| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Kernel Probes (KProbes) |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port |
| * for PPC64 |
| */ |
| |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/preempt.h> |
| #include <linux/extable.h> |
| #include <linux/kdebug.h> |
| #include <linux/slab.h> |
| #include <asm/code-patching.h> |
| #include <asm/cacheflush.h> |
| #include <asm/sstep.h> |
| #include <asm/sections.h> |
| #include <linux/uaccess.h> |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; |
| |
| bool arch_within_kprobe_blacklist(unsigned long addr) |
| { |
| return (addr >= (unsigned long)__kprobes_text_start && |
| addr < (unsigned long)__kprobes_text_end) || |
| (addr >= (unsigned long)_stext && |
| addr < (unsigned long)__head_end); |
| } |
| |
| kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset) |
| { |
| kprobe_opcode_t *addr = NULL; |
| |
| #ifdef PPC64_ELF_ABI_v2 |
| /* PPC64 ABIv2 needs local entry point */ |
| addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); |
| if (addr && !offset) { |
| #ifdef CONFIG_KPROBES_ON_FTRACE |
| unsigned long faddr; |
| /* |
| * Per livepatch.h, ftrace location is always within the first |
| * 16 bytes of a function on powerpc with -mprofile-kernel. |
| */ |
| faddr = ftrace_location_range((unsigned long)addr, |
| (unsigned long)addr + 16); |
| if (faddr) |
| addr = (kprobe_opcode_t *)faddr; |
| else |
| #endif |
| addr = (kprobe_opcode_t *)ppc_function_entry(addr); |
| } |
| #elif defined(PPC64_ELF_ABI_v1) |
| /* |
| * 64bit powerpc ABIv1 uses function descriptors: |
| * - Check for the dot variant of the symbol first. |
| * - If that fails, try looking up the symbol provided. |
| * |
| * This ensures we always get to the actual symbol and not |
| * the descriptor. |
| * |
| * Also handle <module:symbol> format. |
| */ |
| char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN]; |
| bool dot_appended = false; |
| const char *c; |
| ssize_t ret = 0; |
| int len = 0; |
| |
| if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) { |
| c++; |
| len = c - name; |
| memcpy(dot_name, name, len); |
| } else |
| c = name; |
| |
| if (*c != '\0' && *c != '.') { |
| dot_name[len++] = '.'; |
| dot_appended = true; |
| } |
| ret = strscpy(dot_name + len, c, KSYM_NAME_LEN); |
| if (ret > 0) |
| addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name); |
| |
| /* Fallback to the original non-dot symbol lookup */ |
| if (!addr && dot_appended) |
| addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); |
| #else |
| addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); |
| #endif |
| |
| return addr; |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| int ret = 0; |
| kprobe_opcode_t insn = *p->addr; |
| |
| if ((unsigned long)p->addr & 0x03) { |
| printk("Attempt to register kprobe at an unaligned address\n"); |
| ret = -EINVAL; |
| } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { |
| printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); |
| ret = -EINVAL; |
| } |
| |
| /* insn must be on a special executable page on ppc64. This is |
| * not explicitly required on ppc32 (right now), but it doesn't hurt */ |
| if (!ret) { |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| ret = -ENOMEM; |
| } |
| |
| if (!ret) { |
| memcpy(p->ainsn.insn, p->addr, |
| MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| p->opcode = *p->addr; |
| flush_icache_range((unsigned long)p->ainsn.insn, |
| (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); |
| } |
| |
| p->ainsn.boostable = 0; |
| return ret; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_kprobe); |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| patch_instruction(p->addr, BREAKPOINT_INSTRUCTION); |
| } |
| NOKPROBE_SYMBOL(arch_arm_kprobe); |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| patch_instruction(p->addr, p->opcode); |
| } |
| NOKPROBE_SYMBOL(arch_disarm_kprobe); |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| } |
| NOKPROBE_SYMBOL(arch_remove_kprobe); |
| |
| static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| enable_single_step(regs); |
| |
| /* |
| * On powerpc we should single step on the original |
| * instruction even if the probed insn is a trap |
| * variant as values in regs could play a part in |
| * if the trap is taken or not |
| */ |
| regs->nip = (unsigned long)p->ainsn.insn; |
| } |
| |
| static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; |
| } |
| |
| static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; |
| } |
| |
| static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, p); |
| kcb->kprobe_saved_msr = regs->msr; |
| } |
| |
| bool arch_kprobe_on_func_entry(unsigned long offset) |
| { |
| #ifdef PPC64_ELF_ABI_v2 |
| #ifdef CONFIG_KPROBES_ON_FTRACE |
| return offset <= 16; |
| #else |
| return offset <= 8; |
| #endif |
| #else |
| return !offset; |
| #endif |
| } |
| |
| void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *)regs->link; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->link = (unsigned long)kretprobe_trampoline; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_kretprobe); |
| |
| static int try_to_emulate(struct kprobe *p, struct pt_regs *regs) |
| { |
| int ret; |
| unsigned int insn = *p->ainsn.insn; |
| |
| /* regs->nip is also adjusted if emulate_step returns 1 */ |
| ret = emulate_step(regs, insn); |
| if (ret > 0) { |
| /* |
| * Once this instruction has been boosted |
| * successfully, set the boostable flag |
| */ |
| if (unlikely(p->ainsn.boostable == 0)) |
| p->ainsn.boostable = 1; |
| } else if (ret < 0) { |
| /* |
| * We don't allow kprobes on mtmsr(d)/rfi(d), etc. |
| * So, we should never get here... but, its still |
| * good to catch them, just in case... |
| */ |
| printk("Can't step on instruction %x\n", insn); |
| BUG(); |
| } else { |
| /* |
| * If we haven't previously emulated this instruction, then it |
| * can't be boosted. Note it down so we don't try to do so again. |
| * |
| * If, however, we had emulated this instruction in the past, |
| * then this is just an error with the current run (for |
