| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Virtual Memory Map support |
| * |
| * (C) 2007 sgi. Christoph Lameter. |
| * |
| * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, |
| * virt_to_page, page_address() to be implemented as a base offset |
| * calculation without memory access. |
| * |
| * However, virtual mappings need a page table and TLBs. Many Linux |
| * architectures already map their physical space using 1-1 mappings |
| * via TLBs. For those arches the virtual memory map is essentially |
| * for free if we use the same page size as the 1-1 mappings. In that |
| * case the overhead consists of a few additional pages that are |
| * allocated to create a view of memory for vmemmap. |
| * |
| * The architecture is expected to provide a vmemmap_populate() function |
| * to instantiate the mapping. |
| */ |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/memblock.h> |
| #include <linux/memremap.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sched.h> |
| #include <linux/pgtable.h> |
| #include <linux/bootmem_info.h> |
| |
| #include <asm/dma.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| |
| #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP |
| /** |
| * struct vmemmap_remap_walk - walk vmemmap page table |
| * |
| * @remap_pte: called for each lowest-level entry (PTE). |
| * @nr_walked: the number of walked pte. |
| * @reuse_page: the page which is reused for the tail vmemmap pages. |
| * @reuse_addr: the virtual address of the @reuse_page page. |
| * @vmemmap_pages: the list head of the vmemmap pages that can be freed |
| * or is mapped from. |
| */ |
| struct vmemmap_remap_walk { |
| void (*remap_pte)(pte_t *pte, unsigned long addr, |
| struct vmemmap_remap_walk *walk); |
| unsigned long nr_walked; |
| struct page *reuse_page; |
| unsigned long reuse_addr; |
| struct list_head *vmemmap_pages; |
| }; |
| |
| static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) |
| { |
| pmd_t __pmd; |
| int i; |
| unsigned long addr = start; |
| struct page *page = pmd_page(*pmd); |
| pte_t *pgtable = pte_alloc_one_kernel(&init_mm); |
| |
| if (!pgtable) |
| return -ENOMEM; |
| |
| pmd_populate_kernel(&init_mm, &__pmd, pgtable); |
| |
| for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) { |
| pte_t entry, *pte; |
| pgprot_t pgprot = PAGE_KERNEL; |
| |
| entry = mk_pte(page + i, pgprot); |
| pte = pte_offset_kernel(&__pmd, addr); |
| set_pte_at(&init_mm, addr, pte, entry); |
| } |
| |
| spin_lock(&init_mm.page_table_lock); |
| if (likely(pmd_leaf(*pmd))) { |
| /* Make pte visible before pmd. See comment in pmd_install(). */ |
| smp_wmb(); |
| pmd_populate_kernel(&init_mm, pmd, pgtable); |
| flush_tlb_kernel_range(start, start + PMD_SIZE); |
| } else { |
| pte_free_kernel(&init_mm, pgtable); |
| } |
| spin_unlock(&init_mm.page_table_lock); |
| |
| return 0; |
| } |
| |
| static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) |
| { |
| int leaf; |
| |
| spin_lock(&init_mm.page_table_lock); |
| leaf = pmd_leaf(*pmd); |
| spin_unlock(&init_mm.page_table_lock); |
| |
| if (!leaf) |
| return 0; |
| |
| return __split_vmemmap_huge_pmd(pmd, start); |
| } |
| |
| static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, |
| unsigned long end, |
| struct vmemmap_remap_walk *walk) |
| { |
| pte_t *pte = pte_offset_kernel(pmd, addr); |
| |
| /* |
| * The reuse_page is found 'first' in table walk before we start |
| * remapping (which is calling @walk->remap_pte). |
| */ |
| if (!walk->reuse_page) { |
| walk->reuse_page = pte_page(*pte); |
| /* |
| * Because the reuse address is part of the range that we are |
| * walking, skip the reuse address range. |
| */ |
| addr += PAGE_SIZE; |
| pte++; |
| walk->nr_walked++; |
| } |
| |
| for (; addr != end; addr += PAGE_SIZE, pte++) { |
| walk->remap_pte(pte, addr, walk); |
| walk->nr_walked++; |
| } |
| } |
| |
| static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, |
| unsigned long end, |
| struct vmemmap_remap_walk *walk) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| int ret; |
| |
| ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); |
| if (ret) |
| return ret; |
| |
| next = pmd_addr_end(addr, end); |
| vmemmap_pte_range(pmd, addr, next, walk); |
| } while (pmd++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, |
