| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef BLK_MQ_H |
| #define BLK_MQ_H |
| |
| #include <linux/blkdev.h> |
| #include <linux/sbitmap.h> |
| #include <linux/lockdep.h> |
| #include <linux/scatterlist.h> |
| #include <linux/prefetch.h> |
| |
| struct blk_mq_tags; |
| struct blk_flush_queue; |
| |
| #define BLKDEV_MIN_RQ 4 |
| #define BLKDEV_DEFAULT_RQ 128 |
| |
| typedef void (rq_end_io_fn)(struct request *, blk_status_t); |
| |
| /* |
| * request flags */ |
| typedef __u32 __bitwise req_flags_t; |
| |
| /* drive already may have started this one */ |
| #define RQF_STARTED ((__force req_flags_t)(1 << 1)) |
| /* may not be passed by ioscheduler */ |
| #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) |
| /* request for flush sequence */ |
| #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) |
| /* merge of different types, fail separately */ |
| #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) |
| /* track inflight for MQ */ |
| #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) |
| /* don't call prep for this one */ |
| #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) |
| /* vaguely specified driver internal error. Ignored by the block layer */ |
| #define RQF_FAILED ((__force req_flags_t)(1 << 10)) |
| /* don't warn about errors */ |
| #define RQF_QUIET ((__force req_flags_t)(1 << 11)) |
| /* elevator private data attached */ |
| #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) |
| /* account into disk and partition IO statistics */ |
| #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) |
| /* runtime pm request */ |
| #define RQF_PM ((__force req_flags_t)(1 << 15)) |
| /* on IO scheduler merge hash */ |
| #define RQF_HASHED ((__force req_flags_t)(1 << 16)) |
| /* track IO completion time */ |
| #define RQF_STATS ((__force req_flags_t)(1 << 17)) |
| /* Look at ->special_vec for the actual data payload instead of the |
| bio chain. */ |
| #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) |
| /* The per-zone write lock is held for this request */ |
| #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) |
| /* already slept for hybrid poll */ |
| #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) |
| /* ->timeout has been called, don't expire again */ |
| #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) |
| /* queue has elevator attached */ |
| #define RQF_ELV ((__force req_flags_t)(1 << 22)) |
| |
| /* flags that prevent us from merging requests: */ |
| #define RQF_NOMERGE_FLAGS \ |
| (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) |
| |
| enum mq_rq_state { |
| MQ_RQ_IDLE = 0, |
| MQ_RQ_IN_FLIGHT = 1, |
| MQ_RQ_COMPLETE = 2, |
| }; |
| |
| /* |
| * Try to put the fields that are referenced together in the same cacheline. |
| * |
| * If you modify this structure, make sure to update blk_rq_init() and |
| * especially blk_mq_rq_ctx_init() to take care of the added fields. |
| */ |
| struct request { |
| struct request_queue *q; |
| struct blk_mq_ctx *mq_ctx; |
| struct blk_mq_hw_ctx *mq_hctx; |
| |
| unsigned int cmd_flags; /* op and common flags */ |
| req_flags_t rq_flags; |
| |
| int tag; |
| int internal_tag; |
| |
| unsigned int timeout; |
| |
| /* the following two fields are internal, NEVER access directly */ |
| unsigned int __data_len; /* total data len */ |
| sector_t __sector; /* sector cursor */ |
| |
| struct bio *bio; |
| struct bio *biotail; |
| |
| union { |
| struct list_head queuelist; |
| struct request *rq_next; |
| }; |
| |
| struct block_device *part; |
| #ifdef CONFIG_BLK_RQ_ALLOC_TIME |
| /* Time that the first bio started allocating this request. */ |
| u64 alloc_time_ns; |
| #endif |
| /* Time that this request was allocated for this IO. */ |
| u64 start_time_ns; |
| /* Time that I/O was submitted to the device. */ |
| u64 io_start_time_ns; |
| |
| #ifdef CONFIG_BLK_WBT |
| unsigned short wbt_flags; |
| #endif |
| /* |
| * rq sectors used for blk stats. It has the same value |
| * with blk_rq_sectors(rq), except that it never be zeroed |
| * by completion. |
| */ |
| unsigned short stats_sectors; |
| |
| /* |
| * Number of scatter-gather DMA addr+len pairs after |
| * physical address coalescing is performed. |
| */ |
| unsigned short nr_phys_segments; |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| unsigned short nr_integrity_segments; |
| #endif |
| |
| #ifdef CONFIG_BLK_INLINE_ENCRYPTION |
| struct bio_crypt_ctx *crypt_ctx; |
| struct blk_crypto_keyslot *crypt_keyslot; |
| #endif |
| |
| unsigned short write_hint; |
| unsigned short ioprio; |
| |
| enum mq_rq_state state; |
| atomic_t ref; |
| |
| unsigned long deadline; |
| |
| /* |
| * The hash is used inside the scheduler, and killed once the |
| * request reaches the dispatch list. The ipi_list is only used |
