| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| /* The driver transmit and receive code */ |
| |
| #include <linux/mm.h> |
| #include <linux/netdevice.h> |
| #include <linux/prefetch.h> |
| #include <linux/bpf_trace.h> |
| #include <net/dsfield.h> |
| #include <net/xdp.h> |
| #include "ice_txrx_lib.h" |
| #include "ice_lib.h" |
| #include "ice.h" |
| #include "ice_trace.h" |
| #include "ice_dcb_lib.h" |
| #include "ice_xsk.h" |
| #include "ice_eswitch.h" |
| |
| #define ICE_RX_HDR_SIZE 256 |
| |
| #define FDIR_DESC_RXDID 0x40 |
| #define ICE_FDIR_CLEAN_DELAY 10 |
| |
| /** |
| * ice_prgm_fdir_fltr - Program a Flow Director filter |
| * @vsi: VSI to send dummy packet |
| * @fdir_desc: flow director descriptor |
| * @raw_packet: allocated buffer for flow director |
| */ |
| int |
| ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, |
| u8 *raw_packet) |
| { |
| struct ice_tx_buf *tx_buf, *first; |
| struct ice_fltr_desc *f_desc; |
| struct ice_tx_desc *tx_desc; |
| struct ice_tx_ring *tx_ring; |
| struct device *dev; |
| dma_addr_t dma; |
| u32 td_cmd; |
| u16 i; |
| |
| /* VSI and Tx ring */ |
| if (!vsi) |
| return -ENOENT; |
| tx_ring = vsi->tx_rings[0]; |
| if (!tx_ring || !tx_ring->desc) |
| return -ENOENT; |
| dev = tx_ring->dev; |
| |
| /* we are using two descriptors to add/del a filter and we can wait */ |
| for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { |
| if (!i) |
| return -EAGAIN; |
| msleep_interruptible(1); |
| } |
| |
| dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, |
| DMA_TO_DEVICE); |
| |
| if (dma_mapping_error(dev, dma)) |
| return -EINVAL; |
| |
| /* grab the next descriptor */ |
| i = tx_ring->next_to_use; |
| first = &tx_ring->tx_buf[i]; |
| f_desc = ICE_TX_FDIRDESC(tx_ring, i); |
| memcpy(f_desc, fdir_desc, sizeof(*f_desc)); |
| |
| i++; |
| i = (i < tx_ring->count) ? i : 0; |
| tx_desc = ICE_TX_DESC(tx_ring, i); |
| tx_buf = &tx_ring->tx_buf[i]; |
| |
| i++; |
| tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| memset(tx_buf, 0, sizeof(*tx_buf)); |
| dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); |
| dma_unmap_addr_set(tx_buf, dma, dma); |
| |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | |
| ICE_TX_DESC_CMD_RE; |
| |
| tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; |
| tx_buf->raw_buf = raw_packet; |
| |
| tx_desc->cmd_type_offset_bsz = |
| ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); |
| |
| /* Force memory write to complete before letting h/w know |
| * there are new descriptors to fetch. |
| */ |
| wmb(); |
| |
| /* mark the data descriptor to be watched */ |
| first->next_to_watch = tx_desc; |
| |
| writel(tx_ring->next_to_use, tx_ring->tail); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_unmap_and_free_tx_buf - Release a Tx buffer |
| * @ring: the ring that owns the buffer |
| * @tx_buf: the buffer to free |
| */ |
| static void |
| ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) |
| { |
| if (tx_buf->skb) { |
| if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) |
| devm_kfree(ring->dev, tx_buf->raw_buf); |
| else if (ice_ring_is_xdp(ring)) |
| page_frag_free(tx_buf->raw_buf); |
| else |
| dev_kfree_skb_any(tx_buf->skb); |
| if (dma_unmap_len(tx_buf, len)) |
| dma_unmap_single(ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| } else if (dma_unmap_len(tx_buf, len)) { |
| dma_unmap_page(ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| } |
| |
| tx_buf->next_to_watch = NULL; |
| tx_buf->skb = NULL; |
| dma_unmap_len_set(tx_buf, len, 0); |
| /* tx_buf must be completely set up in the transmit path */ |
| } |
| |
| static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) |
| { |
| return netdev_get_tx_queue(ring->netdev, ring->q_index); |
| } |
| |
| /** |
| * ice_clean_tx_ring - Free any empty Tx buffers |
| * @tx_ring: ring to be cleaned |
| */ |
| void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) |
| { |
| u32 size; |
| u16 i; |
| |
| if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { |
| ice_xsk_clean_xdp_ring(tx_ring); |
| goto tx_skip_free; |
| } |
| |
| /* ring already cleared, nothing to do */ |
| if (!tx_ring->tx_buf) |
| return; |
| |
| /* Free all the Tx ring sk_buffs */ |
| for (i = 0; i < tx_ring->count; i++) |
| ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); |
| |
| tx_skip_free: |
| memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); |
| |
| size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), |
| PAGE_SIZE); |
| /* Zero out the descriptor ring */ |
| memset(tx_ring->desc, 0, size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1; |
| tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1; |
| |
| if (!tx_ring->netdev) |
| return; |
| |
| /* cleanup Tx queue statistics */ |
| netdev_tx_reset_queue(txring_txq(tx_ring)); |
| } |
| |
| /** |
| * ice_free_tx_ring - Free Tx resources per queue |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| */ |
| void ice_free_tx_ring(struct ice_tx_ring *tx_ring) |
| { |
| u32 size; |
| |
| ice_clean_tx_ring(tx_ring); |
| devm_kfree(tx_ring->dev, tx_ring->tx_buf); |
| tx_ring->tx_buf = NULL; |
| |
| if (tx_ring->desc) { |
| size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), |
| PAGE_SIZE); |
| dmam_free_coherent(tx_ring->dev, size, |
| tx_ring->desc, tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| } |
| |
| /** |
| * ice_clean_tx_irq - Reclaim resources after transmit completes |
| * @tx_ring: Tx ring to clean |
| * @napi_budget: Used to determine if we are in netpoll |
| * |
| * Returns true if there's any budget left (e.g. the clean is finished) |
| */ |
| static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) |
| { |
| unsigned int total_bytes = 0, total_pkts = 0; |
| unsigned int budget = ICE_DFLT_IRQ_WORK; |
| struct ice_vsi *vsi = tx_ring->vsi; |
| s16 i = tx_ring->next_to_clean; |
| struct ice_tx_desc *tx_desc; |
| struct ice_tx_buf *tx_buf; |
| |
| /* get the bql data ready */ |
| if (!ice_ring_is_xdp(tx_ring)) |
| netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); |
| |
| tx_buf = &tx_ring->tx_buf[i]; |
| tx_desc = ICE_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| prefetch(&vsi->state); |
| |
| do { |
| struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; |
| |
| /* if next_to_watch is not set then there is no work pending */ |
| if (!eop_desc) |
| break; |
| |
| /* follow the guidelines of other drivers */ |
| prefetchw(&tx_buf->skb->users); |
| |
| smp_rmb(); /* prevent any other reads prior to eop_desc */ |
| |
| ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); |
| /* if the descriptor isn't done, no work yet to do */ |
| if (!(eop_desc->cmd_type_offset_bsz & |
| cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buf->next_to_watch = NULL; |
| |
| /* update the statistics for this packet */ |
| total_bytes += tx_buf->bytecount; |
| total_pkts += tx_buf->gso_segs; |
| |
| /* free the skb */ |
| napi_consume_skb(tx_buf->skb, napi_budget); |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| |
| /* clear tx_buf data */ |
| tx_buf->skb = NULL; |
| dma_unmap_len_set(tx_buf, len, 0); |
| |
| /* unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_buf; |
| tx_desc = ICE_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (dma_unmap_len(tx_buf, len)) { |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buf, len, 0); |
| } |
| } |
| ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_buf; |
| tx_desc = ICE_TX_DESC(tx_ring, 0); |
| } |
| |
| prefetch(tx_desc); |
| |
| /* update budget accounting */ |
| budget--; |
| } while (likely(budget)); |
| |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| |
| ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); |
| |
| if (ice_ring_is_xdp(tx_ring)) |
| return !!budget; |
| |
| netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); |
| |
| #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
| if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && |
| (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (netif_tx_queue_stopped(txring_txq(tx_ring)) && |
| !test_bit(ICE_VSI_DOWN, vsi->state)) { |
| netif_tx_wake_queue(txring_txq(tx_ring)); |
| ++tx_ring->tx_stats.restart_q; |
| } |
| } |
| |
| return !!budget; |
| } |
| |
| /** |
| * ice_setup_tx_ring - Allocate the Tx descriptors |
| * @tx_ring: the Tx ring to set up |
| * |
| * Return 0 on success, negative on error |
| */ |
| int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) |
| { |
| struct device *dev = tx_ring->dev; |
| u32 size; |
| |
| if (!dev) |
| return -ENOMEM; |
| |
| /* warn if we are about to overwrite the pointer */ |
| WARN_ON(tx_ring->tx_buf); |
| tx_ring->tx_buf = |
| devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, |
| GFP_KERNEL); |
| if (!tx_ring->tx_buf) |
| return -ENOMEM; |
| |
| /* round up to nearest page */ |
| size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), |
| PAGE_SIZE); |
| tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, |
| GFP_KERNEL); |
| if (!tx_ring->desc) { |
| dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
