blob: e51721df14fc19eaff24dc3e72a35878b3eb592b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
#define _GNU_SOURCE
#include <linux/compiler.h>
#include <linux/ring_buffer.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/sysinfo.h>
#include <test_progs.h>
#include <uapi/linux/bpf.h>
#include <unistd.h>
#include "user_ringbuf_fail.skel.h"
#include "user_ringbuf_success.skel.h"
#include "../progs/test_user_ringbuf.h"
static const long c_sample_size = sizeof(struct sample) + BPF_RINGBUF_HDR_SZ;
static const long c_ringbuf_size = 1 << 12; /* 1 small page */
static const long c_max_entries = c_ringbuf_size / c_sample_size;
static void drain_current_samples(void)
{
syscall(__NR_getpgid);
}
static int write_samples(struct user_ring_buffer *ringbuf, uint32_t num_samples)
{
int i, err = 0;
/* Write some number of samples to the ring buffer. */
for (i = 0; i < num_samples; i++) {
struct sample *entry;
int read;
entry = user_ring_buffer__reserve(ringbuf, sizeof(*entry));
if (!entry) {
err = -errno;
goto done;
}
entry->pid = getpid();
entry->seq = i;
entry->value = i * i;
read = snprintf(entry->comm, sizeof(entry->comm), "%u", i);
if (read <= 0) {
/* Assert on the error path to avoid spamming logs with
* mostly success messages.
*/
ASSERT_GT(read, 0, "snprintf_comm");
err = read;
user_ring_buffer__discard(ringbuf, entry);
goto done;
}
user_ring_buffer__submit(ringbuf, entry);
}
done:
drain_current_samples();
return err;
}
static struct user_ringbuf_success *open_load_ringbuf_skel(void)
{
struct user_ringbuf_success *skel;
int err;
skel = user_ringbuf_success__open();
if (!ASSERT_OK_PTR(skel, "skel_open"))
return NULL;
err = bpf_map__set_max_entries(skel->maps.user_ringbuf, c_ringbuf_size);
if (!ASSERT_OK(err, "set_max_entries"))
goto cleanup;
err = bpf_map__set_max_entries(skel->maps.kernel_ringbuf, c_ringbuf_size);
if (!ASSERT_OK(err, "set_max_entries"))
goto cleanup;
err = user_ringbuf_success__load(skel);
if (!ASSERT_OK(err, "skel_load"))
goto cleanup;
return skel;
cleanup:
user_ringbuf_success__destroy(skel);
return NULL;
}
static void test_user_ringbuf_mappings(void)
{
int err, rb_fd;
int page_size = getpagesize();
void *mmap_ptr;
struct user_ringbuf_success *skel;
skel = open_load_ringbuf_skel();
if (!skel)
return;
rb_fd = bpf_map__fd(skel->maps.user_ringbuf);
/* cons_pos can be mapped R/O, can't add +X with mprotect. */
mmap_ptr = mmap(NULL, page_size, PROT_READ, MAP_SHARED, rb_fd, 0);
ASSERT_OK_PTR(mmap_ptr, "ro_cons_pos");
ASSERT_ERR(mprotect(mmap_ptr, page_size, PROT_WRITE), "write_cons_pos_protect");
ASSERT_ERR(mprotect(mmap_ptr, page_size, PROT_EXEC), "exec_cons_pos_protect");
ASSERT_ERR_PTR(mremap(mmap_ptr, 0, 4 * page_size, MREMAP_MAYMOVE), "wr_prod_pos");
err = -errno;
ASSERT_ERR(err, "wr_prod_pos_err");
ASSERT_OK(munmap(mmap_ptr, page_size), "unmap_ro_cons");
/* prod_pos can be mapped RW, can't add +X with mprotect. */
mmap_ptr = mmap(NULL, page_size, PROT_READ | PROT_WRITE, MAP_SHARED,
rb_fd, page_size);
ASSERT_OK_PTR(mmap_ptr, "rw_prod_pos");
ASSERT_ERR(mprotect(mmap_ptr, page_size, PROT_EXEC), "exec_prod_pos_protect");
err = -errno;
ASSERT_ERR(err, "wr_prod_pos_err");
ASSERT_OK(munmap(mmap_ptr, page_size), "unmap_rw_prod");
/* data pages can be mapped RW, can't add +X with mprotect. */
mmap_ptr = mmap(NULL, page_size, PROT_WRITE, MAP_SHARED, rb_fd,
2 * page_size);
ASSERT_OK_PTR(mmap_ptr, "rw_data");
ASSERT_ERR(mprotect(mmap_ptr, page_size, PROT_EXEC), "exec_data_protect");
err = -errno;
ASSERT_ERR(err, "exec_data_err");
ASSERT_OK(munmap(mmap_ptr, page_size), "unmap_rw_data");