| * to queue the request for softirq completion, which is long |
| * after the request has been unhashed (and even removed from |
| * the dispatch list). |
| */ |
| union { |
| struct hlist_node hash; /* merge hash */ |
| struct llist_node ipi_list; |
| }; |
| |
| /* |
| * The rb_node is only used inside the io scheduler, requests |
| * are pruned when moved to the dispatch queue. So let the |
| * completion_data share space with the rb_node. |
| */ |
| union { |
| struct rb_node rb_node; /* sort/lookup */ |
| struct bio_vec special_vec; |
| void *completion_data; |
| int error_count; /* for legacy drivers, don't use */ |
| }; |
| |
| |
| /* |
| * Three pointers are available for the IO schedulers, if they need |
| * more they have to dynamically allocate it. Flush requests are |
| * never put on the IO scheduler. So let the flush fields share |
| * space with the elevator data. |
| */ |
| union { |
| struct { |
| struct io_cq *icq; |
| void *priv[2]; |
| } elv; |
| |
| struct { |
| unsigned int seq; |
| struct list_head list; |
| rq_end_io_fn *saved_end_io; |
| } flush; |
| }; |
| |
| union { |
| struct __call_single_data csd; |
| u64 fifo_time; |
| }; |
| |
| /* |
| * completion callback. |
| */ |
| rq_end_io_fn *end_io; |
| void *end_io_data; |
| }; |
| |
| #define req_op(req) \ |
| ((req)->cmd_flags & REQ_OP_MASK) |
| |
| static inline bool blk_rq_is_passthrough(struct request *rq) |
| { |
| return blk_op_is_passthrough(req_op(rq)); |
| } |
| |
| static inline unsigned short req_get_ioprio(struct request *req) |
| { |
| return req->ioprio; |
| } |
| |
| #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) |
| |
| #define rq_dma_dir(rq) \ |
| (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) |
| |
| #define rq_list_add(listptr, rq) do { \ |
| (rq)->rq_next = *(listptr); \ |
| *(listptr) = rq; \ |
| } while (0) |
| |
| #define rq_list_pop(listptr) \ |
| ({ \ |
| struct request *__req = NULL; \ |
| if ((listptr) && *(listptr)) { \ |
| __req = *(listptr); \ |
| *(listptr) = __req->rq_next; \ |
| } \ |
| __req; \ |
| }) |
| |
| #define rq_list_peek(listptr) \ |
| ({ \ |
| struct request *__req = NULL; \ |
| if ((listptr) && *(listptr)) \ |
| __req = *(listptr); \ |
| __req; \ |
| }) |
| |
| #define rq_list_for_each(listptr, pos) \ |
| for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos)) |
| |
| #define rq_list_for_each_safe(listptr, pos, nxt) \ |
| for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \ |
| pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL) |
| |
| #define rq_list_next(rq) (rq)->rq_next |
| #define rq_list_empty(list) ((list) == (struct request *) NULL) |
| |
| /** |
| * rq_list_move() - move a struct request from one list to another |
| * @src: The source list @rq is currently in |
| * @dst: The destination list that @rq will be appended to |
| * @rq: The request to move |
| * @prev: The request preceding @rq in @src (NULL if @rq is the head) |
| */ |
| static inline void rq_list_move(struct request **src, struct request **dst, |
| struct request *rq, struct request *prev) |
| { |
| if (prev) |
| prev->rq_next = rq->rq_next; |
| else |
| *src = rq->rq_next; |
| rq_list_add(dst, rq); |
| } |
| |
| enum blk_eh_timer_return { |
| BLK_EH_DONE, /* drivers has completed the command */ |
| BLK_EH_RESET_TIMER, /* reset timer and try again */ |
| }; |
| |
| #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ |
| #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ |
| |
| /** |
| * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware |
| * block device |
| */ |
| struct blk_mq_hw_ctx { |
| struct { |
| /** @lock: Protects the dispatch list. */ |
| spinlock_t lock; |
| /** |
| * @dispatch: Used for requests that are ready to be |
| * dispatched to the hardware but for some reason (e.g. lack of |
| * resources) could not be sent to the hardware. As soon as the |
| * driver can send new requests, requests at this list will |
| * be sent first for a fairer dispatch. |
| */ |
| struct list_head dispatch; |
| /** |
| * @state: BLK_MQ_S_* flags. Defines the state of the hw |
| * queue (active, scheduled to restart, stopped). |
| */ |
| unsigned long state; |
| } ____cacheline_aligned_in_smp; |
| |
| /** |
| * @run_work: Used for scheduling a hardware queue run at a later time. |
| */ |
| struct delayed_work run_work; |
| /** @cpumask: Map of available CPUs where this hctx can run. */ |
| cpumask_var_t cpumask; |
| /** |
| * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU |
| * selection from @cpumask. |
| */ |
| int next_cpu; |
| /** |
| * @next_cpu_batch: Counter of how many works left in the batch before |
| * changing to the next CPU. |
| */ |
| int next_cpu_batch; |
| |
