| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds |
| * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> |
| * Copyright (C) 2002 Andi Kleen |
| * |
| * This handles calls from both 32bit and 64bit mode. |
| * |
| * Lock order: |
| * contex.ldt_usr_sem |
| * mmap_sem |
| * context.lock |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/gfp.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/syscalls.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/ldt.h> |
| #include <asm/tlb.h> |
| #include <asm/desc.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable_areas.h> |
| |
| /* This is a multiple of PAGE_SIZE. */ |
| #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) |
| |
| static inline void *ldt_slot_va(int slot) |
| { |
| return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); |
| } |
| |
| void load_mm_ldt(struct mm_struct *mm) |
| { |
| struct ldt_struct *ldt; |
| |
| /* READ_ONCE synchronizes with smp_store_release */ |
| ldt = READ_ONCE(mm->context.ldt); |
| |
| /* |
| * Any change to mm->context.ldt is followed by an IPI to all |
| * CPUs with the mm active. The LDT will not be freed until |
| * after the IPI is handled by all such CPUs. This means that, |
| * if the ldt_struct changes before we return, the values we see |
| * will be safe, and the new values will be loaded before we run |
| * any user code. |
| * |
| * NB: don't try to convert this to use RCU without extreme care. |
| * We would still need IRQs off, because we don't want to change |
| * the local LDT after an IPI loaded a newer value than the one |
| * that we can see. |
| */ |
| |
| if (unlikely(ldt)) { |
| if (static_cpu_has(X86_FEATURE_PTI)) { |
| if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { |
| /* |
| * Whoops -- either the new LDT isn't mapped |
| * (if slot == -1) or is mapped into a bogus |
| * slot (if slot > 1). |
| */ |
| clear_LDT(); |
| return; |
| } |
| |
| /* |
| * If page table isolation is enabled, ldt->entries |
| * will not be mapped in the userspace pagetables. |
| * Tell the CPU to access the LDT through the alias |
| * at ldt_slot_va(ldt->slot). |
| */ |
| set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); |
| } else { |
| set_ldt(ldt->entries, ldt->nr_entries); |
| } |
| } else { |
| clear_LDT(); |
| } |
| } |
| |
| void switch_ldt(struct mm_struct *prev, struct mm_struct *next) |
| { |
| /* |
| * Load the LDT if either the old or new mm had an LDT. |
| * |
| * An mm will never go from having an LDT to not having an LDT. Two |
| * mms never share an LDT, so we don't gain anything by checking to |
| * see whether the LDT changed. There's also no guarantee that |
| * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, |
| * then prev->context.ldt will also be non-NULL. |
| * |
| * If we really cared, we could optimize the case where prev == next |
| * and we're exiting lazy mode. Most of the time, if this happens, |
| * we don't actually need to reload LDTR, but modify_ldt() is mostly |
| * used by legacy code and emulators where we don't need this level of |
| * performance. |
| * |
| * This uses | instead of || because it generates better code. |
| */ |
| if (unlikely((unsigned long)prev->context.ldt | |
| (unsigned long)next->context.ldt)) |
| load_mm_ldt(next); |
| |
| DEBUG_LOCKS_WARN_ON(preemptible()); |
| } |
| |
| static void refresh_ldt_segments(void) |
| { |
| #ifdef CONFIG_X86_64 |
| unsigned short sel; |
| |
| /* |
| * Make sure that the cached DS and ES descriptors match the updated |
| * LDT. |
| */ |
| savesegment(ds, sel); |
| if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) |
| loadsegment(ds, sel); |
| |
| savesegment(es, sel); |
| if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) |
| loadsegment(es, sel); |
| #endif |
| } |
| |
| /* context.lock is held by the task which issued the smp function call */ |
| static void flush_ldt(void *__mm) |
| { |
| struct mm_struct *mm = __mm; |
| |
| if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) |
| return; |
| |
| load_mm_ldt(mm); |
| |
| refresh_ldt_segments(); |
