| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * SMP support for ppc. |
| * |
| * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great |
| * deal of code from the sparc and intel versions. |
| * |
| * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> |
| * |
| * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and |
| * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/sched/topology.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/cache.h> |
| #include <linux/err.h> |
| #include <linux/device.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/topology.h> |
| #include <linux/profile.h> |
| #include <linux/processor.h> |
| #include <linux/random.h> |
| #include <linux/stackprotector.h> |
| |
| #include <asm/ptrace.h> |
| #include <linux/atomic.h> |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/dbell.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/prom.h> |
| #include <asm/smp.h> |
| #include <asm/time.h> |
| #include <asm/machdep.h> |
| #include <asm/cputhreads.h> |
| #include <asm/cputable.h> |
| #include <asm/mpic.h> |
| #include <asm/vdso_datapage.h> |
| #ifdef CONFIG_PPC64 |
| #include <asm/paca.h> |
| #endif |
| #include <asm/vdso.h> |
| #include <asm/debug.h> |
| #include <asm/kexec.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/cpu_has_feature.h> |
| #include <asm/ftrace.h> |
| |
| #ifdef DEBUG |
| #include <asm/udbg.h> |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* State of each CPU during hotplug phases */ |
| static DEFINE_PER_CPU(int, cpu_state) = { 0 }; |
| #endif |
| |
| struct task_struct *secondary_current; |
| bool has_big_cores; |
| |
| DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); |
| DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); |
| DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); |
| DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); |
| |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_core_map); |
| EXPORT_SYMBOL_GPL(has_big_cores); |
| |
| #define MAX_THREAD_LIST_SIZE 8 |
| #define THREAD_GROUP_SHARE_L1 1 |
| struct thread_groups { |
| unsigned int property; |
| unsigned int nr_groups; |
| unsigned int threads_per_group; |
| unsigned int thread_list[MAX_THREAD_LIST_SIZE]; |
| }; |
| |
| /* |
| * On big-cores system, cpu_l1_cache_map for each CPU corresponds to |
| * the set its siblings that share the L1-cache. |
| */ |
| DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map); |
| |
| /* SMP operations for this machine */ |
| struct smp_ops_t *smp_ops; |
| |
| /* Can't be static due to PowerMac hackery */ |
| volatile unsigned int cpu_callin_map[NR_CPUS]; |
| |
| int smt_enabled_at_boot = 1; |
| |
| /* |
| * Returns 1 if the specified cpu should be brought up during boot. |
| * Used to inhibit booting threads if they've been disabled or |
| * limited on the command line |
| */ |
| int smp_generic_cpu_bootable(unsigned int nr) |
| { |
| /* Special case - we inhibit secondary thread startup |
| * during boot if the user requests it. |
| */ |
| if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { |
| if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) |
| return 0; |
| if (smt_enabled_at_boot |
| && cpu_thread_in_core(nr) >= smt_enabled_at_boot) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| #ifdef CONFIG_PPC64 |
| int smp_generic_kick_cpu(int nr) |
| { |
| if (nr < 0 || nr >= nr_cpu_ids) |
| return -EINVAL; |
| |
| /* |
| * The processor is currently spinning, waiting for the |
| * cpu_start field to become non-zero After we set cpu_start, |
| * the processor will continue on to secondary_start |
| */ |
| if (!paca_ptrs[nr]->cpu_start) { |
| paca_ptrs[nr]->cpu_start = 1; |
| smp_mb(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * Ok it's not there, so it might be soft-unplugged, let's |
| * try to bring it back |
| */ |
| generic_set_cpu_up(nr); |
| smp_wmb(); |
| smp_send_reschedule(nr); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| return 0; |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| static irqreturn_t call_function_action(int irq, void *data) |
| { |
| generic_smp_call_function_interrupt(); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t reschedule_action(int irq, void *data) |
| { |
| scheduler_ipi(); |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) |
| { |
| timer_broadcast_interrupt(); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| #ifdef CONFIG_NMI_IPI |
| static irqreturn_t nmi_ipi_action(int irq, void *data) |
| { |
| smp_handle_nmi_ipi(get_irq_regs()); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static irq_handler_t smp_ipi_action[] = { |
| [PPC_MSG_CALL_FUNCTION] = call_function_action, |