| /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ |
| unsigned long flags; |
| |
| /** |
| * @sched_data: Pointer owned by the IO scheduler attached to a request |
| * queue. It's up to the IO scheduler how to use this pointer. |
| */ |
| void *sched_data; |
| /** |
| * @queue: Pointer to the request queue that owns this hardware context. |
| */ |
| struct request_queue *queue; |
| /** @fq: Queue of requests that need to perform a flush operation. */ |
| struct blk_flush_queue *fq; |
| |
| /** |
| * @driver_data: Pointer to data owned by the block driver that created |
| * this hctx |
| */ |
| void *driver_data; |
| |
| /** |
| * @ctx_map: Bitmap for each software queue. If bit is on, there is a |
| * pending request in that software queue. |
| */ |
| struct sbitmap ctx_map; |
| |
| /** |
| * @dispatch_from: Software queue to be used when no scheduler was |
| * selected. |
| */ |
| struct blk_mq_ctx *dispatch_from; |
| /** |
| * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to |
| * decide if the hw_queue is busy using Exponential Weighted Moving |
| * Average algorithm. |
| */ |
| unsigned int dispatch_busy; |
| |
| /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ |
| unsigned short type; |
| /** @nr_ctx: Number of software queues. */ |
| unsigned short nr_ctx; |
| /** @ctxs: Array of software queues. */ |
| struct blk_mq_ctx **ctxs; |
| |
| /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ |
| spinlock_t dispatch_wait_lock; |
| /** |
| * @dispatch_wait: Waitqueue to put requests when there is no tag |
| * available at the moment, to wait for another try in the future. |
| */ |
| wait_queue_entry_t dispatch_wait; |
| |
| /** |
| * @wait_index: Index of next available dispatch_wait queue to insert |
| * requests. |
| */ |
| atomic_t wait_index; |
| |
| /** |
| * @tags: Tags owned by the block driver. A tag at this set is only |
| * assigned when a request is dispatched from a hardware queue. |
| */ |
| struct blk_mq_tags *tags; |
| /** |
| * @sched_tags: Tags owned by I/O scheduler. If there is an I/O |
| * scheduler associated with a request queue, a tag is assigned when |
| * that request is allocated. Else, this member is not used. |
| */ |
| struct blk_mq_tags *sched_tags; |
| |
| /** @queued: Number of queued requests. */ |
| unsigned long queued; |
| /** @run: Number of dispatched requests. */ |
| unsigned long run; |
| |
| /** @numa_node: NUMA node the storage adapter has been connected to. */ |
| unsigned int numa_node; |
| /** @queue_num: Index of this hardware queue. */ |
| unsigned int queue_num; |
| |
| /** |
| * @nr_active: Number of active requests. Only used when a tag set is |
| * shared across request queues. |
| */ |
| atomic_t nr_active; |
| |
| /** @cpuhp_online: List to store request if CPU is going to die */ |
| struct hlist_node cpuhp_online; |
| /** @cpuhp_dead: List to store request if some CPU die. */ |
| struct hlist_node cpuhp_dead; |
| /** @kobj: Kernel object for sysfs. */ |
| struct kobject kobj; |
| |
| #ifdef CONFIG_BLK_DEBUG_FS |
| /** |
| * @debugfs_dir: debugfs directory for this hardware queue. Named |
| * as cpu<cpu_number>. |
| */ |
| struct dentry *debugfs_dir; |
| /** @sched_debugfs_dir: debugfs directory for the scheduler. */ |
| struct dentry *sched_debugfs_dir; |
| #endif |
| |
| /** |
| * @hctx_list: if this hctx is not in use, this is an entry in |
| * q->unused_hctx_list. |
| */ |
| struct list_head hctx_list; |
| }; |
| |
| /** |
| * struct blk_mq_queue_map - Map software queues to hardware queues |
| * @mq_map: CPU ID to hardware queue index map. This is an array |
| * with nr_cpu_ids elements. Each element has a value in the range |
| * [@queue_offset, @queue_offset + @nr_queues). |
| * @nr_queues: Number of hardware queues to map CPU IDs onto. |
| * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe |
| * driver to map each hardware queue type (enum hctx_type) onto a distinct |
| * set of hardware queues. |
| */ |
| struct blk_mq_queue_map { |
| unsigned int *mq_map; |
| unsigned int nr_queues; |
| unsigned int queue_offset; |
| }; |
| |
| /** |
| * enum hctx_type - Type of hardware queue |
| * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. |
| * @HCTX_TYPE_READ: Just for READ I/O. |
| * @HCTX_TYPE_POLL: Polled I/O of any kind. |
| * @HCTX_MAX_TYPES: Number of types of hctx. |
| */ |
| enum hctx_type { |
| HCTX_TYPE_DEFAULT, |
| HCTX_TYPE_READ, |
| HCTX_TYPE_POLL, |
| |
| HCTX_MAX_TYPES, |
| }; |
| |
| /** |
| * struct blk_mq_tag_set - tag set that can be shared between request queues |
| * @map: One or more ctx -> hctx mappings. One map exists for each |
| * hardware queue type (enum hctx_type) that the driver wishes |
| * to support. There are no restrictions on maps being of the |