| } |
| |
| /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ |
| static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) |
| { |
| struct ldt_struct *new_ldt; |
| unsigned int alloc_size; |
| |
| if (num_entries > LDT_ENTRIES) |
| return NULL; |
| |
| new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); |
| if (!new_ldt) |
| return NULL; |
| |
| BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); |
| alloc_size = num_entries * LDT_ENTRY_SIZE; |
| |
| /* |
| * Xen is very picky: it requires a page-aligned LDT that has no |
| * trailing nonzero bytes in any page that contains LDT descriptors. |
| * Keep it simple: zero the whole allocation and never allocate less |
| * than PAGE_SIZE. |
| */ |
| if (alloc_size > PAGE_SIZE) |
| new_ldt->entries = vzalloc(alloc_size); |
| else |
| new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); |
| |
| if (!new_ldt->entries) { |
| kfree(new_ldt); |
| return NULL; |
| } |
| |
| /* The new LDT isn't aliased for PTI yet. */ |
| new_ldt->slot = -1; |
| |
| new_ldt->nr_entries = num_entries; |
| return new_ldt; |
| } |
| |
| #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| |
| static void do_sanity_check(struct mm_struct *mm, |
| bool had_kernel_mapping, |
| bool had_user_mapping) |
| { |
| if (mm->context.ldt) { |
| /* |
| * We already had an LDT. The top-level entry should already |
| * have been allocated and synchronized with the usermode |
| * tables. |
| */ |
| WARN_ON(!had_kernel_mapping); |
| if (boot_cpu_has(X86_FEATURE_PTI)) |
| WARN_ON(!had_user_mapping); |
| } else { |
| /* |
| * This is the first time we're mapping an LDT for this process. |
| * Sync the pgd to the usermode tables. |
| */ |
| WARN_ON(had_kernel_mapping); |
| if (boot_cpu_has(X86_FEATURE_PTI)) |
| WARN_ON(had_user_mapping); |
| } |
| } |
| |
| #ifdef CONFIG_X86_PAE |
| |
| static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va) |
| { |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| if (pgd->pgd == 0) |
| return NULL; |
| |
| p4d = p4d_offset(pgd, va); |
| if (p4d_none(*p4d)) |
| return NULL; |
| |
| pud = pud_offset(p4d, va); |
| if (pud_none(*pud)) |
| return NULL; |
| |
| return pmd_offset(pud, va); |
| } |
| |
| static void map_ldt_struct_to_user(struct mm_struct *mm) |
| { |
| pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); |
| pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); |
| pmd_t *k_pmd, *u_pmd; |
| |
| k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); |
| u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); |
| |
| if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) |
| set_pmd(u_pmd, *k_pmd); |
| } |
| |
| static void sanity_check_ldt_mapping(struct mm_struct *mm) |
| { |
| pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); |
| pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); |
| bool had_kernel, had_user; |
| pmd_t *k_pmd, *u_pmd; |
| |
| k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); |
| u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); |
| had_kernel = (k_pmd->pmd != 0); |
| had_user = (u_pmd->pmd != 0); |
| |
| do_sanity_check(mm, had_kernel, had_user); |
| } |
| |
| #else /* !CONFIG_X86_PAE */ |
| |
| static void map_ldt_struct_to_user(struct mm_struct *mm) |
| { |
| pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); |
| |
| if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) |
| set_pgd(kernel_to_user_pgdp(pgd), *pgd); |
| } |
| |
| static void sanity_check_ldt_mapping(struct mm_struct *mm) |
| { |
| pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); |
| bool had_kernel = (pgd->pgd != 0); |
| bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0); |
| |
| do_sanity_check(mm, had_kernel, had_user); |
| } |
| |
| #endif /* CONFIG_X86_PAE */ |
| |
| /* |
| * If PTI is enabled, this maps the LDT into the kernelmode and |
| * usermode tables for the given mm. |
| */ |
| static int |
| map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) |
| { |
| unsigned long va; |
| bool is_vmalloc; |
| spinlock_t *ptl; |
| int i, nr_pages; |
| |