user_ringbuf_success__destroy(skel);
}
static int load_skel_create_ringbufs(struct user_ringbuf_success **skel_out,
struct ring_buffer **kern_ringbuf_out,
ring_buffer_sample_fn callback,
struct user_ring_buffer **user_ringbuf_out)
{
struct user_ringbuf_success *skel;
struct ring_buffer *kern_ringbuf = NULL;
struct user_ring_buffer *user_ringbuf = NULL;
int err = -ENOMEM, rb_fd;
skel = open_load_ringbuf_skel();
if (!skel)
return err;
/* only trigger BPF program for current process */
skel->bss->pid = getpid();
if (kern_ringbuf_out) {
rb_fd = bpf_map__fd(skel->maps.kernel_ringbuf);
kern_ringbuf = ring_buffer__new(rb_fd, callback, skel, NULL);
if (!ASSERT_OK_PTR(kern_ringbuf, "kern_ringbuf_create"))
goto cleanup;
*kern_ringbuf_out = kern_ringbuf;
}
if (user_ringbuf_out) {
rb_fd = bpf_map__fd(skel->maps.user_ringbuf);
user_ringbuf = user_ring_buffer__new(rb_fd, NULL);
if (!ASSERT_OK_PTR(user_ringbuf, "user_ringbuf_create"))
goto cleanup;
*user_ringbuf_out = user_ringbuf;
ASSERT_EQ(skel->bss->read, 0, "no_reads_after_load");
}
err = user_ringbuf_success__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto cleanup;
*skel_out = skel;
return 0;
cleanup:
if (kern_ringbuf_out)
*kern_ringbuf_out = NULL;
if (user_ringbuf_out)
*user_ringbuf_out = NULL;
ring_buffer__free(kern_ringbuf);
user_ring_buffer__free(user_ringbuf);
user_ringbuf_success__destroy(skel);
return err;
}
static int load_skel_create_user_ringbuf(struct user_ringbuf_success **skel_out,
struct user_ring_buffer **ringbuf_out)
{
return load_skel_create_ringbufs(skel_out, NULL, NULL, ringbuf_out);
}
static void manually_write_test_invalid_sample(struct user_ringbuf_success *skel,
__u32 size, __u64 producer_pos, int err)
{
void *data_ptr;
__u64 *producer_pos_ptr;
int rb_fd, page_size = getpagesize();
rb_fd = bpf_map__fd(skel->maps.user_ringbuf);
ASSERT_EQ(skel->bss->read, 0, "num_samples_before_bad_sample");
/* Map the producer_pos as RW. */
producer_pos_ptr = mmap(NULL, page_size, PROT_READ | PROT_WRITE,
MAP_SHARED, rb_fd, page_size);
ASSERT_OK_PTR(producer_pos_ptr, "producer_pos_ptr");
/* Map the data pages as RW. */
data_ptr = mmap(NULL, page_size, PROT_WRITE, MAP_SHARED, rb_fd, 2 * page_size);
ASSERT_OK_PTR(data_ptr, "rw_data");
memset(data_ptr, 0, BPF_RINGBUF_HDR_SZ);
*(__u32 *)data_ptr = size;
/* Synchronizes with smp_load_acquire() in __bpf_user_ringbuf_peek() in the kernel. */
smp_store_release(producer_pos_ptr, producer_pos + BPF_RINGBUF_HDR_SZ);
drain_current_samples();
ASSERT_EQ(skel->bss->read, 0, "num_samples_after_bad_sample");
ASSERT_EQ(skel->bss->err, err, "err_after_bad_sample");
ASSERT_OK(munmap(producer_pos_ptr, page_size), "unmap_producer_pos");
ASSERT_OK(munmap(data_ptr, page_size), "unmap_data_ptr");
}
static void test_user_ringbuf_post_misaligned(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err;
__u32 size = (1 << 5) + 7;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (!ASSERT_OK(err, "misaligned_skel"))
return;
manually_write_test_invalid_sample(skel, size, size, -EINVAL);
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_post_producer_wrong_offset(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err;
__u32 size = (1 << 5);
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (!ASSERT_OK(err, "wrong_offset_skel"))
return;
manually_write_test_invalid_sample(skel, size, size - 8, -EINVAL);
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_post_larger_than_ringbuf_sz(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err;
__u32 size = c_ringbuf_size;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (!ASSERT_OK(err, "huge_sample_skel"))
return;