| size); |
| goto err; |
| } |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| tx_ring->tx_stats.prev_pkt = -1; |
| return 0; |
| |
| err: |
| devm_kfree(dev, tx_ring->tx_buf); |
| tx_ring->tx_buf = NULL; |
| return -ENOMEM; |
| } |
| |
| /** |
| * ice_clean_rx_ring - Free Rx buffers |
| * @rx_ring: ring to be cleaned |
| */ |
| void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| u32 size; |
| u16 i; |
| |
| /* ring already cleared, nothing to do */ |
| if (!rx_ring->rx_buf) |
| return; |
| |
| if (rx_ring->skb) { |
| dev_kfree_skb(rx_ring->skb); |
| rx_ring->skb = NULL; |
| } |
| |
| if (rx_ring->xsk_pool) { |
| ice_xsk_clean_rx_ring(rx_ring); |
| goto rx_skip_free; |
| } |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; |
| |
| if (!rx_buf->page) |
| continue; |
| |
| /* Invalidate cache lines that may have been written to by |
| * device so that we avoid corrupting memory. |
| */ |
| dma_sync_single_range_for_cpu(dev, rx_buf->dma, |
| rx_buf->page_offset, |
| rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| |
| /* free resources associated with mapping */ |
| dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), |
| DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); |
| __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); |
| |
| rx_buf->page = NULL; |
| rx_buf->page_offset = 0; |
| } |
| |
| rx_skip_free: |
| if (rx_ring->xsk_pool) |
| memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); |
| else |
| memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); |
| |
| /* Zero out the descriptor ring */ |
| size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), |
| PAGE_SIZE); |
| memset(rx_ring->desc, 0, size); |
| |
| rx_ring->next_to_alloc = 0; |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| /** |
| * ice_free_rx_ring - Free Rx resources |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| */ |
| void ice_free_rx_ring(struct ice_rx_ring *rx_ring) |
| { |
| u32 size; |
| |
| ice_clean_rx_ring(rx_ring); |
| if (rx_ring->vsi->type == ICE_VSI_PF) |
| if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) |
| xdp_rxq_info_unreg(&rx_ring->xdp_rxq); |
| rx_ring->xdp_prog = NULL; |
| if (rx_ring->xsk_pool) { |
| kfree(rx_ring->xdp_buf); |
| rx_ring->xdp_buf = NULL; |
| } else { |
| kfree(rx_ring->rx_buf); |
| rx_ring->rx_buf = NULL; |
| } |
| |
| if (rx_ring->desc) { |
| size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), |
| PAGE_SIZE); |
| dmam_free_coherent(rx_ring->dev, size, |
| rx_ring->desc, rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| } |
| |
| /** |
| * ice_setup_rx_ring - Allocate the Rx descriptors |
| * @rx_ring: the Rx ring to set up |
| * |
| * Return 0 on success, negative on error |
| */ |
| int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| u32 size; |
| |
| if (!dev) |
| return -ENOMEM; |
| |
| /* warn if we are about to overwrite the pointer */ |
| WARN_ON(rx_ring->rx_buf); |
| rx_ring->rx_buf = |
| kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); |
| if (!rx_ring->rx_buf) |
| return -ENOMEM; |
| |
| /* round up to nearest page */ |
| size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), |
| PAGE_SIZE); |
| rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, |
| GFP_KERNEL); |
| if (!rx_ring->desc) { |
| dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
| size); |
| goto err; |
| } |
| |
| rx_ring->next_to_use = 0; |
| rx_ring->next_to_clean = 0; |
| |
| if (ice_is_xdp_ena_vsi(rx_ring->vsi)) |
| WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); |
| |
| if (rx_ring->vsi->type == ICE_VSI_PF && |
| !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) |
| if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, |
| rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) |
| goto err; |
| return 0; |
| |
| err: |
| kfree(rx_ring->rx_buf); |
| rx_ring->rx_buf = NULL; |
| return -ENOMEM; |
| } |
| |
| static unsigned int |
| ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) |
| { |
| unsigned int truesize; |
| |
| #if (PAGE_SIZE < 8192) |
| truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ |
| #else |
| truesize = rx_ring->rx_offset ? |
| SKB_DATA_ALIGN(rx_ring->rx_offset + size) + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : |
| SKB_DATA_ALIGN(size); |
| #endif |
| return truesize; |
| } |
| |
| /** |
| * ice_run_xdp - Executes an XDP program on initialized xdp_buff |
| * @rx_ring: Rx ring |
| * @xdp: xdp_buff used as input to the XDP program |
| * @xdp_prog: XDP program to run |
| * @xdp_ring: ring to be used for XDP_TX action |
| * |
| * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} |
| */ |
| static int |
| ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, |
| struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) |
| { |
| int err; |
| u32 act; |
| |
| act = bpf_prog_run_xdp(xdp_prog, xdp); |
| switch (act) { |
| case XDP_PASS: |
| return ICE_XDP_PASS; |
| case XDP_TX: |
| if (static_branch_unlikely(&ice_xdp_locking_key)) |
| spin_lock(&xdp_ring->tx_lock); |
| err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); |
| if (static_branch_unlikely(&ice_xdp_locking_key)) |
| spin_unlock(&xdp_ring->tx_lock); |
| if (err == ICE_XDP_CONSUMED) |
| goto out_failure; |
| return err; |
| case XDP_REDIRECT: |
| err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); |
| if (err) |
| goto out_failure; |
| return ICE_XDP_REDIR; |
| default: |
| bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); |
| fallthrough; |
| case XDP_ABORTED: |
| out_failure: |
| trace_xdp_exception(rx_ring->netdev, xdp_prog, act); |
| fallthrough; |
| case XDP_DROP: |
| return ICE_XDP_CONSUMED; |
| } |
| } |
| |
| /** |
| * ice_xdp_xmit - submit packets to XDP ring for transmission |
| * @dev: netdev |
| * @n: number of XDP frames to be transmitted |
| * @frames: XDP frames to be transmitted |
| * @flags: transmit flags |
| * |
| * Returns number of frames successfully sent. Failed frames |
| * will be free'ed by XDP core. |
| * For error cases, a negative errno code is returned and no-frames |
| * are transmitted (caller must handle freeing frames). |
| */ |
| int |
| ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, |
| u32 flags) |
| { |
| struct ice_netdev_priv *np = netdev_priv(dev); |
| unsigned int queue_index = smp_processor_id(); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_tx_ring *xdp_ring; |
| int nxmit = 0, i; |
| |
| if (test_bit(ICE_VSI_DOWN, vsi->state)) |
| return -ENETDOWN; |
| |
| if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) |
| return -ENXIO; |
| |
| if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) |
| return -EINVAL; |
| |
| if (static_branch_unlikely(&ice_xdp_locking_key)) { |
| queue_index %= vsi->num_xdp_txq; |
| xdp_ring = vsi->xdp_rings[queue_index]; |
| spin_lock(&xdp_ring->tx_lock); |
| } else { |
| xdp_ring = vsi->xdp_rings[queue_index]; |
| } |
| |
| for (i = 0; i < n; i++) { |
| struct xdp_frame *xdpf = frames[i]; |
| int err; |
| |
| err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); |
| if (err != ICE_XDP_TX) |
| break; |
| nxmit++; |
| } |
| |
| if (unlikely(flags & XDP_XMIT_FLUSH)) |
| ice_xdp_ring_update_tail(xdp_ring); |
| |
| if (static_branch_unlikely(&ice_xdp_locking_key)) |
| spin_unlock(&xdp_ring->tx_lock); |
| |
| return nxmit; |
| } |
| |
| /** |
| * ice_alloc_mapped_page - recycle or make a new page |
| * @rx_ring: ring to use |
| * @bi: rx_buf struct to modify |
| * |
| * Returns true if the page was successfully allocated or |
| * reused. |
| */ |
| static bool |
| ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) |
| { |
| struct page *page = bi->page; |
| dma_addr_t dma; |
| |
| /* since we are recycling buffers we should seldom need to alloc */ |
| if (likely(page)) |
| return true; |
| |
| /* alloc new page for storage */ |
| page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); |
| if (unlikely(!page)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| /* map page for use */ |
| dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), |
| DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); |
| |
| /* if mapping failed free memory back to system since |
| * there isn't much point in holding memory we can't use |
| */ |
| if (dma_mapping_error(rx_ring->dev, dma)) { |
| __free_pages(page, ice_rx_pg_order(rx_ring)); |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| bi->dma = dma; |
| bi->page = page; |
| bi->page_offset = rx_ring->rx_offset; |
| page_ref_add(page, USHRT_MAX - 1); |
| bi->pagecnt_bias = USHRT_MAX; |
| |
| return true; |
| } |
| |
| /** |
| * ice_alloc_rx_bufs - Replace used receive buffers |
| * @rx_ring: ring to place buffers on |
| * @cleaned_count: number of buffers to replace |
| * |
| * Returns false if all allocations were successful, true if any fail. Returning |
| * true signals to the caller that we didn't replace cleaned_count buffers and |
| * there is more work to do. |
| * |
| * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx |
| * buffers. Then bump tail at most one time. Grouping like this lets us avoid |
| * multiple tail writes per call. |
| */ |
| bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) |
| { |
| union ice_32b_rx_flex_desc *rx_desc; |
| u16 ntu = rx_ring->next_to_use; |
| struct ice_rx_buf *bi; |
| |
| /* do nothing if no valid netdev defined */ |
| if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || |
| !cleaned_count) |
| return false; |
| |
| /* get the Rx descriptor and buffer based on next_to_use */ |
| rx_desc = ICE_RX_DESC(rx_ring, ntu); |
| bi = &rx_ring->rx_buf[ntu]; |
| |
| do { |
| /* if we fail here, we have work remaining */ |
| if (!ice_alloc_mapped_page(rx_ring, bi)) |
| break; |
| |
| /* sync the buffer for use by the device */ |
| dma_sync_single_range_for_device(rx_ring->dev, bi->dma, |
| bi->page_offset, |
| rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| |
| /* Refresh the desc even if buffer_addrs didn't change |
| * because each write-back erases this info. |
| */ |
| rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| |
| rx_desc++; |
| bi++; |
| ntu++; |
| if (unlikely(ntu == rx_ring->count)) { |
| rx_desc = ICE_RX_DESC(rx_ring, 0); |
| bi = rx_ring->rx_buf; |
| ntu = 0; |
| } |
| |
| /* clear the status bits for the next_to_use descriptor */ |
| rx_desc->wb.status_error0 = 0; |
| |
| cleaned_count--; |
| } while (cleaned_count); |
| |
| if (rx_ring->next_to_use != ntu) |
| ice_release_rx_desc(rx_ring, ntu); |
| |
| return !!cleaned_count; |
| } |
| |
| /** |
| * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse |
| * @rx_buf: Rx buffer to adjust |
| * @size: Size of adjustment |
| * |
| * Update the offset within page so that Rx buf will be ready to be reused. |
| * For systems with PAGE_SIZE < 8192 this function will flip the page offset |
| * so the second half of page assigned to Rx buffer will be used, otherwise |
| * the offset is moved by "size" bytes |
| */ |
| static void |
| ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) |
| { |
| #if (PAGE_SIZE < 8192) |
| /* flip page offset to other buffer */ |
| rx_buf->page_offset ^= size; |
| #else |
| /* move offset up to the next cache line */ |
| rx_buf->page_offset += size; |
| #endif |
| } |
| |
| /** |
| * ice_can_reuse_rx_page - Determine if page can be reused for another Rx |
| * @rx_buf: buffer containing the page |
| * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call |
| * |
| * If page is reusable, we have a green light for calling ice_reuse_rx_page, |
| * which will assign the current buffer to the buffer that next_to_alloc is |
| * pointing to; otherwise, the DMA mapping needs to be destroyed and |
| * page freed |
| */ |
| static bool |
| ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) |
| { |
| unsigned int pagecnt_bias = rx_buf->pagecnt_bias; |
| struct page *page = rx_buf->page; |
| |
| /* avoid re-using remote and pfmemalloc pages */ |
| if (!dev_page_is_reusable(page)) |
| return false; |
| |
| #if (PAGE_SIZE < 8192) |
| /* if we are only owner of page we can reuse it */ |
| if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) |
| return false; |
| #else |
| #define ICE_LAST_OFFSET \ |
| (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) |
| if (rx_buf->page_offset > ICE_LAST_OFFSET) |
| return false; |
| #endif /* PAGE_SIZE < 8192) */ |
| |
| /* If we have drained the page fragment pool we need to update |
| * the pagecnt_bias and page count so that we fully restock the |
| * number of references the driver holds. |
| */ |
| if (unlikely(pagecnt_bias == 1)) { |
| page_ref_add(page, USHRT_MAX - 1); |
| rx_buf->pagecnt_bias = USHRT_MAX; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @rx_buf: buffer containing page to add |
| * @skb: sk_buff to place the data into |
| * @size: packet length from rx_desc |
| * |
| * This function will add the data contained in rx_buf->page to the skb. |
| * It will just attach the page as a frag to the skb. |
| * The function will then update the page offset. |
| */ |
| static void |
| ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| struct sk_buff *skb, unsigned int size) |
| { |
| #if (PAGE_SIZE >= 8192) |
| unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); |
| #else |
| unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; |
| #endif |
| |
| if (!size) |
| return; |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, |
| rx_buf->page_offset, size, truesize); |
| |
| /* page is being used so we must update the page offset */ |
| ice_rx_buf_adjust_pg_offset(rx_buf, truesize); |
| } |
| |
| /** |
| * ice_reuse_rx_page - page flip buffer and store it back on the ring |
| * @rx_ring: Rx descriptor ring to store buffers on |
| * @old_buf: donor buffer to have page reused |
| * |
| * Synchronizes page for reuse by the adapter |
| */ |
| static void |
| ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) |
| { |
| u16 nta = rx_ring->next_to_alloc; |
| struct ice_rx_buf *new_buf; |
| |
| new_buf = &rx_ring->rx_buf[nta]; |
| |
| /* update, and store next to alloc */ |
| nta++; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| /* Transfer page from old buffer to new buffer. |
| * Move each member individually to avoid possible store |
| * forwarding stalls and unnecessary copy of skb. |
| */ |
| new_buf->dma = old_buf->dma; |
| new_buf->page = old_buf->page; |
| new_buf->page_offset = old_buf->page_offset; |
| new_buf->pagecnt_bias = old_buf->pagecnt_bias; |
| } |
| |
| /** |
| * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @size: size of buffer to add to skb |
| * @rx_buf_pgcnt: rx_buf page refcount |
| * |
| * This function will pull an Rx buffer from the ring and synchronize it |
| * for use by the CPU. |
| */ |
| static struct ice_rx_buf * |
| ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, |
| int *rx_buf_pgcnt) |
| { |
| struct ice_rx_buf *rx_buf; |
| |
| rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; |
| *rx_buf_pgcnt = |
| #if (PAGE_SIZE < 8192) |
| page_count(rx_buf->page); |
| #else |
| 0; |
| #endif |
| prefetchw(rx_buf->page); |
| |
| if (!size) |
| return rx_buf; |
| /* we are reusing so sync this buffer for CPU use */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, |
| rx_buf->page_offset, size, |
| DMA_FROM_DEVICE); |
| |
| /* We have pulled a buffer for use, so decrement pagecnt_bias */ |
| rx_buf->pagecnt_bias--; |
| |
| return rx_buf; |
| } |
| |
| /** |
| * ice_build_skb - Build skb around an existing buffer |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @rx_buf: Rx buffer to pull data from |
| * @xdp: xdp_buff pointing to the data |
| * |
| * This function builds an skb around an existing Rx buffer, taking care |
| * to set up the skb correctly and avoid any memcpy overhead. |
| */ |
| static struct sk_buff * |
| ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| struct xdp_buff *xdp) |
| { |
| u8 metasize = xdp->data - xdp->data_meta; |
| #if (PAGE_SIZE < 8192) |
| unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; |
| #else |
| unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + |
| SKB_DATA_ALIGN(xdp->data_end - |
| xdp->data_hard_start); |
| #endif |
| struct sk_buff *skb; |
| |
| /* Prefetch first cache line of first page. If xdp->data_meta |
| * is unused, this points exactly as xdp->data, otherwise we |
| * likely have a consumer accessing first few bytes of meta |
| * data, and then actual data. |
| */ |
| net_prefetch(xdp->data_meta); |
| /* build an skb around the page buffer */ |
| skb = napi_build_skb(xdp->data_hard_start, truesize); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| /* must to record Rx queue, otherwise OS features such as |
| * symmetric queue won't work |
| */ |
| skb_record_rx_queue(skb, rx_ring->q_index); |
| |
| /* update pointers within the skb to store the data */ |
| skb_reserve(skb, xdp->data - xdp->data_hard_start); |
| __skb_put(skb, xdp->data_end - xdp->data); |
| if (metasize) |
| skb_metadata_set(skb, metasize); |
| |
| /* buffer is used by skb, update page_offset */ |
| ice_rx_buf_adjust_pg_offset(rx_buf, truesize); |
| |
| return skb; |
| } |
| |
| /** |
| * ice_construct_skb - Allocate skb and populate it |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @rx_buf: Rx buffer to pull data from |
| * @xdp: xdp_buff pointing to the data |
| * |
| * This function allocates an skb. It then populates it with the page |
| * data from the current receive descriptor, taking care to set up the |
| * skb correctly. |
| */ |
| static struct sk_buff * |
| ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| struct xdp_buff *xdp) |
| { |
| unsigned int metasize = xdp->data - xdp->data_meta; |
| unsigned int size = xdp->data_end - xdp->data; |
| unsigned int headlen; |
| struct sk_buff *skb; |
| |
| /* prefetch first cache line of first page */ |
| net_prefetch(xdp->data_meta); |
| |
| /* allocate a skb to store the frags */ |
| skb = __napi_alloc_skb(&rx_ring->q_vector->napi, |
| ICE_RX_HDR_SIZE + metasize, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| skb_record_rx_queue(skb, rx_ring->q_index); |