| * same size, and it's perfectly legal to share maps between |
| * types. |
| * @nr_maps: Number of elements in the @map array. A number in the range |
| * [1, HCTX_MAX_TYPES]. |
| * @ops: Pointers to functions that implement block driver behavior. |
| * @nr_hw_queues: Number of hardware queues supported by the block driver that |
| * owns this data structure. |
| * @queue_depth: Number of tags per hardware queue, reserved tags included. |
| * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag |
| * allocations. |
| * @cmd_size: Number of additional bytes to allocate per request. The block |
| * driver owns these additional bytes. |
| * @numa_node: NUMA node the storage adapter has been connected to. |
| * @timeout: Request processing timeout in jiffies. |
| * @flags: Zero or more BLK_MQ_F_* flags. |
| * @driver_data: Pointer to data owned by the block driver that created this |
| * tag set. |
| * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues |
| * elements. |
| * @shared_tags: |
| * Shared set of tags. Has @nr_hw_queues elements. If set, |
| * shared by all @tags. |
| * @tag_list_lock: Serializes tag_list accesses. |
| * @tag_list: List of the request queues that use this tag set. See also |
| * request_queue.tag_set_list. |
| */ |
| struct blk_mq_tag_set { |
| struct blk_mq_queue_map map[HCTX_MAX_TYPES]; |
| unsigned int nr_maps; |
| const struct blk_mq_ops *ops; |
| unsigned int nr_hw_queues; |
| unsigned int queue_depth; |
| unsigned int reserved_tags; |
| unsigned int cmd_size; |
| int numa_node; |
| unsigned int timeout; |
| unsigned int flags; |
| void *driver_data; |
| |
| struct blk_mq_tags **tags; |
| |
| struct blk_mq_tags *shared_tags; |
| |
| struct mutex tag_list_lock; |
| struct list_head tag_list; |
| }; |
| |
| /** |
| * struct blk_mq_queue_data - Data about a request inserted in a queue |
| * |
| * @rq: Request pointer. |
| * @last: If it is the last request in the queue. |
| */ |
| struct blk_mq_queue_data { |
| struct request *rq; |
| bool last; |
| }; |
| |
| typedef bool (busy_tag_iter_fn)(struct request *, void *, bool); |
| |
| /** |
| * struct blk_mq_ops - Callback functions that implements block driver |
| * behaviour. |
| */ |
| struct blk_mq_ops { |
| /** |
| * @queue_rq: Queue a new request from block IO. |
| */ |
| blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, |
| const struct blk_mq_queue_data *); |
| |
| /** |
| * @commit_rqs: If a driver uses bd->last to judge when to submit |
| * requests to hardware, it must define this function. In case of errors |
| * that make us stop issuing further requests, this hook serves the |
| * purpose of kicking the hardware (which the last request otherwise |
| * would have done). |
| */ |
| void (*commit_rqs)(struct blk_mq_hw_ctx *); |
| |
| /** |
| * @queue_rqs: Queue a list of new requests. Driver is guaranteed |
| * that each request belongs to the same queue. If the driver doesn't |
| * empty the @rqlist completely, then the rest will be queued |
| * individually by the block layer upon return. |
| */ |
| void (*queue_rqs)(struct request **rqlist); |
| |
| /** |
| * @get_budget: Reserve budget before queue request, once .queue_rq is |
| * run, it is driver's responsibility to release the |
| * reserved budget. Also we have to handle failure case |
| * of .get_budget for avoiding I/O deadlock. |
| */ |
| int (*get_budget)(struct request_queue *); |
| |
| /** |
| * @put_budget: Release the reserved budget. |
| */ |
| void (*put_budget)(struct request_queue *, int); |
| |
| /** |
| * @set_rq_budget_token: store rq's budget token |
| */ |
| void (*set_rq_budget_token)(struct request *, int); |
| /** |
| * @get_rq_budget_token: retrieve rq's budget token |
| */ |
| int (*get_rq_budget_token)(struct request *); |
| |
| /** |
| * @timeout: Called on request timeout. |
| */ |
| enum blk_eh_timer_return (*timeout)(struct request *, bool); |
| |
| /** |
| * @poll: Called to poll for completion of a specific tag. |
| */ |
| int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *); |
| |
| /** |
| * @complete: Mark the request as complete. |
| */ |
| void (*complete)(struct request *); |
| |
| /** |
| * @init_hctx: Called when the block layer side of a hardware queue has |
| * been set up, allowing the driver to allocate/init matching |
| * structures. |
| */ |
| int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); |
| /** |
| * @exit_hctx: Ditto for exit/teardown. |
| */ |
| void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); |
| |
| /** |
| * @init_request: Called for every command allocated by the block layer |
| * to allow the driver to set up driver specific data. |
| * |
| * Tag greater than or equal to queue_depth is for setting up |
| * flush request. |
| */ |