| [PPC_MSG_RESCHEDULE] = reschedule_action, |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, |
| #endif |
| #ifdef CONFIG_NMI_IPI |
| [PPC_MSG_NMI_IPI] = nmi_ipi_action, |
| #endif |
| }; |
| |
| /* |
| * The NMI IPI is a fallback and not truly non-maskable. It is simpler |
| * than going through the call function infrastructure, and strongly |
| * serialized, so it is more appropriate for debugging. |
| */ |
| const char *smp_ipi_name[] = { |
| [PPC_MSG_CALL_FUNCTION] = "ipi call function", |
| [PPC_MSG_RESCHEDULE] = "ipi reschedule", |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", |
| #endif |
| #ifdef CONFIG_NMI_IPI |
| [PPC_MSG_NMI_IPI] = "nmi ipi", |
| #endif |
| }; |
| |
| /* optional function to request ipi, for controllers with >= 4 ipis */ |
| int smp_request_message_ipi(int virq, int msg) |
| { |
| int err; |
| |
| if (msg < 0 || msg > PPC_MSG_NMI_IPI) |
| return -EINVAL; |
| #ifndef CONFIG_NMI_IPI |
| if (msg == PPC_MSG_NMI_IPI) |
| return 1; |
| #endif |
| |
| err = request_irq(virq, smp_ipi_action[msg], |
| IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, |
| smp_ipi_name[msg], NULL); |
| WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", |
| virq, smp_ipi_name[msg], err); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_PPC_SMP_MUXED_IPI |
| struct cpu_messages { |
| long messages; /* current messages */ |
| }; |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); |
| |
| void smp_muxed_ipi_set_message(int cpu, int msg) |
| { |
| struct cpu_messages *info = &per_cpu(ipi_message, cpu); |
| char *message = (char *)&info->messages; |
| |
| /* |
| * Order previous accesses before accesses in the IPI handler. |
| */ |
| smp_mb(); |
| message[msg] = 1; |
| } |
| |
| void smp_muxed_ipi_message_pass(int cpu, int msg) |
| { |
| smp_muxed_ipi_set_message(cpu, msg); |
| |
| /* |
| * cause_ipi functions are required to include a full barrier |
| * before doing whatever causes the IPI. |
| */ |
| smp_ops->cause_ipi(cpu); |
| } |
| |
| #ifdef __BIG_ENDIAN__ |
| #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) |
| #else |
| #define IPI_MESSAGE(A) (1uL << (8 * (A))) |
| #endif |
| |
| irqreturn_t smp_ipi_demux(void) |
| { |
| mb(); /* order any irq clear */ |
| |
| return smp_ipi_demux_relaxed(); |
| } |
| |
| /* sync-free variant. Callers should ensure synchronization */ |
| irqreturn_t smp_ipi_demux_relaxed(void) |
| { |
| struct cpu_messages *info; |
| unsigned long all; |
| |
| info = this_cpu_ptr(&ipi_message); |
| do { |
| all = xchg(&info->messages, 0); |
| #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) |
| /* |
| * Must check for PPC_MSG_RM_HOST_ACTION messages |
| * before PPC_MSG_CALL_FUNCTION messages because when |
| * a VM is destroyed, we call kick_all_cpus_sync() |
| * to ensure that any pending PPC_MSG_RM_HOST_ACTION |
| * messages have completed before we free any VCPUs. |
| */ |
| if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) |
| kvmppc_xics_ipi_action(); |
| #endif |
| if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) |
| generic_smp_call_function_interrupt(); |
| if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) |
| scheduler_ipi(); |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) |
| timer_broadcast_interrupt(); |
| #endif |
| #ifdef CONFIG_NMI_IPI |
| if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) |
| nmi_ipi_action(0, NULL); |
| #endif |
| } while (info->messages); |
| |
| return IRQ_HANDLED; |
| } |
| #endif /* CONFIG_PPC_SMP_MUXED_IPI */ |
| |
| static inline void do_message_pass(int cpu, int msg) |
| { |
| if (smp_ops->message_pass) |
| smp_ops->message_pass(cpu, msg); |
| #ifdef CONFIG_PPC_SMP_MUXED_IPI |
| else |
| smp_muxed_ipi_message_pass(cpu, msg); |
| #endif |
| } |
| |
| void smp_send_reschedule(int cpu) |
| { |
| if (likely(smp_ops)) |
| do_message_pass(cpu, PPC_MSG_RESCHEDULE); |
| } |
| EXPORT_SYMBOL_GPL(smp_send_reschedule); |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| unsigned int cpu; |
| |
| for_each_cpu(cpu, mask) |
| do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); |
| } |
| |
| #ifdef CONFIG_NMI_IPI |
| |
| /* |
| * "NMI IPI" system. |
| * |
| * NMI IPIs may not be recoverable, so should not be used as ongoing part of |
| * a running system. They can be used for crash, debug, halt/reboot, etc. |
| * |
| * The IPI call waits with interrupts disabled until all targets enter the |
| * NMI handler, then returns. Subsequent IPIs can be issued before targets |
| * have returned from their handlers, so there is no guarantee about |
| * concurrency or re-entrancy. |
| * |