| /* Determine available headroom for copy */ |
| headlen = size; |
| if (headlen > ICE_RX_HDR_SIZE) |
| headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); |
| |
| /* align pull length to size of long to optimize memcpy performance */ |
| memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, |
| ALIGN(headlen + metasize, sizeof(long))); |
| |
| if (metasize) { |
| skb_metadata_set(skb, metasize); |
| __skb_pull(skb, metasize); |
| } |
| |
| /* if we exhaust the linear part then add what is left as a frag */ |
| size -= headlen; |
| if (size) { |
| #if (PAGE_SIZE >= 8192) |
| unsigned int truesize = SKB_DATA_ALIGN(size); |
| #else |
| unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; |
| #endif |
| skb_add_rx_frag(skb, 0, rx_buf->page, |
| rx_buf->page_offset + headlen, size, truesize); |
| /* buffer is used by skb, update page_offset */ |
| ice_rx_buf_adjust_pg_offset(rx_buf, truesize); |
| } else { |
| /* buffer is unused, reset bias back to rx_buf; data was copied |
| * onto skb's linear part so there's no need for adjusting |
| * page offset and we can reuse this buffer as-is |
| */ |
| rx_buf->pagecnt_bias++; |
| } |
| |
| return skb; |
| } |
| |
| /** |
| * ice_put_rx_buf - Clean up used buffer and either recycle or free |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @rx_buf: Rx buffer to pull data from |
| * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() |
| * |
| * This function will update next_to_clean and then clean up the contents |
| * of the rx_buf. It will either recycle the buffer or unmap it and free |
| * the associated resources. |
| */ |
| static void |
| ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| int rx_buf_pgcnt) |
| { |
| u16 ntc = rx_ring->next_to_clean + 1; |
| |
| /* fetch, update, and store next to clean */ |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| |
| if (!rx_buf) |
| return; |
| |
| if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { |
| /* hand second half of page back to the ring */ |
| ice_reuse_rx_page(rx_ring, rx_buf); |
| } else { |
| /* we are not reusing the buffer so unmap it */ |
| dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, |
| ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, |
| ICE_RX_DMA_ATTR); |
| __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); |
| } |
| |
| /* clear contents of buffer_info */ |
| rx_buf->page = NULL; |
| } |
| |
| /** |
| * ice_is_non_eop - process handling of non-EOP buffers |
| * @rx_ring: Rx ring being processed |
| * @rx_desc: Rx descriptor for current buffer |
| * |
| * If the buffer is an EOP buffer, this function exits returning false, |
| * otherwise return true indicating that this is in fact a non-EOP buffer. |
| */ |
| static bool |
| ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) |
| { |
| /* if we are the last buffer then there is nothing else to do */ |
| #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) |
| if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF))) |
| return false; |
| |
| rx_ring->rx_stats.non_eop_descs++; |
| |
| return true; |
| } |
| |
| /** |
| * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @budget: Total limit on number of packets to process |
| * |
| * This function provides a "bounce buffer" approach to Rx interrupt |
| * processing. The advantage to this is that on systems that have |
| * expensive overhead for IOMMU access this provides a means of avoiding |
| * it by maintaining the mapping of the page to the system. |
| * |
| * Returns amount of work completed |
| */ |
| int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; |
| u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); |
| unsigned int offset = rx_ring->rx_offset; |
| struct ice_tx_ring *xdp_ring = NULL; |
| unsigned int xdp_res, xdp_xmit = 0; |
| struct sk_buff *skb = rx_ring->skb; |
| struct bpf_prog *xdp_prog = NULL; |
| struct xdp_buff xdp; |
| bool failure; |
| |
| /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ |
| #if (PAGE_SIZE < 8192) |
| frame_sz = ice_rx_frame_truesize(rx_ring, 0); |
| #endif |
| xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); |
| |
| xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
| if (xdp_prog) |
| xdp_ring = rx_ring->xdp_ring; |
| |
| /* start the loop to process Rx packets bounded by 'budget' */ |
| while (likely(total_rx_pkts < (unsigned int)budget)) { |
| union ice_32b_rx_flex_desc *rx_desc; |
| struct ice_rx_buf *rx_buf; |
| unsigned char *hard_start; |
| unsigned int size; |
| u16 stat_err_bits; |
| int rx_buf_pgcnt; |
| u16 vlan_tag = 0; |
| u16 rx_ptype; |
| |
| /* get the Rx desc from Rx ring based on 'next_to_clean' */ |
| rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| |
| /* status_error_len will always be zero for unused descriptors |
| * because it's cleared in cleanup, and overlaps with hdr_addr |
| * which is always zero because packet split isn't used, if the |
| * hardware wrote DD then it will be non-zero |
| */ |
| stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); |
| if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we know the |
| * DD bit is set. |
| */ |
| dma_rmb(); |
| |
| ice_trace(clean_rx_irq, rx_ring, rx_desc); |
| if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { |
| struct ice_vsi *ctrl_vsi = rx_ring->vsi; |
| |
| if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && |
| ctrl_vsi->vf) |
| ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); |
| ice_put_rx_buf(rx_ring, NULL, 0); |
| cleaned_count++; |
| continue; |
| } |
| |
| size = le16_to_cpu(rx_desc->wb.pkt_len) & |
| ICE_RX_FLX_DESC_PKT_LEN_M; |
| |
| /* retrieve a buffer from the ring */ |
| rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); |
| |
| if (!size) { |
| xdp.data = NULL; |
| xdp.data_end = NULL; |
| xdp.data_hard_start = NULL; |
| xdp.data_meta = NULL; |
| goto construct_skb; |
| } |
| |
| hard_start = page_address(rx_buf->page) + rx_buf->page_offset - |
| offset; |
| xdp_prepare_buff(&xdp, hard_start, offset, size, true); |
| #if (PAGE_SIZE > 4096) |
| /* At larger PAGE_SIZE, frame_sz depend on len size */ |
| xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); |
| #endif |
| |
| if (!xdp_prog) |
| goto construct_skb; |
| |
| xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); |
| if (!xdp_res) |
| goto construct_skb; |
| if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { |
| xdp_xmit |= xdp_res; |
| ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); |
| } else { |
| rx_buf->pagecnt_bias++; |
| } |
| total_rx_bytes += size; |
| total_rx_pkts++; |
| |
| cleaned_count++; |
| ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); |
| continue; |
| construct_skb: |
| if (skb) { |
| ice_add_rx_frag(rx_ring, rx_buf, skb, size); |
| } else if (likely(xdp.data)) { |
| if (ice_ring_uses_build_skb(rx_ring)) |
| skb = ice_build_skb(rx_ring, rx_buf, &xdp); |
| else |
| skb = ice_construct_skb(rx_ring, rx_buf, &xdp); |
| } |
| /* exit if we failed to retrieve a buffer */ |
| if (!skb) { |
| rx_ring->rx_stats.alloc_buf_failed++; |
| if (rx_buf) |
| rx_buf->pagecnt_bias++; |
| break; |
| } |
| |
| ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); |
| cleaned_count++; |
| |
| /* skip if it is NOP desc */ |
| if (ice_is_non_eop(rx_ring, rx_desc)) |
| continue; |
| |
| stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); |
| if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, |
| stat_err_bits))) { |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); |
| |
| /* pad the skb if needed, to make a valid ethernet frame */ |
| if (eth_skb_pad(skb)) { |
| skb = NULL; |
| continue; |
| } |
| |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| |
| /* populate checksum, VLAN, and protocol */ |
| rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & |
| ICE_RX_FLEX_DESC_PTYPE_M; |
| |
| ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| |
| ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); |
| /* send completed skb up the stack */ |
| ice_receive_skb(rx_ring, skb, vlan_tag); |
| skb = NULL; |
| |
| /* update budget accounting */ |
| total_rx_pkts++; |
| } |
| |
| /* return up to cleaned_count buffers to hardware */ |
| failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); |
| |
| if (xdp_prog) |
| ice_finalize_xdp_rx(xdp_ring, xdp_xmit); |
| rx_ring->skb = skb; |
| |
| ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); |
| |
| /* guarantee a trip back through this routine if there was a failure */ |
| return failure ? budget : (int)total_rx_pkts; |
| } |
| |
| static void __ice_update_sample(struct ice_q_vector *q_vector, |
| struct ice_ring_container *rc, |
| struct dim_sample *sample, |
| bool is_tx) |
| { |
| u64 packets = 0, bytes = 0; |
| |
| if (is_tx) { |
| struct ice_tx_ring *tx_ring; |
| |
| ice_for_each_tx_ring(tx_ring, *rc) { |
| packets += tx_ring->stats.pkts; |
| bytes += tx_ring->stats.bytes; |
| } |
| } else { |
| struct ice_rx_ring *rx_ring; |
| |
| ice_for_each_rx_ring(rx_ring, *rc) { |
| packets += rx_ring->stats.pkts; |