| unsigned long end, |
| struct vmemmap_remap_walk *walk) |
| { |
| pud_t *pud; |
| unsigned long next; |
| |
| pud = pud_offset(p4d, addr); |
| do { |
| int ret; |
| |
| next = pud_addr_end(addr, end); |
| ret = vmemmap_pmd_range(pud, addr, next, walk); |
| if (ret) |
| return ret; |
| } while (pud++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, |
| unsigned long end, |
| struct vmemmap_remap_walk *walk) |
| { |
| p4d_t *p4d; |
| unsigned long next; |
| |
| p4d = p4d_offset(pgd, addr); |
| do { |
| int ret; |
| |
| next = p4d_addr_end(addr, end); |
| ret = vmemmap_pud_range(p4d, addr, next, walk); |
| if (ret) |
| return ret; |
| } while (p4d++, addr = next, addr != end); |
| |
| return 0; |
| } |
| |
| static int vmemmap_remap_range(unsigned long start, unsigned long end, |
| struct vmemmap_remap_walk *walk) |
| { |
| unsigned long addr = start; |
| unsigned long next; |
| pgd_t *pgd; |
| |
| VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE)); |
| VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE)); |
| |
| pgd = pgd_offset_k(addr); |
| do { |
| int ret; |
| |
| next = pgd_addr_end(addr, end); |
| ret = vmemmap_p4d_range(pgd, addr, next, walk); |
| if (ret) |
| return ret; |
| } while (pgd++, addr = next, addr != end); |
| |
| /* |
| * We only change the mapping of the vmemmap virtual address range |
| * [@start + PAGE_SIZE, end), so we only need to flush the TLB which |
| * belongs to the range. |
| */ |
| flush_tlb_kernel_range(start + PAGE_SIZE, end); |
| |
| return 0; |
| } |
| |
| /* |
| * Free a vmemmap page. A vmemmap page can be allocated from the memblock |
| * allocator or buddy allocator. If the PG_reserved flag is set, it means |
| * that it allocated from the memblock allocator, just free it via the |
| * free_bootmem_page(). Otherwise, use __free_page(). |
| */ |
| static inline void free_vmemmap_page(struct page *page) |
| { |
| if (PageReserved(page)) |
| free_bootmem_page(page); |
| else |
| __free_page(page); |
| } |
| |
| /* Free a list of the vmemmap pages */ |
| static void free_vmemmap_page_list(struct list_head *list) |
| { |
| struct page *page, *next; |
| |
| list_for_each_entry_safe(page, next, list, lru) { |
| list_del(&page->lru); |
| free_vmemmap_page(page); |
| } |
| } |
| |
| static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, |
| struct vmemmap_remap_walk *walk) |
| { |
| /* |
| * Remap the tail pages as read-only to catch illegal write operation |
| * to the tail pages. |
| */ |
| pgprot_t pgprot = PAGE_KERNEL_RO; |
| pte_t entry = mk_pte(walk->reuse_page, pgprot); |
| struct page *page = pte_page(*pte); |
| |
| list_add_tail(&page->lru, walk->vmemmap_pages); |
| set_pte_at(&init_mm, addr, pte, entry); |
| } |
| |
| /* |
| * How many struct page structs need to be reset. When we reuse the head |
| * struct page, the special metadata (e.g. page->flags or page->mapping) |
| * cannot copy to the tail struct page structs. The invalid value will be |
| * checked in the free_tail_pages_check(). In order to avoid the message |
| * of "corrupted mapping in tail page". We need to reset at least 3 (one |
| * head struct page struct and two tail struct page structs) struct page |
| * structs. |
| */ |
| #define NR_RESET_STRUCT_PAGE 3 |
| |
| static inline void reset_struct_pages(struct page *start) |
| { |
| int i; |
| struct page *from = start + NR_RESET_STRUCT_PAGE; |
| |
| for (i = 0; i < NR_RESET_STRUCT_PAGE; i++) |
| memcpy(start + i, from, sizeof(*from)); |
| } |
| |
| static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, |
| struct vmemmap_remap_walk *walk) |
| { |
| pgprot_t pgprot = PAGE_KERNEL; |
| struct page *page; |
| void *to; |
| |
| BUG_ON(pte_page(*pte) != walk->reuse_page); |
| |
| page = list_first_entry(walk->vmemmap_pages, struct page, lru); |
| list_del(&page->lru); |
| to = page_to_virt(page); |
| copy_page(to, (void *)walk->reuse_addr); |
| reset_struct_pages(to); |
| |
| set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); |
| } |
| |
| /** |
| * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) |
| * to the page which @reuse is mapped to, then free vmemmap |
| * which the range are mapped to. |
| * @start: start address of the vmemmap virtual address range that we want |