| * A new NMI can be issued before all targets exit the handler. |
| * |
| * The IPI call may time out without all targets entering the NMI handler. |
| * In that case, there is some logic to recover (and ignore subsequent |
| * NMI interrupts that may eventually be raised), but the platform interrupt |
| * handler may not be able to distinguish this from other exception causes, |
| * which may cause a crash. |
| */ |
| |
| static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); |
| static struct cpumask nmi_ipi_pending_mask; |
| static bool nmi_ipi_busy = false; |
| static void (*nmi_ipi_function)(struct pt_regs *) = NULL; |
| |
| static void nmi_ipi_lock_start(unsigned long *flags) |
| { |
| raw_local_irq_save(*flags); |
| hard_irq_disable(); |
| while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { |
| raw_local_irq_restore(*flags); |
| spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); |
| raw_local_irq_save(*flags); |
| hard_irq_disable(); |
| } |
| } |
| |
| static void nmi_ipi_lock(void) |
| { |
| while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) |
| spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); |
| } |
| |
| static void nmi_ipi_unlock(void) |
| { |
| smp_mb(); |
| WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); |
| atomic_set(&__nmi_ipi_lock, 0); |
| } |
| |
| static void nmi_ipi_unlock_end(unsigned long *flags) |
| { |
| nmi_ipi_unlock(); |
| raw_local_irq_restore(*flags); |
| } |
| |
| /* |
| * Platform NMI handler calls this to ack |
| */ |
| int smp_handle_nmi_ipi(struct pt_regs *regs) |
| { |
| void (*fn)(struct pt_regs *) = NULL; |
| unsigned long flags; |
| int me = raw_smp_processor_id(); |
| int ret = 0; |
| |
| /* |
| * Unexpected NMIs are possible here because the interrupt may not |
| * be able to distinguish NMI IPIs from other types of NMIs, or |
| * because the caller may have timed out. |
| */ |
| nmi_ipi_lock_start(&flags); |
| if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { |
| cpumask_clear_cpu(me, &nmi_ipi_pending_mask); |
| fn = READ_ONCE(nmi_ipi_function); |
| WARN_ON_ONCE(!fn); |
| ret = 1; |
| } |
| nmi_ipi_unlock_end(&flags); |
| |
| if (fn) |
| fn(regs); |
| |
| return ret; |
| } |
| |
| static void do_smp_send_nmi_ipi(int cpu, bool safe) |
| { |
| if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) |
| return; |
| |
| if (cpu >= 0) { |
| do_message_pass(cpu, PPC_MSG_NMI_IPI); |
| } else { |
| int c; |
| |
| for_each_online_cpu(c) { |
| if (c == raw_smp_processor_id()) |
| continue; |
| do_message_pass(c, PPC_MSG_NMI_IPI); |
| } |
| } |
| } |
| |
| /* |
| * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. |
| * - fn is the target callback function. |
| * - delay_us > 0 is the delay before giving up waiting for targets to |
| * begin executing the handler, == 0 specifies indefinite delay. |
| */ |
| static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), |
| u64 delay_us, bool safe) |
| { |
| unsigned long flags; |
| int me = raw_smp_processor_id(); |
| int ret = 1; |
| |
| BUG_ON(cpu == me); |
| BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); |
| |
| if (unlikely(!smp_ops)) |
| return 0; |
| |
| nmi_ipi_lock_start(&flags); |
| while (nmi_ipi_busy) { |
| nmi_ipi_unlock_end(&flags); |
| spin_until_cond(!nmi_ipi_busy); |
| nmi_ipi_lock_start(&flags); |
| } |
| nmi_ipi_busy = true; |
| nmi_ipi_function = fn; |
| |
| WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); |
| |
| if (cpu < 0) { |
| /* ALL_OTHERS */ |
| cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); |
| cpumask_clear_cpu(me, &nmi_ipi_pending_mask); |
| } else { |
| cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); |
| } |
| |
| nmi_ipi_unlock(); |
| |
| /* Interrupts remain hard disabled */ |
| |
| do_smp_send_nmi_ipi(cpu, safe); |
| |
| nmi_ipi_lock(); |
| /* nmi_ipi_busy is set here, so unlock/lock is okay */ |
| while (!cpumask_empty(&nmi_ipi_pending_mask)) { |
| nmi_ipi_unlock(); |
| udelay(1); |
| nmi_ipi_lock(); |
| if (delay_us) { |
| delay_us--; |
| if (!delay_us) |
| break; |
| } |
| } |
| |
| if (!cpumask_empty(&nmi_ipi_pending_mask)) { |
| /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ |
| ret = 0; |
| cpumask_clear(&nmi_ipi_pending_mask); |
| } |
| |
| nmi_ipi_function = NULL; |
| nmi_ipi_busy = false; |
| |
| nmi_ipi_unlock_end(&flags); |
| |
| return ret; |
| } |
| |
| int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) |
| { |
| return __smp_send_nmi_ipi(cpu, fn, delay_us, false); |
| } |
| |
| int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) |
| { |
| return __smp_send_nmi_ipi(cpu, fn, delay_us, true); |
| } |