| bytes += rx_ring->stats.bytes; |
| } |
| } |
| |
| dim_update_sample(q_vector->total_events, packets, bytes, sample); |
| sample->comp_ctr = 0; |
| |
| /* if dim settings get stale, like when not updated for 1 |
| * second or longer, force it to start again. This addresses the |
| * frequent case of an idle queue being switched to by the |
| * scheduler. The 1,000 here means 1,000 milliseconds. |
| */ |
| if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) |
| rc->dim.state = DIM_START_MEASURE; |
| } |
| |
| /** |
| * ice_net_dim - Update net DIM algorithm |
| * @q_vector: the vector associated with the interrupt |
| * |
| * Create a DIM sample and notify net_dim() so that it can possibly decide |
| * a new ITR value based on incoming packets, bytes, and interrupts. |
| * |
| * This function is a no-op if the ring is not configured to dynamic ITR. |
| */ |
| static void ice_net_dim(struct ice_q_vector *q_vector) |
| { |
| struct ice_ring_container *tx = &q_vector->tx; |
| struct ice_ring_container *rx = &q_vector->rx; |
| |
| if (ITR_IS_DYNAMIC(tx)) { |
| struct dim_sample dim_sample; |
| |
| __ice_update_sample(q_vector, tx, &dim_sample, true); |
| net_dim(&tx->dim, dim_sample); |
| } |
| |
| if (ITR_IS_DYNAMIC(rx)) { |
| struct dim_sample dim_sample; |
| |
| __ice_update_sample(q_vector, rx, &dim_sample, false); |
| net_dim(&rx->dim, dim_sample); |
| } |
| } |
| |
| /** |
| * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register |
| * @itr_idx: interrupt throttling index |
| * @itr: interrupt throttling value in usecs |
| */ |
| static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) |
| { |
| /* The ITR value is reported in microseconds, and the register value is |
| * recorded in 2 microsecond units. For this reason we only need to |
| * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this |
| * granularity as a shift instead of division. The mask makes sure the |
| * ITR value is never odd so we don't accidentally write into the field |
| * prior to the ITR field. |
| */ |
| itr &= ICE_ITR_MASK; |
| |
| return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | |
| (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | |
| (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); |
| } |
| |
| /** |
| * ice_enable_interrupt - re-enable MSI-X interrupt |
| * @q_vector: the vector associated with the interrupt to enable |
| * |
| * If the VSI is down, the interrupt will not be re-enabled. Also, |
| * when enabling the interrupt always reset the wb_on_itr to false |
| * and trigger a software interrupt to clean out internal state. |
| */ |
| static void ice_enable_interrupt(struct ice_q_vector *q_vector) |
| { |
| struct ice_vsi *vsi = q_vector->vsi; |
| bool wb_en = q_vector->wb_on_itr; |
| u32 itr_val; |
| |
| if (test_bit(ICE_DOWN, vsi->state)) |
| return; |
| |
| /* trigger an ITR delayed software interrupt when exiting busy poll, to |
| * make sure to catch any pending cleanups that might have been missed |
| * due to interrupt state transition. If busy poll or poll isn't |
| * enabled, then don't update ITR, and just enable the interrupt. |
| */ |
| if (!wb_en) { |
| itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); |
| } else { |
| q_vector->wb_on_itr = false; |
| |
| /* do two things here with a single write. Set up the third ITR |
| * index to be used for software interrupt moderation, and then |
| * trigger a software interrupt with a rate limit of 20K on |
| * software interrupts, this will help avoid high interrupt |
| * loads due to frequently polling and exiting polling. |
| */ |
| itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); |
| itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | |
| ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | |
| GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; |
| } |
| wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); |
| } |
| |
| /** |
| * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector |
| * @q_vector: q_vector to set WB_ON_ITR on |
| * |
| * We need to tell hardware to write-back completed descriptors even when |
| * interrupts are disabled. Descriptors will be written back on cache line |
| * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR |
| * descriptors may not be written back if they don't fill a cache line until |
| * the next interrupt. |
| * |
| * This sets the write-back frequency to whatever was set previously for the |
| * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we |
| * aren't meddling with the INTENA_M bit. |
| */ |
| static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) |
| { |
| struct ice_vsi *vsi = q_vector->vsi; |
| |
| /* already in wb_on_itr mode no need to change it */ |
| if (q_vector->wb_on_itr) |
| return; |
| |
| /* use previously set ITR values for all of the ITR indices by |
| * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and |
| * be static in non-adaptive mode (user configured) |
| */ |
| wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), |
| ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & |
| GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | |
| GLINT_DYN_CTL_WB_ON_ITR_M); |
| |
| q_vector->wb_on_itr = true; |
| } |
| |
| /** |
| * ice_napi_poll - NAPI polling Rx/Tx cleanup routine |
| * @napi: napi struct with our devices info in it |
| * @budget: amount of work driver is allowed to do this pass, in packets |
| * |
| * This function will clean all queues associated with a q_vector. |
| * |
| * Returns the amount of work done |
| */ |
| int ice_napi_poll(struct napi_struct *napi, int budget) |
| { |
| struct ice_q_vector *q_vector = |
| container_of(napi, struct ice_q_vector, napi); |
| struct ice_tx_ring *tx_ring; |
| struct ice_rx_ring *rx_ring; |
| bool clean_complete = true; |
| int budget_per_ring; |
| int work_done = 0; |
| |
| /* Since the actual Tx work is minimal, we can give the Tx a larger |
| * budget and be more aggressive about cleaning up the Tx descriptors. |
| */ |
| ice_for_each_tx_ring(tx_ring, q_vector->tx) { |
| bool wd; |
| |
| if (tx_ring->xsk_pool) |
| wd = ice_xmit_zc(tx_ring, ICE_DESC_UNUSED(tx_ring), budget); |
| else if (ice_ring_is_xdp(tx_ring)) |
| wd = true; |
| else |
| wd = ice_clean_tx_irq(tx_ring, budget); |
| |
| if (!wd) |
| clean_complete = false; |
| } |
| |
| /* Handle case where we are called by netpoll with a budget of 0 */ |
| if (unlikely(budget <= 0)) |
| return budget; |
| |
| /* normally we have 1 Rx ring per q_vector */ |
| if (unlikely(q_vector->num_ring_rx > 1)) |
| /* We attempt to distribute budget to each Rx queue fairly, but |
| * don't allow the budget to go below 1 because that would exit |
| * polling early. |
| */ |
| budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); |
| else |
| /* Max of 1 Rx ring in this q_vector so give it the budget */ |
| budget_per_ring = budget; |
| |
| ice_for_each_rx_ring(rx_ring, q_vector->rx) { |
| int cleaned; |
| |
| /* A dedicated path for zero-copy allows making a single |
| * comparison in the irq context instead of many inside the |
| * ice_clean_rx_irq function and makes the codebase cleaner. |
| */ |
| cleaned = rx_ring->xsk_pool ? |
| ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : |
| ice_clean_rx_irq(rx_ring, budget_per_ring); |
| work_done += cleaned; |
| /* if we clean as many as budgeted, we must not be done */ |
| if (cleaned >= budget_per_ring) |
| clean_complete = false; |
| } |
| |
| /* If work not completed, return budget and polling will return */ |
| if (!clean_complete) { |
| /* Set the writeback on ITR so partial completions of |
| * cache-lines will still continue even if we're polling. |
| */ |
| ice_set_wb_on_itr(q_vector); |
| return budget; |
| } |
| |
| /* Exit the polling mode, but don't re-enable interrupts if stack might |
| * poll us due to busy-polling |
| */ |
| if (napi_complete_done(napi, work_done)) { |
| ice_net_dim(q_vector); |
| ice_enable_interrupt(q_vector); |
| } else { |
| ice_set_wb_on_itr(q_vector); |
| } |
| |
| return min_t(int, work_done, budget - 1); |
| } |
| |
| /** |
| * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns -EBUSY if a stop is needed, else 0 |
| */ |
| static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) |
| { |
| netif_tx_stop_queue(txring_txq(tx_ring)); |
| /* Memory barrier before checking head and tail */ |
| smp_mb(); |
| |
| /* Check again in a case another CPU has just made room available. */ |
| if (likely(ICE_DESC_UNUSED(tx_ring) < size)) |
| return -EBUSY; |
| |
| /* A reprieve! - use start_queue because it doesn't call schedule */ |
| netif_tx_start_queue(txring_txq(tx_ring)); |
| ++tx_ring->tx_stats.restart_q; |
| return 0; |
| } |
| |
| /** |
| * ice_maybe_stop_tx - 1st level check for Tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns 0 if stop is not needed |
| */ |
| static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) |
| { |
| if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) |
| return 0; |
| |
| return __ice_maybe_stop_tx(tx_ring, size); |
| } |
| |