manually_write_test_invalid_sample(skel, size, size, -E2BIG);
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_basic(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (!ASSERT_OK(err, "ringbuf_basic_skel"))
return;
ASSERT_EQ(skel->bss->read, 0, "num_samples_read_before");
err = write_samples(ringbuf, 2);
if (!ASSERT_OK(err, "write_samples"))
goto cleanup;
ASSERT_EQ(skel->bss->read, 2, "num_samples_read_after");
cleanup:
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_sample_full_ring_buffer(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err;
void *sample;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (!ASSERT_OK(err, "ringbuf_full_sample_skel"))
return;
sample = user_ring_buffer__reserve(ringbuf, c_ringbuf_size - BPF_RINGBUF_HDR_SZ);
if (!ASSERT_OK_PTR(sample, "full_sample"))
goto cleanup;
user_ring_buffer__submit(ringbuf, sample);
ASSERT_EQ(skel->bss->read, 0, "num_samples_read_before");
drain_current_samples();
ASSERT_EQ(skel->bss->read, 1, "num_samples_read_after");
cleanup:
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_post_alignment_autoadjust(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
struct sample *sample;
int err;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (!ASSERT_OK(err, "ringbuf_align_autoadjust_skel"))
return;
/* libbpf should automatically round any sample up to an 8-byte alignment. */
sample = user_ring_buffer__reserve(ringbuf, sizeof(*sample) + 1);
ASSERT_OK_PTR(sample, "reserve_autoaligned");
user_ring_buffer__submit(ringbuf, sample);
ASSERT_EQ(skel->bss->read, 0, "num_samples_read_before");
drain_current_samples();
ASSERT_EQ(skel->bss->read, 1, "num_samples_read_after");
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_overfill(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (err)
return;
err = write_samples(ringbuf, c_max_entries * 5);
ASSERT_ERR(err, "write_samples");
ASSERT_EQ(skel->bss->read, c_max_entries, "max_entries");
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_discards_properly_ignored(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err, num_discarded = 0;
__u64 *token;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (err)
return;
ASSERT_EQ(skel->bss->read, 0, "num_samples_read_before");
while (1) {
/* Write samples until the buffer is full. */
token = user_ring_buffer__reserve(ringbuf, sizeof(*token));
if (!token)
break;
user_ring_buffer__discard(ringbuf, token);
num_discarded++;
}
if (!ASSERT_GE(num_discarded, 0, "num_discarded"))
goto cleanup;
/* Should not read any samples, as they are all discarded. */
ASSERT_EQ(skel->bss->read, 0, "num_pre_kick");
drain_current_samples();
ASSERT_EQ(skel->bss->read, 0, "num_post_kick");
/* Now that the ring buffer has been drained, we should be able to
* reserve another token.
*/
token = user_ring_buffer__reserve(ringbuf, sizeof(*token));
if (!ASSERT_OK_PTR(token, "new_token"))
goto cleanup;
user_ring_buffer__discard(ringbuf, token);
cleanup:
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static void test_user_ringbuf_loop(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
uint32_t total_samples = 8192;
uint32_t remaining_samples = total_samples;
int err;
BUILD_BUG_ON(total_samples <= c_max_entries);
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (err)
return;
do {
uint32_t curr_samples;
curr_samples = remaining_samples > c_max_entries
? c_max_entries : remaining_samples;
err = write_samples(ringbuf, curr_samples);
if (err != 0) {
/* Assert inside of if statement to avoid flooding logs
* on the success path.