| #endif /* CONFIG_NMI_IPI */ |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| void tick_broadcast(const struct cpumask *mask) |
| { |
| unsigned int cpu; |
| |
| for_each_cpu(cpu, mask) |
| do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); |
| } |
| #endif |
| |
| #ifdef CONFIG_DEBUGGER |
| void debugger_ipi_callback(struct pt_regs *regs) |
| { |
| debugger_ipi(regs); |
| } |
| |
| void smp_send_debugger_break(void) |
| { |
| smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); |
| } |
| #endif |
| |
| #ifdef CONFIG_KEXEC_CORE |
| void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) |
| { |
| int cpu; |
| |
| smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); |
| if (kdump_in_progress() && crash_wake_offline) { |
| for_each_present_cpu(cpu) { |
| if (cpu_online(cpu)) |
| continue; |
| /* |
| * crash_ipi_callback will wait for |
| * all cpus, including offline CPUs. |
| * We don't care about nmi_ipi_function. |
| * Offline cpus will jump straight into |
| * crash_ipi_callback, we can skip the |
| * entire NMI dance and waiting for |
| * cpus to clear pending mask, etc. |
| */ |
| do_smp_send_nmi_ipi(cpu, false); |
| } |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_NMI_IPI |
| static void nmi_stop_this_cpu(struct pt_regs *regs) |
| { |
| /* |
| * IRQs are already hard disabled by the smp_handle_nmi_ipi. |
| */ |
| spin_begin(); |
| while (1) |
| spin_cpu_relax(); |
| } |
| |
| void smp_send_stop(void) |
| { |
| smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); |
| } |
| |
| #else /* CONFIG_NMI_IPI */ |
| |
| static void stop_this_cpu(void *dummy) |
| { |
| hard_irq_disable(); |
| spin_begin(); |
| while (1) |
| spin_cpu_relax(); |
| } |
| |
| void smp_send_stop(void) |
| { |
| static bool stopped = false; |
| |
| /* |
| * Prevent waiting on csd lock from a previous smp_send_stop. |
| * This is racy, but in general callers try to do the right |
| * thing and only fire off one smp_send_stop (e.g., see |
| * kernel/panic.c) |
| */ |
| if (stopped) |
| return; |
| |
| stopped = true; |
| |
| smp_call_function(stop_this_cpu, NULL, 0); |
| } |
| #endif /* CONFIG_NMI_IPI */ |
| |
| struct task_struct *current_set[NR_CPUS]; |
| |
| static void smp_store_cpu_info(int id) |
| { |
| per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| per_cpu(next_tlbcam_idx, id) |
| = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; |
| #endif |
| } |
| |
| /* |
| * Relationships between CPUs are maintained in a set of per-cpu cpumasks so |
| * rather than just passing around the cpumask we pass around a function that |
| * returns the that cpumask for the given CPU. |
| */ |
| static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) |
| { |
| cpumask_set_cpu(i, get_cpumask(j)); |
| cpumask_set_cpu(j, get_cpumask(i)); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void set_cpus_unrelated(int i, int j, |
| struct cpumask *(*get_cpumask)(int)) |
| { |
| cpumask_clear_cpu(i, get_cpumask(j)); |
| cpumask_clear_cpu(j, get_cpumask(i)); |
| } |
| #endif |
| |
| /* |
| * parse_thread_groups: Parses the "ibm,thread-groups" device tree |
| * property for the CPU device node @dn and stores |
| * the parsed output in the thread_groups |
| * structure @tg if the ibm,thread-groups[0] |
| * matches @property. |
| * |
| * @dn: The device node of the CPU device. |
| * @tg: Pointer to a thread group structure into which the parsed |
| * output of "ibm,thread-groups" is stored. |
| * @property: The property of the thread-group that the caller is |
| * interested in. |
| * |
| * ibm,thread-groups[0..N-1] array defines which group of threads in |
| * the CPU-device node can be grouped together based on the property. |
| * |
| * ibm,thread-groups[0] tells us the property based on which the |
| * threads are being grouped together. If this value is 1, it implies |
| * that the threads in the same group share L1, translation cache. |
| * |
| * ibm,thread-groups[1] tells us how many such thread groups exist. |
| * |
| * ibm,thread-groups[2] tells us the number of threads in each such |
| * group. |
| * |
| * ibm,thread-groups[3..N-1] is the list of threads identified by |
| * "ibm,ppc-interrupt-server#s" arranged as per their membership in |
| * the grouping. |
| * |
| * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it |
| * implies that there are 2 groups of 4 threads each, where each group |
| * of threads share L1, translation cache. |
| * |
| * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8} |
| * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10, |
| * 11, 12} structure |
| * |
| * Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| */ |
| static int parse_thread_groups(struct device_node *dn, |