| /** |
| * ice_tx_map - Build the Tx descriptor |
| * @tx_ring: ring to send buffer on |
| * @first: first buffer info buffer to use |
| * @off: pointer to struct that holds offload parameters |
| * |
| * This function loops over the skb data pointed to by *first |
| * and gets a physical address for each memory location and programs |
| * it and the length into the transmit descriptor. |
| */ |
| static void |
| ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, |
| struct ice_tx_offload_params *off) |
| { |
| u64 td_offset, td_tag, td_cmd; |
| u16 i = tx_ring->next_to_use; |
| unsigned int data_len, size; |
| struct ice_tx_desc *tx_desc; |
| struct ice_tx_buf *tx_buf; |
| struct sk_buff *skb; |
| skb_frag_t *frag; |
| dma_addr_t dma; |
| bool kick; |
| |
| td_tag = off->td_l2tag1; |
| td_cmd = off->td_cmd; |
| td_offset = off->td_offset; |
| skb = first->skb; |
| |
| data_len = skb->data_len; |
| size = skb_headlen(skb); |
| |
| tx_desc = ICE_TX_DESC(tx_ring, i); |
| |
| if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { |
| td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; |
| td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> |
| ICE_TX_FLAGS_VLAN_S; |
| } |
| |
| dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| |
| tx_buf = first; |
| |
| for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| /* record length, and DMA address */ |
| dma_unmap_len_set(tx_buf, len, size); |
| dma_unmap_addr_set(tx_buf, dma, dma); |
| |
| /* align size to end of page */ |
| max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| |
| /* account for data chunks larger than the hardware |
| * can handle |
| */ |
| while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { |
| tx_desc->cmd_type_offset_bsz = |
| ice_build_ctob(td_cmd, td_offset, max_data, |
| td_tag); |
| |
| tx_desc++; |
| i++; |
| |
| if (i == tx_ring->count) { |
| tx_desc = ICE_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| dma += max_data; |
| size -= max_data; |
| |
| max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| } |
| |
| if (likely(!data_len)) |
| break; |
| |
| tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, |
| size, td_tag); |
| |
| tx_desc++; |
| i++; |
| |
| if (i == tx_ring->count) { |
| tx_desc = ICE_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| size = skb_frag_size(frag); |
| data_len -= size; |
| |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| DMA_TO_DEVICE); |
| |
| tx_buf = &tx_ring->tx_buf[i]; |
| } |
| |
| /* record SW timestamp if HW timestamp is not available */ |
| skb_tx_timestamp(first->skb); |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| /* write last descriptor with RS and EOP bits */ |
| td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; |
| tx_desc->cmd_type_offset_bsz = |
| ice_build_ctob(td_cmd, td_offset, size, td_tag); |
| |
| /* Force memory writes to complete before letting h/w know there |
| * are new descriptors to fetch. |
| * |
| * We also use this memory barrier to make certain all of the |
| * status bits have been updated before next_to_watch is written. |
| */ |
| wmb(); |
| |
| /* set next_to_watch value indicating a packet is present */ |
| first->next_to_watch = tx_desc; |
| |
| tx_ring->next_to_use = i; |
| |
| ice_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| |
| /* notify HW of packet */ |
| kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, |
| netdev_xmit_more()); |
| if (kick) |
| /* notify HW of packet */ |
| writel(i, tx_ring->tail); |
| |
| return; |
| |
| dma_error: |
| /* clear DMA mappings for failed tx_buf map */ |
| for (;;) { |
| tx_buf = &tx_ring->tx_buf[i]; |
| ice_unmap_and_free_tx_buf(tx_ring, tx_buf); |
| if (tx_buf == first) |
| break; |
| if (i == 0) |
| i = tx_ring->count; |
| i--; |
| } |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| /** |
| * ice_tx_csum - Enable Tx checksum offloads |
| * @first: pointer to the first descriptor |
| * @off: pointer to struct that holds offload parameters |
| * |
| * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise. |
| */ |
| static |
| int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| { |
| u32 l4_len = 0, l3_len = 0, l2_len = 0; |
| struct sk_buff *skb = first->skb; |
| union { |
| struct iphdr *v4; |
| struct ipv6hdr *v6; |
| unsigned char *hdr; |
| } ip; |
| union { |
| struct tcphdr *tcp; |
| unsigned char *hdr; |
| } l4; |
| __be16 frag_off, protocol; |
| unsigned char *exthdr; |
| u32 offset, cmd = 0; |
| u8 l4_proto = 0; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| ip.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* compute outer L2 header size */ |
| l2_len = ip.hdr - skb->data; |
| offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; |
| |
| protocol = vlan_get_protocol(skb); |
| |
| if (protocol == htons(ETH_P_IP)) |
| first->tx_flags |= ICE_TX_FLAGS_IPV4; |
| else if (protocol == htons(ETH_P_IPV6)) |
| first->tx_flags |= ICE_TX_FLAGS_IPV6; |
| |
| if (skb->encapsulation) { |
| bool gso_ena = false; |
| u32 tunnel = 0; |
| |
| /* define outer network header type */ |
| if (first->tx_flags & ICE_TX_FLAGS_IPV4) { |
| tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? |
| ICE_TX_CTX_EIPT_IPV4 : |
| ICE_TX_CTX_EIPT_IPV4_NO_CSUM; |
| l4_proto = ip.v4->protocol; |
| } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { |
| int ret; |
| |
| tunnel |= ICE_TX_CTX_EIPT_IPV6; |
| exthdr = ip.hdr + sizeof(*ip.v6); |
| l4_proto = ip.v6->nexthdr; |
| ret = ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto, &frag_off); |
| if (ret < 0) |
| return -1; |
| } |
| |
| /* define outer transport */ |
| switch (l4_proto) { |
| case IPPROTO_UDP: |
| tunnel |= ICE_TXD_CTX_UDP_TUNNELING; |
| first->tx_flags |= ICE_TX_FLAGS_TUNNEL; |
| break; |
| case IPPROTO_GRE: |
| tunnel |= ICE_TXD_CTX_GRE_TUNNELING; |
| first->tx_flags |= ICE_TX_FLAGS_TUNNEL; |
| break; |
| case IPPROTO_IPIP: |
| case IPPROTO_IPV6: |
| first->tx_flags |= ICE_TX_FLAGS_TUNNEL; |
| l4.hdr = skb_inner_network_header(skb); |
| break; |
| default: |
| if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| return -1; |
| |
| skb_checksum_help(skb); |
| return 0; |
| } |
| |
| /* compute outer L3 header size */ |
| tunnel |= ((l4.hdr - ip.hdr) / 4) << |
| ICE_TXD_CTX_QW0_EIPLEN_S; |
| |
| /* switch IP header pointer from outer to inner header */ |
| ip.hdr = skb_inner_network_header(skb); |
| |
| /* compute tunnel header size */ |
| tunnel |= ((ip.hdr - l4.hdr) / 2) << |
| ICE_TXD_CTX_QW0_NATLEN_S; |
| |
| gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; |
| /* indicate if we need to offload outer UDP header */ |
| if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && |
| (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) |
| tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; |
| |
| /* record tunnel offload values */ |
| off->cd_tunnel_params |= tunnel; |
| |
| /* set DTYP=1 to indicate that it's an Tx context descriptor |
| * in IPsec tunnel mode with Tx offloads in Quad word 1 |
| */ |
| off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; |
| |
| /* switch L4 header pointer from outer to inner */ |
| l4.hdr = skb_inner_transport_header(skb); |
| l4_proto = 0; |
| |
| /* reset type as we transition from outer to inner headers */ |
| first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); |
| if (ip.v4->version == 4) |
| first->tx_flags |= ICE_TX_FLAGS_IPV4; |
| if (ip.v6->version == 6) |
| first->tx_flags |= ICE_TX_FLAGS_IPV6; |
| } |
| |
| /* Enable IP checksum offloads */ |
| if (first->tx_flags & ICE_TX_FLAGS_IPV4) { |
| l4_proto = ip.v4->protocol; |
| /* the stack computes the IP header already, the only time we |
| * need the hardware to recompute it is in the case of TSO. |
| */ |
| if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; |
| else |
| cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; |
| |
| } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { |
| cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; |
| exthdr = ip.hdr + sizeof(*ip.v6); |
| l4_proto = ip.v6->nexthdr; |
| if (l4.hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, |
| &frag_off); |
| } else { |
| return -1; |
| } |
| |
| /* compute inner L3 header size */ |
| l3_len = l4.hdr - ip.hdr; |
| offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; |
| |
| /* Enable L4 checksum offloads */ |
| switch (l4_proto) { |
| case IPPROTO_TCP: |
| /* enable checksum offloads */ |
| cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; |
| l4_len = l4.tcp->doff; |
| offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| break; |
| case IPPROTO_UDP: |
| /* enable UDP checksum offload */ |
| cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; |
| l4_len = (sizeof(struct udphdr) >> 2); |
| offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| break; |
| case IPPROTO_SCTP: |
| /* enable SCTP checksum offload */ |
| cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; |
| l4_len = sizeof(struct sctphdr) >> 2; |
| offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| break; |
