { |
| /* |
| * The dentry does not exist in the log, so record its |
| * deletion. |
| */ |
| btrfs_release_path(path); |
| ret = insert_dir_log_key(trans, log, path, |
| btrfs_ino(old_dir), |
| old_dir_index, old_dir_index); |
| } |
| mutex_unlock(&old_dir->log_mutex); |
| |
| btrfs_free_path(path); |
| fscrypt_free_filename(&fname); |
| if (ret < 0) |
| goto out; |
| } |
| |
| btrfs_init_log_ctx(&ctx, &inode->vfs_inode); |
| ctx.logging_new_name = true; |
| btrfs_init_log_ctx_scratch_eb(&ctx); |
| /* |
| * We don't care about the return value. If we fail to log the new name |
| * then we know the next attempt to sync the log will fallback to a full |
| * transaction commit (due to a call to btrfs_set_log_full_commit()), so |
| * we don't need to worry about getting a log committed that has an |
| * inconsistent state after a rename operation. |
| */ |
| btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); |
| free_extent_buffer(ctx.scratch_eb); |
| ASSERT(list_empty(&ctx.conflict_inodes)); |
| out: |
| /* |
| * If an error happened mark the log for a full commit because it's not |
| * consistent and up to date or we couldn't find out if one of the |
| * inodes was logged before in this transaction. Do it before unpinning |
| * the log, to avoid any races with someone else trying to commit it. |
| */ |
| if (ret < 0) |
| btrfs_set_log_full_commit(trans); |
| if (log_pinned) |
| btrfs_end_log_trans(root); |
| } |
| |