| struct thread_groups *tg, |
| unsigned int property) |
| { |
| int i; |
| u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE]; |
| u32 *thread_list; |
| size_t total_threads; |
| int ret; |
| |
| ret = of_property_read_u32_array(dn, "ibm,thread-groups", |
| thread_group_array, 3); |
| if (ret) |
| return ret; |
| |
| tg->property = thread_group_array[0]; |
| tg->nr_groups = thread_group_array[1]; |
| tg->threads_per_group = thread_group_array[2]; |
| if (tg->property != property || |
| tg->nr_groups < 1 || |
| tg->threads_per_group < 1) |
| return -ENODATA; |
| |
| total_threads = tg->nr_groups * tg->threads_per_group; |
| |
| ret = of_property_read_u32_array(dn, "ibm,thread-groups", |
| thread_group_array, |
| 3 + total_threads); |
| if (ret) |
| return ret; |
| |
| thread_list = &thread_group_array[3]; |
| |
| for (i = 0 ; i < total_threads; i++) |
| tg->thread_list[i] = thread_list[i]; |
| |
| return 0; |
| } |
| |
| /* |
| * get_cpu_thread_group_start : Searches the thread group in tg->thread_list |
| * that @cpu belongs to. |
| * |
| * @cpu : The logical CPU whose thread group is being searched. |
| * @tg : The thread-group structure of the CPU node which @cpu belongs |
| * to. |
| * |
| * Returns the index to tg->thread_list that points to the the start |
| * of the thread_group that @cpu belongs to. |
| * |
| * Returns -1 if cpu doesn't belong to any of the groups pointed to by |
| * tg->thread_list. |
| */ |
| static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) |
| { |
| int hw_cpu_id = get_hard_smp_processor_id(cpu); |
| int i, j; |
| |
| for (i = 0; i < tg->nr_groups; i++) { |
| int group_start = i * tg->threads_per_group; |
| |
| for (j = 0; j < tg->threads_per_group; j++) { |
| int idx = group_start + j; |
| |
| if (tg->thread_list[idx] == hw_cpu_id) |
| return group_start; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int init_cpu_l1_cache_map(int cpu) |
| |
| { |
| struct device_node *dn = of_get_cpu_node(cpu, NULL); |
| struct thread_groups tg = {.property = 0, |
| .nr_groups = 0, |
| .threads_per_group = 0}; |
| int first_thread = cpu_first_thread_sibling(cpu); |
| int i, cpu_group_start = -1, err = 0; |
| |
| if (!dn) |
| return -ENODATA; |
| |
| err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1); |
| if (err) |
| goto out; |
| |
| zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu), |
| GFP_KERNEL, |
| cpu_to_node(cpu)); |
| |
| cpu_group_start = get_cpu_thread_group_start(cpu, &tg); |
| |
| if (unlikely(cpu_group_start == -1)) { |
| WARN_ON_ONCE(1); |
| err = -ENODATA; |
| goto out; |
| } |
| |
| for (i = first_thread; i < first_thread + threads_per_core; i++) { |
| int i_group_start = get_cpu_thread_group_start(i, &tg); |
| |
| if (unlikely(i_group_start == -1)) { |
| WARN_ON_ONCE(1); |
| err = -ENODATA; |
| goto out; |
| } |
| |
| if (i_group_start == cpu_group_start) |
| cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu)); |
| } |
| |
| out: |
| of_node_put(dn); |
| return err; |
| } |
| |
| static int init_big_cores(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| int err = init_cpu_l1_cache_map(cpu); |
| |
| if (err) |
| return err; |
| |
| zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), |
| GFP_KERNEL, |
| cpu_to_node(cpu)); |
| } |
| |
| has_big_cores = true; |
| return 0; |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned int cpu; |
| |
| DBG("smp_prepare_cpus\n"); |
| |
| /* |
| * setup_cpu may need to be called on the boot cpu. We havent |
| * spun any cpus up but lets be paranoid. |
| */ |
| BUG_ON(boot_cpuid != smp_processor_id()); |
| |
| /* Fixup boot cpu */ |
| smp_store_cpu_info(boot_cpuid); |
| cpu_callin_map[boot_cpuid] = 1; |
| |
| for_each_possible_cpu(cpu) { |
| zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| /* |
| * numa_node_id() works after this. |
| */ |
| if (cpu_present(cpu)) { |
| set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); |
| set_cpu_numa_mem(cpu, |
| local_memory_node(numa_cpu_lookup_table[cpu])); |
| } |
| } |
| |
| /* Init the cpumasks so the boot CPU is related to itself */ |
| cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); |
| cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); |
| cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); |
| |
| init_big_cores(); |
| if (has_big_cores) { |
| cpumask_set_cpu(boot_cpuid, |
| cpu_smallcore_mask(boot_cpuid)); |
| } |
| |
| if (smp_ops && smp_ops->probe) |
| smp_ops->probe(); |
| } |
| |
| void smp_prepare_boot_cpu(void) |
| { |
| BUG_ON(smp_processor_id() != boot_cpuid); |
| #ifdef CONFIG_PPC64 |
| paca_ptrs[boot_cpuid]->__current = current; |
| #endif |