| * to remap. |
| * @end: end address of the vmemmap virtual address range that we want to |
| * remap. |
| * @reuse: reuse address. |
| * |
| * Return: %0 on success, negative error code otherwise. |
| */ |
| int vmemmap_remap_free(unsigned long start, unsigned long end, |
| unsigned long reuse) |
| { |
| int ret; |
| LIST_HEAD(vmemmap_pages); |
| struct vmemmap_remap_walk walk = { |
| .remap_pte = vmemmap_remap_pte, |
| .reuse_addr = reuse, |
| .vmemmap_pages = &vmemmap_pages, |
| }; |
| |
| /* |
| * In order to make remapping routine most efficient for the huge pages, |
| * the routine of vmemmap page table walking has the following rules |
| * (see more details from the vmemmap_pte_range()): |
| * |
| * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) |
| * should be continuous. |
| * - The @reuse address is part of the range [@reuse, @end) that we are |
| * walking which is passed to vmemmap_remap_range(). |
| * - The @reuse address is the first in the complete range. |
| * |
| * So we need to make sure that @start and @reuse meet the above rules. |
| */ |
| BUG_ON(start - reuse != PAGE_SIZE); |
| |
| mmap_read_lock(&init_mm); |
| ret = vmemmap_remap_range(reuse, end, &walk); |
| if (ret && walk.nr_walked) { |
| end = reuse + walk.nr_walked * PAGE_SIZE; |
| /* |
| * vmemmap_pages contains pages from the previous |
| * vmemmap_remap_range call which failed. These |
| * are pages which were removed from the vmemmap. |
| * They will be restored in the following call. |
| */ |
| walk = (struct vmemmap_remap_walk) { |
| .remap_pte = vmemmap_restore_pte, |
| .reuse_addr = reuse, |
| .vmemmap_pages = &vmemmap_pages, |
| }; |
| |
| vmemmap_remap_range(reuse, end, &walk); |
| } |
| mmap_read_unlock(&init_mm); |
| |
| free_vmemmap_page_list(&vmemmap_pages); |
| |
| return ret; |
| } |
| |
| static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, |
| gfp_t gfp_mask, struct list_head *list) |
| { |
| unsigned long nr_pages = (end - start) >> PAGE_SHIFT; |
| int nid = page_to_nid((struct page *)start); |
| struct page *page, *next; |
| |
| while (nr_pages--) { |
| page = alloc_pages_node(nid, gfp_mask, 0); |
| if (!page) |
| goto out; |
| list_add_tail(&page->lru, list); |
| } |
| |
| return 0; |
| out: |
| list_for_each_entry_safe(page, next, list, lru) |
| __free_pages(page, 0); |
| return -ENOMEM; |
| } |
| |
| /** |
| * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) |
| * to the page which is from the @vmemmap_pages |
| * respectively. |
| * @start: start address of the vmemmap virtual address range that we want |
| * to remap. |
| * @end: end address of the vmemmap virtual address range that we want to |
| * remap. |
| * @reuse: reuse address. |
| * @gfp_mask: GFP flag for allocating vmemmap pages. |
| * |
| * Return: %0 on success, negative error code otherwise. |
| */ |
| int vmemmap_remap_alloc(unsigned long start, unsigned long end, |
| unsigned long reuse, gfp_t gfp_mask) |
| { |
| LIST_HEAD(vmemmap_pages); |
| struct vmemmap_remap_walk walk = { |
| .remap_pte = vmemmap_restore_pte, |
| .reuse_addr = reuse, |
| .vmemmap_pages = &vmemmap_pages, |
| }; |
| |
| /* See the comment in the vmemmap_remap_free(). */ |
| BUG_ON(start - reuse != PAGE_SIZE); |
| |
| if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) |
| return -ENOMEM; |
| |
| mmap_read_lock(&init_mm); |
| vmemmap_remap_range(reuse, end, &walk); |
| mmap_read_unlock(&init_mm); |
| |
| return 0; |
| } |
| #endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */ |
| |
| /* |
| * Allocate a block of memory to be used to back the virtual memory map |
| * or to back the page tables that are used to create the mapping. |
| * Uses the main allocators if they are available, else bootmem. |
| */ |
| |
| static void * __ref __earlyonly_bootmem_alloc(int node, |
| unsigned long size, |
| unsigned long align, |
| unsigned long goal) |
| { |
| return memblock_alloc_try_nid_raw(size, align, goal, |
| MEMBLOCK_ALLOC_ACCESSIBLE, node); |
| } |
| |
| void * __meminit vmemmap_alloc_block(unsigned long size, int node) |
| { |
| /* If the main allocator is up use that, fallback to bootmem. */ |
| if (slab_is_available()) { |
| gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; |
| int order = get_order(size); |