| * instance, exceptions due to a load/store). We return 0 so |
| * that this is now single-stepped, but continue to try |
| * emulating it in subsequent probe hits. |
| */ |
| if (unlikely(p->ainsn.boostable != 1)) |
| p->ainsn.boostable = -1; |
| } |
| |
| return ret; |
| } |
| NOKPROBE_SYMBOL(try_to_emulate); |
| |
| int kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| unsigned int *addr = (unsigned int *)regs->nip; |
| struct kprobe_ctlblk *kcb; |
| |
| if (user_mode(regs)) |
| return 0; |
| |
| if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)) |
| return 0; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| p = get_kprobe(addr); |
| if (!p) { |
| if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * PowerPC has multiple variants of the "trap" |
| * instruction. If the current instruction is a |
| * trap variant, it could belong to someone else |
| */ |
| kprobe_opcode_t cur_insn = *addr; |
| if (is_trap(cur_insn)) |
| goto no_kprobe; |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| kprobe_opcode_t insn = *p->ainsn.insn; |
| if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) { |
| /* Turn off 'trace' bits */ |
| regs->msr &= ~MSR_SINGLESTEP; |
| regs->msr |= kcb->kprobe_saved_msr; |
| goto no_kprobe; |
| } |
| |
| /* |
| * We have reentered the kprobe_handler(), since another probe |
| * was hit while within the handler. We here save the original |
| * kprobes variables and just single step on the instruction of |
| * the new probe without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kprobes_inc_nmissed_count(p); |
| kcb->kprobe_status = KPROBE_REENTER; |
| if (p->ainsn.boostable >= 0) { |
| ret = try_to_emulate(p, regs); |
| |
| if (ret > 0) { |
| restore_previous_kprobe(kcb); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| } |
| prepare_singlestep(p, regs); |
| return 1; |
| } |
| |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| set_current_kprobe(p, regs, kcb); |
| if (p->pre_handler && p->pre_handler(p, regs)) { |
| /* handler changed execution path, so skip ss setup */ |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| if (p->ainsn.boostable >= 0) { |
| ret = try_to_emulate(p, regs); |
| |
| if (ret > 0) { |
| if (p->post_handler) |
| p->post_handler(p, regs, 0); |
| |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| } |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| NOKPROBE_SYMBOL(kprobe_handler); |
| |
| /* |
| * Function return probe trampoline: |
| * - init_kprobes() establishes a probepoint here |
| * - When the probed function returns, this probe |
| * causes the handlers to fire |
| */ |
| asm(".global kretprobe_trampoline\n" |
| ".type kretprobe_trampoline, @function\n" |
| "kretprobe_trampoline:\n" |
| "nop\n" |
| "blr\n" |
| ".size kretprobe_trampoline, .-kretprobe_trampoline\n"); |
| |
| /* |
| * Called when the probe at kretprobe trampoline is hit |
| */ |
| static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more than one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| |
| /* |
| * We get here through one of two paths: |
| * 1. by taking a trap -> kprobe_handler() -> here |
| * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here |
| * |
| * When going back through (1), we need regs->nip to be setup properly |
| * as it is used to determine the return address from the trap. |
| * For (2), since nip is not honoured with optprobes, we instead setup |
| * the link register properly so that the subsequent 'blr' in |
| * kretprobe_trampoline jumps back to the right instruction. |
| * |
| * For nip, we should set the address to the previous instruction since |
| * we end up emulating it in kprobe_handler(), which increments the nip |
| * again. |
| */ |
| regs->nip = orig_ret_address - 4; |
| regs->link = orig_ret_address; |
| |
| kretprobe_hash_unlock(current, &flags); |
| |
| hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(trampoline_probe_handler); |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "breakpoint" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| */ |
| int kprobe_post_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur || user_mode(regs)) |
| return 0; |
| |
| /* make sure we got here for instruction we have a kprobe on */ |
| if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| /* Adjust nip to after the single-stepped instruction */ |
| regs->nip = (unsigned long)cur->addr + 4; |
| regs->msr |= kcb->kprobe_saved_msr; |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| out: |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, msr |
| * will have DE/SE set, in which case, continue the remaining processing |
| * of do_debug, as if this is not a probe hit. |
| */ |
| if (regs->msr & MSR_SINGLESTEP) |
| return 0; |
| |
| return 1; |
| } |
| NOKPROBE_SYMBOL(kprobe_post_handler); |
| |
| int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| const struct exception_table_entry *entry; |
| |
| switch(kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the nip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->nip = (unsigned long)cur->addr; |
| regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ |
| regs->msr |= kcb->kprobe_saved_msr; |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accounting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| if ((entry = search_exception_tables(regs->nip)) != NULL) { |
| regs->nip = extable_fixup(entry); |
| return 1; |
| } |
| |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_fault_handler); |
| |
| unsigned long arch_deref_entry_point(void *entry) |
| { |
| #ifdef PPC64_ELF_ABI_v1 |
| if (!kernel_text_address((unsigned long)entry)) |
| return ppc_global_function_entry(entry); |
| else |
| #endif |
| return (unsigned long)entry; |
| } |
| NOKPROBE_SYMBOL(arch_deref_entry_point); |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) &kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| return register_kprobe(&trampoline_p); |
| } |
| |
| int arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) |
| return 1; |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(arch_trampoline_kprobe); |