| |
| default: |
| if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| return -1; |
| skb_checksum_help(skb); |
| return 0; |
| } |
| |
| off->td_cmd |= cmd; |
| off->td_offset |= offset; |
| return 1; |
| } |
| |
| /** |
| * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW |
| * @tx_ring: ring to send buffer on |
| * @first: pointer to struct ice_tx_buf |
| * |
| * Checks the skb and set up correspondingly several generic transmit flags |
| * related to VLAN tagging for the HW, such as VLAN, DCB, etc. |
| */ |
| static void |
| ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) |
| { |
| struct sk_buff *skb = first->skb; |
| |
| /* nothing left to do, software offloaded VLAN */ |
| if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) |
| return; |
| |
| /* the VLAN ethertype/tpid is determined by VSI configuration and netdev |
| * feature flags, which the driver only allows either 802.1Q or 802.1ad |
| * VLAN offloads exclusively so we only care about the VLAN ID here |
| */ |
| if (skb_vlan_tag_present(skb)) { |
| first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; |
| if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) |
| first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; |
| else |
| first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; |
| } |
| |
| ice_tx_prepare_vlan_flags_dcb(tx_ring, first); |
| } |
| |
| /** |
| * ice_tso - computes mss and TSO length to prepare for TSO |
| * @first: pointer to struct ice_tx_buf |
| * @off: pointer to struct that holds offload parameters |
| * |
| * Returns 0 or error (negative) if TSO can't happen, 1 otherwise. |
| */ |
| static |
| int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| { |
| struct sk_buff *skb = first->skb; |
| union { |
| struct iphdr *v4; |
| struct ipv6hdr *v6; |
| unsigned char *hdr; |
| } ip; |
| union { |
| struct tcphdr *tcp; |
| struct udphdr *udp; |
| unsigned char *hdr; |
| } l4; |
| u64 cd_mss, cd_tso_len; |
| u32 paylen; |
| u8 l4_start; |
| int err; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return err; |
| |
| /* cppcheck-suppress unreadVariable */ |
| ip.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* initialize outer IP header fields */ |
| if (ip.v4->version == 4) { |
| ip.v4->tot_len = 0; |
| ip.v4->check = 0; |
| } else { |
| ip.v6->payload_len = 0; |
| } |
| |
| if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
| SKB_GSO_GRE_CSUM | |
| SKB_GSO_IPXIP4 | |
| SKB_GSO_IPXIP6 | |
| SKB_GSO_UDP_TUNNEL | |
| SKB_GSO_UDP_TUNNEL_CSUM)) { |
| if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
| (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { |
| l4.udp->len = 0; |
| |
| /* determine offset of outer transport header */ |
| l4_start = (u8)(l4.hdr - skb->data); |
| |
| /* remove payload length from outer checksum */ |
| paylen = skb->len - l4_start; |
| csum_replace_by_diff(&l4.udp->check, |
| (__force __wsum)htonl(paylen)); |
| } |
| |
| /* reset pointers to inner headers */ |
| |
| /* cppcheck-suppress unreadVariable */ |
| ip.hdr = skb_inner_network_header(skb); |
| l4.hdr = skb_inner_transport_header(skb); |
| |
| /* initialize inner IP header fields */ |
| if (ip.v4->version == 4) { |
| ip.v4->tot_len = 0; |
| ip.v4->check = 0; |
| } else { |
| ip.v6->payload_len = 0; |
| } |
| } |
| |
| /* determine offset of transport header */ |
| l4_start = (u8)(l4.hdr - skb->data); |
| |
| /* remove payload length from checksum */ |
| paylen = skb->len - l4_start; |
| |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| csum_replace_by_diff(&l4.udp->check, |
| (__force __wsum)htonl(paylen)); |
| /* compute length of UDP segmentation header */ |
| off->header_len = (u8)sizeof(l4.udp) + l4_start; |
| } else { |
| csum_replace_by_diff(&l4.tcp->check, |
| (__force __wsum)htonl(paylen)); |
| /* compute length of TCP segmentation header */ |
| off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); |
| } |
| |
| /* update gso_segs and bytecount */ |
| first->gso_segs = skb_shinfo(skb)->gso_segs; |
| first->bytecount += (first->gso_segs - 1) * off->header_len; |
| |
| cd_tso_len = skb->len - off->header_len; |
| cd_mss = skb_shinfo(skb)->gso_size; |
| |
| /* record cdesc_qw1 with TSO parameters */ |
| off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | |
| (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | |
| (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | |
| (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); |
| first->tx_flags |= ICE_TX_FLAGS_TSO; |
| return 1; |
| } |
| |
| /** |
| * ice_txd_use_count - estimate the number of descriptors needed for Tx |
| * @size: transmit request size in bytes |
| * |
| * Due to hardware alignment restrictions (4K alignment), we need to |
| * assume that we can have no more than 12K of data per descriptor, even |
| * though each descriptor can take up to 16K - 1 bytes of aligned memory. |
| * Thus, we need to divide by 12K. But division is slow! Instead, |
| * we decompose the operation into shifts and one relatively cheap |
| * multiply operation. |
| * |
| * To divide by 12K, we first divide by 4K, then divide by 3: |
| * To divide by 4K, shift right by 12 bits |
| * To divide by 3, multiply by 85, then divide by 256 |
| * (Divide by 256 is done by shifting right by 8 bits) |
| * Finally, we add one to round up. Because 256 isn't an exact multiple of |
| * 3, we'll underestimate near each multiple of 12K. This is actually more |
| * accurate as we have 4K - 1 of wiggle room that we can fit into the last |
| * segment. For our purposes this is accurate out to 1M which is orders of |
| * magnitude greater than our largest possible GSO size. |
| * |
| * This would then be implemented as: |
| * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| * |
| * Since multiplication and division are commutative, we can reorder |
| * operations into: |
| * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| */ |
| static unsigned int ice_txd_use_count(unsigned int size) |
| { |
| return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| } |
| |
| /** |
| * ice_xmit_desc_count - calculate number of Tx descriptors needed |
| * @skb: send buffer |
| * |
| * Returns number of data descriptors needed for this skb. |
| */ |
| static unsigned int ice_xmit_desc_count(struct sk_buff *skb) |
| { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; |
| unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
| unsigned int count = 0, size = skb_headlen(skb); |
| |
| for (;;) { |
| count += ice_txd_use_count(size); |
| |
| if (!nr_frags--) |
| break; |
| |
| size = skb_frag_size(frag++); |
| } |
| |
| return count; |
| } |
| |
| /** |
| * __ice_chk_linearize - Check if there are more than 8 buffers per packet |
| * @skb: send buffer |
| * |
| * Note: This HW can't DMA more than 8 buffers to build a packet on the wire |
| * and so we need to figure out the cases where we need to linearize the skb. |
| * |
| * For TSO we need to count the TSO header and segment payload separately. |
| * As such we need to check cases where we have 7 fragments or more as we |
| * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for |
| * the segment payload in the first descriptor, and another 7 for the |
| * fragments. |
| */ |
| static bool __ice_chk_linearize(struct sk_buff *skb) |
| { |
| const skb_frag_t *frag, *stale; |
| int nr_frags, sum; |
| |
| /* no need to check if number of frags is less than 7 */ |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| if (nr_frags < (ICE_MAX_BUF_TXD - 1)) |
| return false; |
| |
| /* We need to walk through the list and validate that each group |
| * of 6 fragments totals at least gso_size. |
| */ |
| nr_frags -= ICE_MAX_BUF_TXD - 2; |
| frag = &skb_shinfo(skb)->frags[0]; |
| |
| /* Initialize size to the negative value of gso_size minus 1. We |
| * use this as the worst case scenario in which the frag ahead |
| * of us only provides one byte which is why we are limited to 6 |
| * descriptors for a single transmit as the header and previous |
| * fragment are already consuming 2 descriptors. |
| */ |
| sum = 1 - skb_shinfo(skb)->gso_size; |
| |
| /* Add size of frags 0 through 4 to create our initial sum */ |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| |
| /* Walk through fragments adding latest fragment, testing it, and |
| * then removing stale fragments from the sum. |
| */ |
| for (stale = &skb_shinfo(skb)->frags[0];; stale++) { |
| int stale_size = skb_frag_size(stale); |
| |
| sum += skb_frag_size(frag++); |
| |
| /* The stale fragment may present us with a smaller |
| * descriptor than the actual fragment size. To account |
| * for that we need to remove all the data on the front and |
| * figure out what the remainder would be in the last |
| * descriptor associated with the fragment. |
| */ |
| if (stale_size > ICE_MAX_DATA_PER_TXD) { |
| int align_pad = -(skb_frag_off(stale)) & |
| (ICE_MAX_READ_REQ_SIZE - 1); |
| |
| sum -= align_pad; |
| stale_size -= align_pad; |
| |
| do { |
| sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; |
| stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; |
| } while (stale_size > ICE_MAX_DATA_PER_TXD); |
| } |
| |
| /* if sum is negative we failed to make sufficient progress */ |
| if (sum < 0) |
| return true; |
| |
| if (!nr_frags--) |
| break; |
| |
| sum -= stale_size; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ice_chk_linearize - Check if there are more than 8 fragments per packet |
| * @skb: send buffer |
| * @count: number of buffers used |
| * |
| * Note: Our HW can't scatter-gather more than 8 fragments to build |
| * a packet on the wire and so we need to figure out the cases where we |
| * need to linearize the skb. |
| */ |
| static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) |
| { |
| /* Both TSO and single send will work if count is less than 8 */ |
| if (likely(count < ICE_MAX_BUF_TXD)) |
| return false; |
| |
| if (skb_is_gso(skb)) |
| return __ice_chk_linearize(skb); |
| |
| /* we can support up to 8 data buffers for a single send */ |
| return count != ICE_MAX_BUF_TXD; |
| } |
| |
| /** |
| * ice_tstamp - set up context descriptor for hardware timestamp |
| * @tx_ring: pointer to the Tx ring to send buffer on |
| * @skb: pointer to the SKB we're sending |
| * @first: Tx buffer |
| * @off: Tx offload parameters |
| */ |
| static void |
| ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, |
| struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| { |
| s8 idx; |
| |
| /* only timestamp the outbound packet if the user has requested it */ |
| if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) |
| return; |
| |
| if (!tx_ring->ptp_tx) |
| return; |
| |
| /* Tx timestamps cannot be sampled when doing TSO */ |
| if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| return; |
| |
| /* Grab an open timestamp slot */ |
| idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); |
| if (idx < 0) |
| return; |
| |
| off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | |
| (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | |
| ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); |
| first->tx_flags |= ICE_TX_FLAGS_TSYN; |
| } |
| |
| /** |
| * ice_xmit_frame_ring - Sends buffer on Tx ring |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * |
| * Returns NETDEV_TX_OK if sent, else an error code |
| */ |
| static netdev_tx_t |
| ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) |
| { |
| struct ice_tx_offload_params offload = { 0 }; |
| struct ice_vsi *vsi = tx_ring->vsi; |
| struct ice_tx_buf *first; |
| struct ethhdr *eth; |
| unsigned int count; |
| int tso, csum; |
| |
| ice_trace(xmit_frame_ring, tx_ring, skb); |
| |
| count = ice_xmit_desc_count(skb); |
| if (ice_chk_linearize(skb, count)) { |
| if (__skb_linearize(skb)) |
| goto out_drop; |
| count = ice_txd_use_count(skb->len); |
| tx_ring->tx_stats.tx_linearize++; |
| } |
| |
| /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, |
| * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, |
| * + 4 desc gap to avoid the cache line where head is, |
| * + 1 desc for context descriptor, |
| * otherwise try next time |
| */ |
| if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + |
| ICE_DESCS_FOR_CTX_DESC)) { |
| tx_ring->tx_stats.tx_busy++; |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* prefetch for bql data which is infrequently used */ |
| netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); |
| |
| offload.tx_ring = tx_ring; |
| |
| /* record the location of the first descriptor for this packet */ |
| first = &tx_ring->tx_buf[tx_ring->next_to_use]; |
| first->skb = skb; |
| first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); |
| first->gso_segs = 1; |
| first->tx_flags = 0; |
| |
| /* prepare the VLAN tagging flags for Tx */ |
| ice_tx_prepare_vlan_flags(tx_ring, first); |
| if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { |
| offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | |
| (ICE_TX_CTX_DESC_IL2TAG2 << |
| ICE_TXD_CTX_QW1_CMD_S)); |
| offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> |
| ICE_TX_FLAGS_VLAN_S; |
| } |
| |
| /* set up TSO offload */ |
| tso = ice_tso(first, &offload); |
| if (tso < 0) |
| goto out_drop; |
| |
| /* always set up Tx checksum offload */ |
| csum = ice_tx_csum(first, &offload); |
| if (csum < 0) |
| goto out_drop; |
| |
| /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ |
| eth = (struct ethhdr *)skb_mac_header(skb); |
| if (unlikely((skb->priority == TC_PRIO_CONTROL || |
| eth->h_proto == htons(ETH_P_LLDP)) && |
| vsi->type == ICE_VSI_PF && |
| vsi->port_info->qos_cfg.is_sw_lldp)) |
| offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | |
| ICE_TX_CTX_DESC_SWTCH_UPLINK << |
| ICE_TXD_CTX_QW1_CMD_S); |
| |
| ice_tstamp(tx_ring, skb, first, &offload); |
| if (ice_is_switchdev_running(vsi->back)) |
| ice_eswitch_set_target_vsi(skb, &offload); |
| |
| if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { |
| struct ice_tx_ctx_desc *cdesc; |
| u16 i = tx_ring->next_to_use; |
| |
| /* grab the next descriptor */ |
| cdesc = ICE_TX_CTX_DESC(tx_ring, i); |
| i++; |
| tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| /* setup context descriptor */ |
| cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); |
| cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); |
| cdesc->rsvd = cpu_to_le16(0); |
| cdesc->qw1 = cpu_to_le64(offload.cd_qw1); |
| } |
| |
| ice_tx_map(tx_ring, first, &offload); |
| return NETDEV_TX_OK; |
| |
| out_drop: |
| ice_trace(xmit_frame_ring_drop, tx_ring, skb); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer |
| * @skb: send buffer |
| * @netdev: network interface device structure |
| * |
| * Returns NETDEV_TX_OK if sent, else an error code |
| */ |
| netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_tx_ring *tx_ring; |
| |
| tx_ring = vsi->tx_rings[skb->queue_mapping]; |
| |
| /* hardware can't handle really short frames, hardware padding works |
| * beyond this point |
| */ |
| if (skb_put_padto(skb, ICE_MIN_TX_LEN)) |
| return NETDEV_TX_OK; |
| |
| return ice_xmit_frame_ring(skb, tx_ring); |
| } |
| |
| /** |
| * ice_get_dscp_up - return the UP/TC value for a SKB |
| * @dcbcfg: DCB config that contains DSCP to UP/TC mapping |
| * @skb: SKB to query for info to determine UP/TC |
| * |
| * This function is to only be called when the PF is in L3 DSCP PFC mode |
| */ |
| static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) |
| { |
| u8 dscp = 0; |
| |
| if (skb->protocol == htons(ETH_P_IP)) |
| dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; |
| else if (skb->protocol == htons(ETH_P_IPV6)) |
| dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; |
| |
| return dcbcfg->dscp_map[dscp]; |
| } |
| |
| u16 |
| ice_select_queue(struct net_device *netdev, struct sk_buff *skb, |
| struct net_device *sb_dev) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_dcbx_cfg *dcbcfg; |
| |
| dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; |
| if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) |
| skb->priority = ice_get_dscp_up(dcbcfg, skb); |
| |
| return netdev_pick_tx(netdev, skb, sb_dev); |
| } |
| |
| /** |
| * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue |
| * @tx_ring: tx_ring to clean |
| */ |
| void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) |
| { |
| struct ice_vsi *vsi = tx_ring->vsi; |
| s16 i = tx_ring->next_to_clean; |
| int budget = ICE_DFLT_IRQ_WORK; |
| struct ice_tx_desc *tx_desc; |
| struct ice_tx_buf *tx_buf; |
| |
| tx_buf = &tx_ring->tx_buf[i]; |
| tx_desc = ICE_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| do { |
| struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; |
| |
| /* if next_to_watch is not set then there is no pending work */ |
| if (!eop_desc) |
| break; |
| |
| /* prevent any other reads prior to eop_desc */ |
| smp_rmb(); |
| |
| /* if the descriptor isn't done, no work to do */ |
| if (!(eop_desc->cmd_type_offset_bsz & |
| cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buf->next_to_watch = NULL; |
| tx_desc->buf_addr = 0; |
| tx_desc->cmd_type_offset_bsz = 0; |
| |
| /* move past filter desc */ |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_buf; |
| tx_desc = ICE_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap the data header */ |
| if (dma_unmap_len(tx_buf, len)) |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) |
| devm_kfree(tx_ring->dev, tx_buf->raw_buf); |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buf->raw_buf = NULL; |
| tx_buf->tx_flags = 0; |
| tx_buf->next_to_watch = NULL; |
| dma_unmap_len_set(tx_buf, len, 0); |
| tx_desc->buf_addr = 0; |
| tx_desc->cmd_type_offset_bsz = 0; |
| |
| /* move past eop_desc for start of next FD desc */ |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_buf; |
| tx_desc = ICE_TX_DESC(tx_ring, 0); |
| } |
| |
| budget--; |
| } while (likely(budget)); |
| |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| |
| /* re-enable interrupt if needed */ |
| ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); |
| } |