| static bool warned; |
| struct page *page; |
| |
| page = alloc_pages_node(node, gfp_mask, order); |
| if (page) |
| return page_address(page); |
| |
| if (!warned) { |
| warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, |
| "vmemmap alloc failure: order:%u", order); |
| warned = true; |
| } |
| return NULL; |
| } else |
| return __earlyonly_bootmem_alloc(node, size, size, |
| __pa(MAX_DMA_ADDRESS)); |
| } |
| |
| static void * __meminit altmap_alloc_block_buf(unsigned long size, |
| struct vmem_altmap *altmap); |
| |
| /* need to make sure size is all the same during early stage */ |
| void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, |
| struct vmem_altmap *altmap) |
| { |
| void *ptr; |
| |
| if (altmap) |
| return altmap_alloc_block_buf(size, altmap); |
| |
| ptr = sparse_buffer_alloc(size); |
| if (!ptr) |
| ptr = vmemmap_alloc_block(size, node); |
| return ptr; |
| } |
| |
| static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) |
| { |
| return altmap->base_pfn + altmap->reserve + altmap->alloc |
| + altmap->align; |
| } |
| |
| static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) |
| { |
| unsigned long allocated = altmap->alloc + altmap->align; |
| |
| if (altmap->free > allocated) |
| return altmap->free - allocated; |
| return 0; |
| } |
| |
| static void * __meminit altmap_alloc_block_buf(unsigned long size, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long pfn, nr_pfns, nr_align; |
| |
| if (size & ~PAGE_MASK) { |
| pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", |
| __func__, size); |
| return NULL; |
| } |
| |
| pfn = vmem_altmap_next_pfn(altmap); |
| nr_pfns = size >> PAGE_SHIFT; |
| nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); |
| nr_align = ALIGN(pfn, nr_align) - pfn; |
| if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) |
| return NULL; |
| |
| altmap->alloc += nr_pfns; |
| altmap->align += nr_align; |
| pfn += nr_align; |
| |
| pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", |
| __func__, pfn, altmap->alloc, altmap->align, nr_pfns); |
| return __va(__pfn_to_phys(pfn)); |
| } |
| |
| void __meminit vmemmap_verify(pte_t *pte, int node, |
| unsigned long start, unsigned long end) |
| { |
| unsigned long pfn = pte_pfn(*pte); |
| int actual_node = early_pfn_to_nid(pfn); |
| |
| if (node_distance(actual_node, node) > LOCAL_DISTANCE) |
| pr_warn("[%lx-%lx] potential offnode page_structs\n", |
| start, end - 1); |
| } |
| |
| pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| pte_t *pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(*pte)) { |
| pte_t entry; |
| void *p; |
| |
| if (!reuse) { |
| p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); |
| if (!p) |
| return NULL; |
| } else { |
| /* |
| * When a PTE/PMD entry is freed from the init_mm |
| * there's a a free_pages() call to this page allocated |
| * above. Thus this get_page() is paired with the |
| * put_page_testzero() on the freeing path. |
| * This can only called by certain ZONE_DEVICE path, |
| * and through vmemmap_populate_compound_pages() when |
| * slab is available. |
| */ |
| get_page(reuse); |
| p = page_to_virt(reuse); |
| } |
| entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); |
| set_pte_at(&init_mm, addr, pte, entry); |
| } |
| return pte; |
| } |
| |
| static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) |
| { |
| void *p = vmemmap_alloc_block(size, node); |
| |
| if (!p) |
| return NULL; |
| memset(p, 0, size); |
| |
| return p; |
| } |
| |
| pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) |
| { |
| pmd_t *pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pmd_populate_kernel(&init_mm, pmd, p); |
| } |
| return pmd; |
| } |
| |
| pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) |
| { |
| pud_t *pud = pud_offset(p4d, addr); |
| if (pud_none(*pud)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pud_populate(&init_mm, pud, p); |
| } |
| return pud; |
| } |
| |
| p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) |
| { |
| p4d_t *p4d = p4d_offset(pgd, addr); |
| if (p4d_none(*p4d)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| p4d_populate(&init_mm, p4d, p); |
| } |
| return p4d; |
| } |
| |
| pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) |
| { |