*/
ASSERT_OK(err, "write_samples");
goto cleanup;
}
remaining_samples -= curr_samples;
ASSERT_EQ(skel->bss->read, total_samples - remaining_samples,
"current_batched_entries");
} while (remaining_samples > 0);
ASSERT_EQ(skel->bss->read, total_samples, "total_batched_entries");
cleanup:
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
static int send_test_message(struct user_ring_buffer *ringbuf,
enum test_msg_op op, s64 operand_64,
s32 operand_32)
{
struct test_msg *msg;
msg = user_ring_buffer__reserve(ringbuf, sizeof(*msg));
if (!msg) {
/* Assert on the error path to avoid spamming logs with mostly
* success messages.
*/
ASSERT_OK_PTR(msg, "reserve_msg");
return -ENOMEM;
}
msg->msg_op = op;
switch (op) {
case TEST_MSG_OP_INC64:
case TEST_MSG_OP_MUL64:
msg->operand_64 = operand_64;
break;
case TEST_MSG_OP_INC32:
case TEST_MSG_OP_MUL32:
msg->operand_32 = operand_32;
break;
default:
PRINT_FAIL("Invalid operand %d\n", op);
user_ring_buffer__discard(ringbuf, msg);
return -EINVAL;
}
user_ring_buffer__submit(ringbuf, msg);
return 0;
}
static void kick_kernel_read_messages(void)
{
syscall(__NR_prctl);
}
static int handle_kernel_msg(void *ctx, void *data, size_t len)
{
struct user_ringbuf_success *skel = ctx;
struct test_msg *msg = data;
switch (msg->msg_op) {
case TEST_MSG_OP_INC64:
skel->bss->user_mutated += msg->operand_64;
return 0;
case TEST_MSG_OP_INC32:
skel->bss->user_mutated += msg->operand_32;
return 0;
case TEST_MSG_OP_MUL64:
skel->bss->user_mutated *= msg->operand_64;
return 0;
case TEST_MSG_OP_MUL32:
skel->bss->user_mutated *= msg->operand_32;
return 0;
default:
fprintf(stderr, "Invalid operand %d\n", msg->msg_op);
return -EINVAL;
}
}
static void drain_kernel_messages_buffer(struct ring_buffer *kern_ringbuf,
struct user_ringbuf_success *skel)
{
int cnt;
cnt = ring_buffer__consume(kern_ringbuf);
ASSERT_EQ(cnt, 8, "consume_kern_ringbuf");
ASSERT_OK(skel->bss->err, "consume_kern_ringbuf_err");
}
static void test_user_ringbuf_msg_protocol(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *user_ringbuf;
struct ring_buffer *kern_ringbuf;
int err, i;
__u64 expected_kern = 0;
err = load_skel_create_ringbufs(&skel, &kern_ringbuf, handle_kernel_msg, &user_ringbuf);
if (!ASSERT_OK(err, "create_ringbufs"))
return;
for (i = 0; i < 64; i++) {
enum test_msg_op op = i % TEST_MSG_OP_NUM_OPS;
__u64 operand_64 = TEST_OP_64;
__u32 operand_32 = TEST_OP_32;
err = send_test_message(user_ringbuf, op, operand_64, operand_32);
if (err) {
/* Only assert on a failure to avoid spamming success logs. */
ASSERT_OK(err, "send_test_message");
goto cleanup;
}
switch (op) {
case TEST_MSG_OP_INC64:
expected_kern += operand_64;
break;
case TEST_MSG_OP_INC32:
expected_kern += operand_32;
break;
case TEST_MSG_OP_MUL64:
expected_kern *= operand_64;
break;
case TEST_MSG_OP_MUL32:
expected_kern *= operand_32;
break;
default:
PRINT_FAIL("Unexpected op %d\n", op);
goto cleanup;
}
if (i % 8 == 0) {
kick_kernel_read_messages();
ASSERT_EQ(skel->bss->kern_mutated, expected_kern, "expected_kern");
ASSERT_EQ(skel->bss->err, 0, "bpf_prog_err");
drain_kernel_messages_buffer(kern_ringbuf, skel);
}
}
cleanup:
ring_buffer__free(kern_ringbuf);
user_ring_buffer__free(user_ringbuf);
user_ringbuf_success__destroy(skel);
}
static void *kick_kernel_cb(void *arg)
{
/* Kick the kernel, causing it to drain the ring buffer and then wake
* up the test thread waiting on epoll.