| set_numa_node(numa_cpu_lookup_table[boot_cpuid]); |
| current_set[boot_cpuid] = current; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int generic_cpu_disable(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| if (cpu == boot_cpuid) |
| return -EBUSY; |
| |
| set_cpu_online(cpu, false); |
| #ifdef CONFIG_PPC64 |
| vdso_data->processorCount--; |
| #endif |
| /* Update affinity of all IRQs previously aimed at this CPU */ |
| irq_migrate_all_off_this_cpu(); |
| |
| /* |
| * Depending on the details of the interrupt controller, it's possible |
| * that one of the interrupts we just migrated away from this CPU is |
| * actually already pending on this CPU. If we leave it in that state |
| * the interrupt will never be EOI'ed, and will never fire again. So |
| * temporarily enable interrupts here, to allow any pending interrupt to |
| * be received (and EOI'ed), before we take this CPU offline. |
| */ |
| local_irq_enable(); |
| mdelay(1); |
| local_irq_disable(); |
| |
| return 0; |
| } |
| |
| void generic_cpu_die(unsigned int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < 100; i++) { |
| smp_rmb(); |
| if (is_cpu_dead(cpu)) |
| return; |
| msleep(100); |
| } |
| printk(KERN_ERR "CPU%d didn't die...\n", cpu); |
| } |
| |
| void generic_set_cpu_dead(unsigned int cpu) |
| { |
| per_cpu(cpu_state, cpu) = CPU_DEAD; |
| } |
| |
| /* |
| * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise |
| * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), |
| * which makes the delay in generic_cpu_die() not happen. |
| */ |
| void generic_set_cpu_up(unsigned int cpu) |
| { |
| per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| } |
| |
| int generic_check_cpu_restart(unsigned int cpu) |
| { |
| return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; |
| } |
| |
| int is_cpu_dead(unsigned int cpu) |
| { |
| return per_cpu(cpu_state, cpu) == CPU_DEAD; |
| } |
| |
| static bool secondaries_inhibited(void) |
| { |
| return kvm_hv_mode_active(); |
| } |
| |
| #else /* HOTPLUG_CPU */ |
| |
| #define secondaries_inhibited() 0 |
| |
| #endif |
| |
| static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) |
| { |
| #ifdef CONFIG_PPC64 |
| paca_ptrs[cpu]->__current = idle; |
| paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + |
| THREAD_SIZE - STACK_FRAME_OVERHEAD; |
| #endif |
| idle->cpu = cpu; |
| secondary_current = current_set[cpu] = idle; |
| } |
| |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| { |
| int rc, c; |
| |
| /* |
| * Don't allow secondary threads to come online if inhibited |
| */ |
| if (threads_per_core > 1 && secondaries_inhibited() && |
| cpu_thread_in_subcore(cpu)) |
| return -EBUSY; |
| |
| if (smp_ops == NULL || |
| (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) |
| return -EINVAL; |
| |
| cpu_idle_thread_init(cpu, tidle); |
| |
| /* |
| * The platform might need to allocate resources prior to bringing |
| * up the CPU |
| */ |
| if (smp_ops->prepare_cpu) { |
| rc = smp_ops->prepare_cpu(cpu); |
| if (rc) |
| return rc; |
| } |
| |
| /* Make sure callin-map entry is 0 (can be leftover a CPU |
| * hotplug |
| */ |
| cpu_callin_map[cpu] = 0; |
| |
| /* The information for processor bringup must |
| * be written out to main store before we release |
| * the processor. |
| */ |
| smp_mb(); |
| |
| /* wake up cpus */ |
| DBG("smp: kicking cpu %d\n", cpu); |
| rc = smp_ops->kick_cpu(cpu); |
| if (rc) { |
| pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); |
| return rc; |
| } |
| |
| /* |
| * wait to see if the cpu made a callin (is actually up). |
| * use this value that I found through experimentation. |
| * -- Cort |
| */ |
| if (system_state < SYSTEM_RUNNING) |
| for (c = 50000; c && !cpu_callin_map[cpu]; c--) |
| udelay(100); |
| #ifdef CONFIG_HOTPLUG_CPU |
| else |
| /* |
| * CPUs can take much longer to come up in the |
| * hotplug case. Wait five seconds. |
| */ |
| for (c = 5000; c && !cpu_callin_map[cpu]; c--) |
| msleep(1); |
| #endif |
| |
| if (!cpu_callin_map[cpu]) { |
| printk(KERN_ERR "Processor %u is stuck.\n", cpu); |
| return -ENOENT; |
| } |
| |
| DBG("Processor %u found.\n", cpu); |
| |
| if (smp_ops->give_timebase) |
| smp_ops->give_timebase(); |
| |
| /* Wait until cpu puts itself in the online & active maps */ |
| spin_until_cond(cpu_online(cpu)); |
| |
| return 0; |
| } |
| |
| /* Return the value of the reg property corresponding to the given |
| * logical cpu. |
| */ |
| int cpu_to_core_id(int cpu) |
| { |
| struct device_node *np; |
| const __be32 *reg; |
| int id = -1; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| if (!np) |
| goto out; |
| |
| reg = of_get_property(np, "reg", NULL); |