| pgd_t *pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pgd_populate(&init_mm, pgd, p); |
| } |
| return pgd; |
| } |
| |
| static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = vmemmap_pgd_populate(addr, node); |
| if (!pgd) |
| return NULL; |
| p4d = vmemmap_p4d_populate(pgd, addr, node); |
| if (!p4d) |
| return NULL; |
| pud = vmemmap_pud_populate(p4d, addr, node); |
| if (!pud) |
| return NULL; |
| pmd = vmemmap_pmd_populate(pud, addr, node); |
| if (!pmd) |
| return NULL; |
| pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); |
| if (!pte) |
| return NULL; |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| |
| return pte; |
| } |
| |
| static int __meminit vmemmap_populate_range(unsigned long start, |
| unsigned long end, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| unsigned long addr = start; |
| pte_t *pte; |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| pte = vmemmap_populate_address(addr, node, altmap, reuse); |
| if (!pte) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| int node, struct vmem_altmap *altmap) |
| { |
| return vmemmap_populate_range(start, end, node, altmap, NULL); |
| } |
| |
| /* |
| * For compound pages bigger than section size (e.g. x86 1G compound |
| * pages with 2M subsection size) fill the rest of sections as tail |
| * pages. |
| * |
| * Note that memremap_pages() resets @nr_range value and will increment |
| * it after each range successful onlining. Thus the value or @nr_range |
| * at section memmap populate corresponds to the in-progress range |
| * being onlined here. |
| */ |
| static bool __meminit reuse_compound_section(unsigned long start_pfn, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); |
| unsigned long offset = start_pfn - |
| PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); |
| |
| return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; |
| } |
| |
| static pte_t * __meminit compound_section_tail_page(unsigned long addr) |
| { |
| pte_t *pte; |
| |
| addr -= PAGE_SIZE; |
| |
| /* |
| * Assuming sections are populated sequentially, the previous section's |
| * page data can be reused. |
| */ |
| pte = pte_offset_kernel(pmd_off_k(addr), addr); |
| if (!pte) |
| return NULL; |
| |
| return pte; |
| } |
| |
| static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, |
| unsigned long start, |
| unsigned long end, int node, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long size, addr; |
| pte_t *pte; |
| int rc; |
| |
| if (reuse_compound_section(start_pfn, pgmap)) { |
| pte = compound_section_tail_page(start); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* |
| * Reuse the page that was populated in the prior iteration |
| * with just tail struct pages. |
| */ |
| return vmemmap_populate_range(start, end, node, NULL, |
| pte_page(*pte)); |
| } |
| |
| size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); |
| for (addr = start; addr < end; addr += size) { |
| unsigned long next = addr, last = addr + size; |
| |
| /* Populate the head page vmemmap page */ |
| pte = vmemmap_populate_address(addr, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* Populate the tail pages vmemmap page */ |
| next = addr + PAGE_SIZE; |
| pte = vmemmap_populate_address(next, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* |
| * Reuse the previous page for the rest of tail pages |
| * See layout diagram in Documentation/vm/vmemmap_dedup.rst |
| */ |
| next += PAGE_SIZE; |
| rc = vmemmap_populate_range(next, last, node, NULL, |
| pte_page(*pte)); |
| if (rc) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| struct page * __meminit __populate_section_memmap(unsigned long pfn, |
| unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long start = (unsigned long) pfn_to_page(pfn); |
| unsigned long end = start + nr_pages * sizeof(struct page); |
| int r; |
| |
| if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || |
| !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) |
| return NULL; |
| |
| if (is_power_of_2(sizeof(struct page)) && |
| pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap) |
| r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); |
| else |
| r = vmemmap_populate(start, end, nid, altmap); |
| |
| if (r < 0) |
| return NULL; |
| |
| return pfn_to_page(pfn); |
| } |