*/
syscall(__NR_prlimit64);
return NULL;
}
static int spawn_kick_thread_for_poll(void)
{
pthread_t thread;
return pthread_create(&thread, NULL, kick_kernel_cb, NULL);
}
static void test_user_ringbuf_blocking_reserve(void)
{
struct user_ringbuf_success *skel;
struct user_ring_buffer *ringbuf;
int err, num_written = 0;
__u64 *token;
err = load_skel_create_user_ringbuf(&skel, &ringbuf);
if (err)
return;
ASSERT_EQ(skel->bss->read, 0, "num_samples_read_before");
while (1) {
/* Write samples until the buffer is full. */
token = user_ring_buffer__reserve(ringbuf, sizeof(*token));
if (!token)
break;
*token = 0xdeadbeef;
user_ring_buffer__submit(ringbuf, token);
num_written++;
}
if (!ASSERT_GE(num_written, 0, "num_written"))
goto cleanup;
/* Should not have read any samples until the kernel is kicked. */
ASSERT_EQ(skel->bss->read, 0, "num_pre_kick");
/* We correctly time out after 1 second, without a sample. */
token = user_ring_buffer__reserve_blocking(ringbuf, sizeof(*token), 1000);
if (!ASSERT_EQ(token, NULL, "pre_kick_timeout_token"))
goto cleanup;
err = spawn_kick_thread_for_poll();
if (!ASSERT_EQ(err, 0, "deferred_kick_thread\n"))
goto cleanup;
/* After spawning another thread that asychronously kicks the kernel to
* drain the messages, we're able to block and successfully get a
* sample once we receive an event notification.
*/
token = user_ring_buffer__reserve_blocking(ringbuf, sizeof(*token), 10000);
if (!ASSERT_OK_PTR(token, "block_token"))
goto cleanup;
ASSERT_GT(skel->bss->read, 0, "num_post_kill");
ASSERT_LE(skel->bss->read, num_written, "num_post_kill");
ASSERT_EQ(skel->bss->err, 0, "err_post_poll");
user_ring_buffer__discard(ringbuf, token);
cleanup:
user_ring_buffer__free(ringbuf);
user_ringbuf_success__destroy(skel);
}
#define SUCCESS_TEST(_func) { _func, #_func }
static struct {
void (*test_callback)(void);
const char *test_name;
} success_tests[] = {
SUCCESS_TEST(test_user_ringbuf_mappings),
SUCCESS_TEST(test_user_ringbuf_post_misaligned),
SUCCESS_TEST(test_user_ringbuf_post_producer_wrong_offset),
SUCCESS_TEST(test_user_ringbuf_post_larger_than_ringbuf_sz),
SUCCESS_TEST(test_user_ringbuf_basic),
SUCCESS_TEST(test_user_ringbuf_sample_full_ring_buffer),
SUCCESS_TEST(test_user_ringbuf_post_alignment_autoadjust),
SUCCESS_TEST(test_user_ringbuf_overfill),
SUCCESS_TEST(test_user_ringbuf_discards_properly_ignored),
SUCCESS_TEST(test_user_ringbuf_loop),
SUCCESS_TEST(test_user_ringbuf_msg_protocol),
SUCCESS_TEST(test_user_ringbuf_blocking_reserve),
};
void test_user_ringbuf(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(success_tests); i++) {
if (!test__start_subtest(success_tests[i].test_name))
continue;
success_tests[i].test_callback();
}
RUN_TESTS(user_ringbuf_fail);
}