| int (*init_request)(struct blk_mq_tag_set *set, struct request *, |
| unsigned int, unsigned int); |
| /** |
| * @exit_request: Ditto for exit/teardown. |
| */ |
| void (*exit_request)(struct blk_mq_tag_set *set, struct request *, |
| unsigned int); |
| |
| /** |
| * @cleanup_rq: Called before freeing one request which isn't completed |
| * yet, and usually for freeing the driver private data. |
| */ |
| void (*cleanup_rq)(struct request *); |
| |
| /** |
| * @busy: If set, returns whether or not this queue currently is busy. |
| */ |
| bool (*busy)(struct request_queue *); |
| |
| /** |
| * @map_queues: This allows drivers specify their own queue mapping by |
| * overriding the setup-time function that builds the mq_map. |
| */ |
| int (*map_queues)(struct blk_mq_tag_set *set); |
| |
| #ifdef CONFIG_BLK_DEBUG_FS |
| /** |
| * @show_rq: Used by the debugfs implementation to show driver-specific |
| * information about a request. |
| */ |
| void (*show_rq)(struct seq_file *m, struct request *rq); |
| #endif |
| }; |
| |
| enum { |
| BLK_MQ_F_SHOULD_MERGE = 1 << 0, |
| BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, |
| /* |
| * Set when this device requires underlying blk-mq device for |
| * completing IO: |
| */ |
| BLK_MQ_F_STACKING = 1 << 2, |
| BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, |
| BLK_MQ_F_BLOCKING = 1 << 5, |
| /* Do not allow an I/O scheduler to be configured. */ |
| BLK_MQ_F_NO_SCHED = 1 << 6, |
| /* |
| * Select 'none' during queue registration in case of a single hwq |
| * or shared hwqs instead of 'mq-deadline'. |
| */ |
| BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7, |
| BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, |
| BLK_MQ_F_ALLOC_POLICY_BITS = 1, |
| |
| BLK_MQ_S_STOPPED = 0, |
| BLK_MQ_S_TAG_ACTIVE = 1, |
| BLK_MQ_S_SCHED_RESTART = 2, |
| |
| /* hw queue is inactive after all its CPUs become offline */ |
| BLK_MQ_S_INACTIVE = 3, |
| |
| BLK_MQ_MAX_DEPTH = 10240, |
| |
| BLK_MQ_CPU_WORK_BATCH = 8, |
| }; |
| #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ |
| ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ |
| ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) |
| #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ |
| ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ |
| << BLK_MQ_F_ALLOC_POLICY_START_BIT) |
| |
| #define BLK_MQ_NO_HCTX_IDX (-1U) |
| |
| struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, |
| struct lock_class_key *lkclass); |
| #define blk_mq_alloc_disk(set, queuedata) \ |
| ({ \ |
| static struct lock_class_key __key; \ |
| \ |
| __blk_mq_alloc_disk(set, queuedata, &__key); \ |
| }) |
| struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); |
| int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, |
| struct request_queue *q); |
| void blk_mq_unregister_dev(struct device *, struct request_queue *); |
| |
| int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); |
| int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, |
| const struct blk_mq_ops *ops, unsigned int queue_depth, |
| unsigned int set_flags); |
| void blk_mq_free_tag_set(struct blk_mq_tag_set *set); |
| |
| void blk_mq_free_request(struct request *rq); |
| |
| bool blk_mq_queue_inflight(struct request_queue *q); |
| |
| enum { |
| /* return when out of requests */ |
| BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), |
| /* allocate from reserved pool */ |
| BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), |
| /* set RQF_PM */ |
| BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2), |
| }; |
| |
| struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, |
| blk_mq_req_flags_t flags); |
| struct request *blk_mq_alloc_request_hctx(struct request_queue *q, |
| unsigned int op, blk_mq_req_flags_t flags, |
| unsigned int hctx_idx); |
| |
| /* |
| * Tag address space map. |
| */ |
| struct blk_mq_tags { |
| unsigned int nr_tags; |
| unsigned int nr_reserved_tags; |
| |
| atomic_t active_queues; |
| |
| struct sbitmap_queue bitmap_tags; |
| struct sbitmap_queue breserved_tags; |
| |
| struct request **rqs; |
| struct request **static_rqs; |
| struct list_head page_list; |
| |
| /* |
| * used to clear request reference in rqs[] before freeing one |
| * request pool |
| */ |
| spinlock_t lock; |
| }; |
| |
| static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, |
| unsigned int tag) |
| { |
| if (tag < tags->nr_tags) { |
| prefetch(tags->rqs[tag]); |
| return tags->rqs[tag]; |
| } |
| |
| return NULL; |
| } |
| |
| enum { |
| BLK_MQ_UNIQUE_TAG_BITS = 16, |
| BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, |
| }; |
| |
| u32 blk_mq_unique_tag(struct request *rq); |
| |
| static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) |
| { |