| if (!reg) |
| goto out; |
| |
| id = be32_to_cpup(reg); |
| out: |
| of_node_put(np); |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(cpu_to_core_id); |
| |
| /* Helper routines for cpu to core mapping */ |
| int cpu_core_index_of_thread(int cpu) |
| { |
| return cpu >> threads_shift; |
| } |
| EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); |
| |
| int cpu_first_thread_of_core(int core) |
| { |
| return core << threads_shift; |
| } |
| EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); |
| |
| /* Must be called when no change can occur to cpu_present_mask, |
| * i.e. during cpu online or offline. |
| */ |
| static struct device_node *cpu_to_l2cache(int cpu) |
| { |
| struct device_node *np; |
| struct device_node *cache; |
| |
| if (!cpu_present(cpu)) |
| return NULL; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| if (np == NULL) |
| return NULL; |
| |
| cache = of_find_next_cache_node(np); |
| |
| of_node_put(np); |
| |
| return cache; |
| } |
| |
| static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int)) |
| { |
| struct device_node *l2_cache, *np; |
| int i; |
| |
| l2_cache = cpu_to_l2cache(cpu); |
| if (!l2_cache) |
| return false; |
| |
| for_each_cpu(i, cpu_online_mask) { |
| /* |
| * when updating the marks the current CPU has not been marked |
| * online, but we need to update the cache masks |
| */ |
| np = cpu_to_l2cache(i); |
| if (!np) |
| continue; |
| |
| if (np == l2_cache) |
| set_cpus_related(cpu, i, mask_fn); |
| |
| of_node_put(np); |
| } |
| of_node_put(l2_cache); |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void remove_cpu_from_masks(int cpu) |
| { |
| int i; |
| |
| /* NB: cpu_core_mask is a superset of the others */ |
| for_each_cpu(i, cpu_core_mask(cpu)) { |
| set_cpus_unrelated(cpu, i, cpu_core_mask); |
| set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); |
| set_cpus_unrelated(cpu, i, cpu_sibling_mask); |
| if (has_big_cores) |
| set_cpus_unrelated(cpu, i, cpu_smallcore_mask); |
| } |
| } |
| #endif |
| |
| static inline void add_cpu_to_smallcore_masks(int cpu) |
| { |
| struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu); |
| int i, first_thread = cpu_first_thread_sibling(cpu); |
| |
| if (!has_big_cores) |
| return; |
| |
| cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); |
| |
| for (i = first_thread; i < first_thread + threads_per_core; i++) { |
| if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map)) |
| set_cpus_related(i, cpu, cpu_smallcore_mask); |
| } |
| } |
| |
| int get_physical_package_id(int cpu) |
| { |
| int pkg_id = cpu_to_chip_id(cpu); |
| |
| /* |
| * If the platform is PowerNV or Guest on KVM, ibm,chip-id is |
| * defined. Hence we would return the chip-id as the result of |
| * get_physical_package_id. |
| */ |
| if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) && |
| IS_ENABLED(CONFIG_PPC_SPLPAR)) { |
| struct device_node *np = of_get_cpu_node(cpu, NULL); |
| pkg_id = of_node_to_nid(np); |
| of_node_put(np); |
| } |
| |
| return pkg_id; |
| } |
| EXPORT_SYMBOL_GPL(get_physical_package_id); |
| |
| static void add_cpu_to_masks(int cpu) |
| { |
| int first_thread = cpu_first_thread_sibling(cpu); |
| int pkg_id = get_physical_package_id(cpu); |
| int i; |
| |
| /* |
| * This CPU will not be in the online mask yet so we need to manually |
| * add it to it's own thread sibling mask. |
| */ |
| cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); |
| |
| for (i = first_thread; i < first_thread + threads_per_core; i++) |
| if (cpu_online(i)) |
| set_cpus_related(i, cpu, cpu_sibling_mask); |
| |
| add_cpu_to_smallcore_masks(cpu); |
| /* |
| * Copy the thread sibling mask into the cache sibling mask |
| * and mark any CPUs that share an L2 with this CPU. |
| */ |
| for_each_cpu(i, cpu_sibling_mask(cpu)) |
| set_cpus_related(cpu, i, cpu_l2_cache_mask); |
| update_mask_by_l2(cpu, cpu_l2_cache_mask); |
| |
| /* |
| * Copy the cache sibling mask into core sibling mask and mark |
| * any CPUs on the same chip as this CPU. |
| */ |
| for_each_cpu(i, cpu_l2_cache_mask(cpu)) |
| set_cpus_related(cpu, i, cpu_core_mask); |
| |
| if (pkg_id == -1) |
| return; |
| |
| for_each_cpu(i, cpu_online_mask) |
| if (get_physical_package_id(i) == pkg_id) |
| set_cpus_related(cpu, i, cpu_core_mask); |
| } |
| |
| static bool shared_caches; |
| |
| /* Activate a secondary processor. */ |
| void start_secondary(void *unused) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; |
| |
| mmgrab(&init_mm); |
| current->active_mm = &init_mm; |
| |
| smp_store_cpu_info(cpu); |
| set_dec(tb_ticks_per_jiffy); |
| preempt_disable(); |
| cpu_callin_map[cpu] = 1; |