| return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; |
| } |
| |
| static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) |
| { |
| return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; |
| } |
| |
| /** |
| * blk_mq_rq_state() - read the current MQ_RQ_* state of a request |
| * @rq: target request. |
| */ |
| static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) |
| { |
| return READ_ONCE(rq->state); |
| } |
| |
| static inline int blk_mq_request_started(struct request *rq) |
| { |
| return blk_mq_rq_state(rq) != MQ_RQ_IDLE; |
| } |
| |
| static inline int blk_mq_request_completed(struct request *rq) |
| { |
| return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; |
| } |
| |
| /* |
| * |
| * Set the state to complete when completing a request from inside ->queue_rq. |
| * This is used by drivers that want to ensure special complete actions that |
| * need access to the request are called on failure, e.g. by nvme for |
| * multipathing. |
| */ |
| static inline void blk_mq_set_request_complete(struct request *rq) |
| { |
| WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); |
| } |
| |
| /* |
| * Complete the request directly instead of deferring it to softirq or |
| * completing it another CPU. Useful in preemptible instead of an interrupt. |
| */ |
| static inline void blk_mq_complete_request_direct(struct request *rq, |
| void (*complete)(struct request *rq)) |
| { |
| WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); |
| complete(rq); |
| } |
| |
| void blk_mq_start_request(struct request *rq); |
| void blk_mq_end_request(struct request *rq, blk_status_t error); |
| void __blk_mq_end_request(struct request *rq, blk_status_t error); |
| void blk_mq_end_request_batch(struct io_comp_batch *ib); |
| |
| /* |
| * Only need start/end time stamping if we have iostat or |
| * blk stats enabled, or using an IO scheduler. |
| */ |
| static inline bool blk_mq_need_time_stamp(struct request *rq) |
| { |
| return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV)); |
| } |
| |
| /* |
| * Batched completions only work when there is no I/O error and no special |
| * ->end_io handler. |
| */ |
| static inline bool blk_mq_add_to_batch(struct request *req, |
| struct io_comp_batch *iob, int ioerror, |
| void (*complete)(struct io_comp_batch *)) |
| { |
| if (!iob || (req->rq_flags & RQF_ELV) || req->end_io || ioerror) |
| return false; |
| if (!iob->complete) |
| iob->complete = complete; |
| else if (iob->complete != complete) |
| return false; |
| iob->need_ts |= blk_mq_need_time_stamp(req); |
| rq_list_add(&iob->req_list, req); |
| return true; |
| } |
| |
| void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); |
| void blk_mq_kick_requeue_list(struct request_queue *q); |
| void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); |
| void blk_mq_complete_request(struct request *rq); |
| bool blk_mq_complete_request_remote(struct request *rq); |
| bool blk_mq_queue_stopped(struct request_queue *q); |
| void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); |
| void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); |
| void blk_mq_stop_hw_queues(struct request_queue *q); |
| void blk_mq_start_hw_queues(struct request_queue *q); |
| void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); |
| void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); |
| void blk_mq_quiesce_queue(struct request_queue *q); |
| void blk_mq_wait_quiesce_done(struct request_queue *q); |
| void blk_mq_unquiesce_queue(struct request_queue *q); |
| void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); |
| void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); |
| void blk_mq_run_hw_queues(struct request_queue *q, bool async); |
| void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); |
| void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, |
| busy_tag_iter_fn *fn, void *priv); |
| void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); |
| void blk_mq_freeze_queue(struct request_queue *q); |
| void blk_mq_unfreeze_queue(struct request_queue *q); |
| void blk_freeze_queue_start(struct request_queue *q); |
| void blk_mq_freeze_queue_wait(struct request_queue *q); |
| int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, |
| unsigned long timeout); |
| |
| int blk_mq_map_queues(struct blk_mq_queue_map *qmap); |
| void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); |
| |
| void blk_mq_quiesce_queue_nowait(struct request_queue *q); |
| |
| unsigned int blk_mq_rq_cpu(struct request *rq); |
| |
| bool __blk_should_fake_timeout(struct request_queue *q); |
| static inline bool blk_should_fake_timeout(struct request_queue *q) |
| { |
| if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && |
| test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) |
| return __blk_should_fake_timeout(q); |
| return false; |
| } |
| |
| /** |
| * blk_mq_rq_from_pdu - cast a PDU to a request |
| * @pdu: the PDU (Protocol Data Unit) to be casted |
| * |
| * Return: request |
| * |
| * Driver command data is immediately after the request. So subtract request |
| * size to get back to the original request. |
| */ |
| static inline struct request *blk_mq_rq_from_pdu(void *pdu) |
| { |
| return pdu - sizeof(struct request); |
| } |
| |
| /** |
| * blk_mq_rq_to_pdu - cast a request to a PDU |
| * @rq: the request to be casted |
| * |
| * Return: pointer to the PDU |
| * |
| * Driver command data is immediately after the request. So add request to get |
| * the PDU. |
| */ |
| static inline void *blk_mq_rq_to_pdu(struct request *rq) |
| { |
| return rq + 1; |
| } |
| |
| #define queue_for_each_hw_ctx(q, hctx, i) \ |
| for ((i) = 0; (i) < (q)->nr_hw_queues && \ |
| ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) |
| |
| #define hctx_for_each_ctx(hctx, ctx, i) \ |
| for ((i) = 0; (i) < (hctx)->nr_ctx && \ |
| ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) |
| |
| static inline void blk_mq_cleanup_rq(struct request *rq) |
| { |
| if (rq->q->mq_ops->cleanup_rq) |
| rq->q->mq_ops->cleanup_rq(rq); |
| } |
| |
| static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, |
| unsigned int nr_segs) |
| { |
| rq->nr_phys_segments = nr_segs; |
| rq->__data_len = bio->bi_iter.bi_size; |
| rq->bio = rq->biotail = bio; |
| rq->ioprio = bio_prio(bio); |
| } |
| |
| void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, |
| struct lock_class_key *key); |
| |
| static inline bool rq_is_sync(struct request *rq) |
| { |
| return op_is_sync(rq->cmd_flags); |
| } |
| |
| void blk_rq_init(struct request_queue *q, struct request *rq); |
| int blk_rq_prep_clone(struct request *rq, struct request *rq_src, |
| struct bio_set *bs, gfp_t gfp_mask, |
| int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); |
| void blk_rq_unprep_clone(struct request *rq); |
| blk_status_t blk_insert_cloned_request(struct request_queue *q, |
| struct request *rq); |
| |
| struct rq_map_data { |
| struct page **pages; |
| int page_order; |
| int nr_entries; |
| unsigned long offset; |
| int null_mapped; |
| int from_user; |
| }; |
| |
| int blk_rq_map_user(struct request_queue *, struct request *, |
| struct rq_map_data *, void __user *, unsigned long, gfp_t); |
| int blk_rq_map_user_iov(struct request_queue *, struct request *, |
| struct rq_map_data *, const struct iov_iter *, gfp_t); |
| int blk_rq_unmap_user(struct bio *); |
| int blk_rq_map_kern(struct request_queue *, struct request *, void *, |
| unsigned int, gfp_t); |
| int blk_rq_append_bio(struct request *rq, struct bio *bio); |
| void blk_execute_rq_nowait(struct request *rq, bool at_head, |
| rq_end_io_fn *end_io); |
| blk_status_t blk_execute_rq(struct request *rq, bool at_head); |
| |
| struct req_iterator { |
| struct bvec_iter iter; |
| struct bio *bio; |
| }; |
| |
| #define __rq_for_each_bio(_bio, rq) \ |
| if ((rq->bio)) \ |
| for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) |
| |
| #define rq_for_each_segment(bvl, _rq, _iter) \ |
| __rq_for_each_bio(_iter.bio, _rq) \ |
| bio_for_each_segment(bvl, _iter.bio, _iter.iter) |
| |
| #define rq_for_each_bvec(bvl, _rq, _iter) \ |
| __rq_for_each_bio(_iter.bio, _rq) \ |
| bio_for_each_bvec(bvl, _iter.bio, _iter.iter) |
| |
| #define rq_iter_last(bvec, _iter) \ |
| (_iter.bio->bi_next == NULL && \ |
| bio_iter_last(bvec, _iter.iter)) |
| |
| /* |
| * blk_rq_pos() : the current sector |
| * blk_rq_bytes() : bytes left in the entire request |
| * blk_rq_cur_bytes() : bytes left in the current segment |
| * blk_rq_sectors() : sectors left in the entire request |
| * blk_rq_cur_sectors() : sectors left in the current segment |
| * blk_rq_stats_sectors() : sectors of the entire request used for stats |
| */ |
| static inline sector_t blk_rq_pos(const struct request *rq) |
| { |
| return rq->__sector; |
| } |
| |
| static inline unsigned int blk_rq_bytes(const struct request *rq) |
| { |
| return rq->__data_len; |
| } |
| |
| static inline int blk_rq_cur_bytes(const struct request *rq) |
| { |
| if (!rq->bio) |
| return 0; |
| if (!bio_has_data(rq->bio)) /* dataless requests such as discard */ |
| return rq->bio->bi_iter.bi_size; |
| return bio_iovec(rq->bio).bv_len; |
| } |
| |
| static inline unsigned int blk_rq_sectors(const struct request *rq) |
| { |
| return blk_rq_bytes(rq) >> SECTOR_SHIFT; |
| } |
| |
| static inline unsigned int blk_rq_cur_sectors(const struct request *rq) |
| { |
| return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; |
| } |
| |