| |
| if (smp_ops->setup_cpu) |
| smp_ops->setup_cpu(cpu); |
| if (smp_ops->take_timebase) |
| smp_ops->take_timebase(); |
| |
| secondary_cpu_time_init(); |
| |
| #ifdef CONFIG_PPC64 |
| if (system_state == SYSTEM_RUNNING) |
| vdso_data->processorCount++; |
| |
| vdso_getcpu_init(); |
| #endif |
| /* Update topology CPU masks */ |
| add_cpu_to_masks(cpu); |
| |
| if (has_big_cores) |
| sibling_mask = cpu_smallcore_mask; |
| /* |
| * Check for any shared caches. Note that this must be done on a |
| * per-core basis because one core in the pair might be disabled. |
| */ |
| if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu))) |
| shared_caches = true; |
| |
| set_numa_node(numa_cpu_lookup_table[cpu]); |
| set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); |
| |
| smp_wmb(); |
| notify_cpu_starting(cpu); |
| set_cpu_online(cpu, true); |
| |
| boot_init_stack_canary(); |
| |
| local_irq_enable(); |
| |
| /* We can enable ftrace for secondary cpus now */ |
| this_cpu_enable_ftrace(); |
| |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| |
| BUG(); |
| } |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return 0; |
| } |
| |
| #ifdef CONFIG_SCHED_SMT |
| /* cpumask of CPUs with asymetric SMT dependancy */ |
| static int powerpc_smt_flags(void) |
| { |
| int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; |
| |
| if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { |
| printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); |
| flags |= SD_ASYM_PACKING; |
| } |
| return flags; |
| } |
| #endif |
| |
| static struct sched_domain_topology_level powerpc_topology[] = { |
| #ifdef CONFIG_SCHED_SMT |
| { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, |
| #endif |
| { cpu_cpu_mask, SD_INIT_NAME(DIE) }, |
| { NULL, }, |
| }; |
| |
| /* |
| * P9 has a slightly odd architecture where pairs of cores share an L2 cache. |
| * This topology makes it *much* cheaper to migrate tasks between adjacent cores |
| * since the migrated task remains cache hot. We want to take advantage of this |
| * at the scheduler level so an extra topology level is required. |
| */ |
| static int powerpc_shared_cache_flags(void) |
| { |
| return SD_SHARE_PKG_RESOURCES; |
| } |
| |
| /* |
| * We can't just pass cpu_l2_cache_mask() directly because |
| * returns a non-const pointer and the compiler barfs on that. |
| */ |
| static const struct cpumask *shared_cache_mask(int cpu) |
| { |
| return cpu_l2_cache_mask(cpu); |
| } |
| |
| #ifdef CONFIG_SCHED_SMT |
| static const struct cpumask *smallcore_smt_mask(int cpu) |
| { |
| return cpu_smallcore_mask(cpu); |
| } |
| #endif |
| |
| static struct sched_domain_topology_level power9_topology[] = { |
| #ifdef CONFIG_SCHED_SMT |
| { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, |
| #endif |
| { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, |
| { cpu_cpu_mask, SD_INIT_NAME(DIE) }, |
| { NULL, }, |
| }; |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| /* |
| * We are running pinned to the boot CPU, see rest_init(). |
| */ |
| if (smp_ops && smp_ops->setup_cpu) |
| smp_ops->setup_cpu(boot_cpuid); |
| |
| if (smp_ops && smp_ops->bringup_done) |
| smp_ops->bringup_done(); |
| |
| dump_numa_cpu_topology(); |
| |
| #ifdef CONFIG_SCHED_SMT |
| if (has_big_cores) { |
| pr_info("Using small cores at SMT level\n"); |
| power9_topology[0].mask = smallcore_smt_mask; |
| powerpc_topology[0].mask = smallcore_smt_mask; |
| } |
| #endif |
| /* |
| * If any CPU detects that it's sharing a cache with another CPU then |
| * use the deeper topology that is aware of this sharing. |
| */ |
| if (shared_caches) { |
| pr_info("Using shared cache scheduler topology\n"); |
| set_sched_topology(power9_topology); |
| } else { |
| pr_info("Using standard scheduler topology\n"); |
| set_sched_topology(powerpc_topology); |
| } |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| int __cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| int err; |
| |
| if (!smp_ops->cpu_disable) |
| return -ENOSYS; |
| |
| this_cpu_disable_ftrace(); |
| |
| err = smp_ops->cpu_disable(); |
| if (err) |
| return err; |
| |
| /* Update sibling maps */ |
| remove_cpu_from_masks(cpu); |
| |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| if (smp_ops->cpu_die) |
| smp_ops->cpu_die(cpu); |
| } |
| |
| void cpu_die(void) |
| { |
| /* |
| * Disable on the down path. This will be re-enabled by |
| * start_secondary() via start_secondary_resume() below |
| */ |
| this_cpu_disable_ftrace(); |
| |
| if (ppc_md.cpu_die) |
| ppc_md.cpu_die(); |
| |
| /* If we return, we re-enter start_secondary */ |
| start_secondary_resume(); |
| } |
| |
| #endif |