| static inline unsigned int blk_rq_stats_sectors(const struct request *rq) |
| { |
| return rq->stats_sectors; |
| } |
| |
| /* |
| * Some commands like WRITE SAME have a payload or data transfer size which |
| * is different from the size of the request. Any driver that supports such |
| * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to |
| * calculate the data transfer size. |
| */ |
| static inline unsigned int blk_rq_payload_bytes(struct request *rq) |
| { |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) |
| return rq->special_vec.bv_len; |
| return blk_rq_bytes(rq); |
| } |
| |
| /* |
| * Return the first full biovec in the request. The caller needs to check that |
| * there are any bvecs before calling this helper. |
| */ |
| static inline struct bio_vec req_bvec(struct request *rq) |
| { |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) |
| return rq->special_vec; |
| return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); |
| } |
| |
| static inline unsigned int blk_rq_count_bios(struct request *rq) |
| { |
| unsigned int nr_bios = 0; |
| struct bio *bio; |
| |
| __rq_for_each_bio(bio, rq) |
| nr_bios++; |
| |
| return nr_bios; |
| } |
| |
| void blk_steal_bios(struct bio_list *list, struct request *rq); |
| |
| /* |
| * Request completion related functions. |
| * |
| * blk_update_request() completes given number of bytes and updates |
| * the request without completing it. |
| */ |
| bool blk_update_request(struct request *rq, blk_status_t error, |
| unsigned int nr_bytes); |
| void blk_abort_request(struct request *); |
| |
| /* |
| * Number of physical segments as sent to the device. |
| * |
| * Normally this is the number of discontiguous data segments sent by the |
| * submitter. But for data-less command like discard we might have no |
| * actual data segments submitted, but the driver might have to add it's |
| * own special payload. In that case we still return 1 here so that this |
| * special payload will be mapped. |
| */ |
| static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) |
| { |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) |
| return 1; |
| return rq->nr_phys_segments; |
| } |
| |
| /* |
| * Number of discard segments (or ranges) the driver needs to fill in. |
| * Each discard bio merged into a request is counted as one segment. |
| */ |
| static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) |
| { |
| return max_t(unsigned short, rq->nr_phys_segments, 1); |
| } |
| |
| int __blk_rq_map_sg(struct request_queue *q, struct request *rq, |
| struct scatterlist *sglist, struct scatterlist **last_sg); |
| static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, |
| struct scatterlist *sglist) |
| { |
| struct scatterlist *last_sg = NULL; |
| |
| return __blk_rq_map_sg(q, rq, sglist, &last_sg); |
| } |
| void blk_dump_rq_flags(struct request *, char *); |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| static inline unsigned int blk_rq_zone_no(struct request *rq) |
| { |
| return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); |
| } |
| |
| static inline unsigned int blk_rq_zone_is_seq(struct request *rq) |
| { |
| return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); |
| } |
| |
| bool blk_req_needs_zone_write_lock(struct request *rq); |
| bool blk_req_zone_write_trylock(struct request *rq); |
| void __blk_req_zone_write_lock(struct request *rq); |
| void __blk_req_zone_write_unlock(struct request *rq); |
| |
| static inline void blk_req_zone_write_lock(struct request *rq) |
| { |
| if (blk_req_needs_zone_write_lock(rq)) |
| __blk_req_zone_write_lock(rq); |
| } |
| |
| static inline void blk_req_zone_write_unlock(struct request *rq) |
| { |
| if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) |
| __blk_req_zone_write_unlock(rq); |
| } |
| |
| static inline bool blk_req_zone_is_write_locked(struct request *rq) |
| { |
| return rq->q->seq_zones_wlock && |
| test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); |
| } |
| |
| static inline bool blk_req_can_dispatch_to_zone(struct request *rq) |
| { |
| if (!blk_req_needs_zone_write_lock(rq)) |
| return true; |
| return !blk_req_zone_is_write_locked(rq); |
| } |
| #else /* CONFIG_BLK_DEV_ZONED */ |
| static inline bool blk_req_needs_zone_write_lock(struct request *rq) |
| { |
| return false; |
| } |
| |
| static inline void blk_req_zone_write_lock(struct request *rq) |
| { |
| } |
| |
| static inline void blk_req_zone_write_unlock(struct request *rq) |
| { |
| } |
| static inline bool blk_req_zone_is_write_locked(struct request *rq) |
| { |
| return false; |
| } |
| |
| static inline bool blk_req_can_dispatch_to_zone(struct request *rq) |
| { |
| return true; |
| } |
| #endif /* CONFIG_BLK_DEV_ZONED */ |
| |
| #endif /* BLK_MQ_H */ |