| if (!boot_cpu_has(X86_FEATURE_PTI)) |
| return 0; |
| |
| /* |
| * Any given ldt_struct should have map_ldt_struct() called at most |
| * once. |
| */ |
| WARN_ON(ldt->slot != -1); |
| |
| /* Check if the current mappings are sane */ |
| sanity_check_ldt_mapping(mm); |
| |
| is_vmalloc = is_vmalloc_addr(ldt->entries); |
| |
| nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); |
| |
| for (i = 0; i < nr_pages; i++) { |
| unsigned long offset = i << PAGE_SHIFT; |
| const void *src = (char *)ldt->entries + offset; |
| unsigned long pfn; |
| pgprot_t pte_prot; |
| pte_t pte, *ptep; |
| |
| va = (unsigned long)ldt_slot_va(slot) + offset; |
| pfn = is_vmalloc ? vmalloc_to_pfn(src) : |
| page_to_pfn(virt_to_page(src)); |
| /* |
| * Treat the PTI LDT range as a *userspace* range. |
| * get_locked_pte() will allocate all needed pagetables |
| * and account for them in this mm. |
| */ |
| ptep = get_locked_pte(mm, va, &ptl); |
| if (!ptep) |
| return -ENOMEM; |
| /* |
| * Map it RO so the easy to find address is not a primary |
| * target via some kernel interface which misses a |
| * permission check. |
| */ |
| pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); |
| /* Filter out unsuppored __PAGE_KERNEL* bits: */ |
| pgprot_val(pte_prot) &= __supported_pte_mask; |
| pte = pfn_pte(pfn, pte_prot); |
| set_pte_at(mm, va, ptep, pte); |
| pte_unmap_unlock(ptep, ptl); |
| } |
| |
| /* Propagate LDT mapping to the user page-table */ |
| map_ldt_struct_to_user(mm); |
| |
| ldt->slot = slot; |
| return 0; |
| } |
| |
| static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) |
| { |
| unsigned long va; |
| int i, nr_pages; |
| |
| if (!ldt) |
| return; |
| |
| /* LDT map/unmap is only required for PTI */ |
| if (!boot_cpu_has(X86_FEATURE_PTI)) |
| return; |
| |
| nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); |
| |
| for (i = 0; i < nr_pages; i++) { |
| unsigned long offset = i << PAGE_SHIFT; |
| spinlock_t *ptl; |
| pte_t *ptep; |
| |
| va = (unsigned long)ldt_slot_va(ldt->slot) + offset; |
| ptep = get_locked_pte(mm, va, &ptl); |
| pte_clear(mm, va, ptep); |
| pte_unmap_unlock(ptep, ptl); |
| } |
| |
| va = (unsigned long)ldt_slot_va(ldt->slot); |
| flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false); |
| } |
| |
| #else /* !CONFIG_PAGE_TABLE_ISOLATION */ |
| |
| static int |
| map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) |
| { |
| return 0; |
| } |
| |
| static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) |
| { |
| } |
| #endif /* CONFIG_PAGE_TABLE_ISOLATION */ |
| |
| static void free_ldt_pgtables(struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| struct mmu_gather tlb; |
| unsigned long start = LDT_BASE_ADDR; |
| unsigned long end = LDT_END_ADDR; |
| |
| if (!boot_cpu_has(X86_FEATURE_PTI)) |
| return; |
| |
| tlb_gather_mmu(&tlb, mm, start, end); |
| free_pgd_range(&tlb, start, end, start, end); |
| tlb_finish_mmu(&tlb, start, end); |
| #endif |
| } |
| |
| /* After calling this, the LDT is immutable. */ |
| static void finalize_ldt_struct(struct ldt_struct *ldt) |
| { |
| paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); |
| } |
| |
| static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) |
| { |
| mutex_lock(&mm->context.lock); |
| |
| /* Synchronizes with READ_ONCE in load_mm_ldt. */ |
| smp_store_release(&mm->context.ldt, ldt); |
| |
| /* Activate the LDT for all CPUs using currents mm. */ |
| on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); |
| |
| mutex_unlock(&mm->context.lock); |
| } |
| |
| static void free_ldt_struct(struct ldt_struct *ldt) |
| { |
| if (likely(!ldt)) |
| return; |
| |
| paravirt_free_ldt(ldt->entries, ldt->nr_entries); |
| if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) |
| vfree_atomic(ldt->entries); |
| else |
| free_page((unsigned long)ldt->entries); |
| kfree(ldt); |
| } |
| |
| /* |
| * Called on fork from arch_dup_mmap(). Just copy the current LDT state, |
| * the new task is not running, so nothing can be installed. |
| */ |
| int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) |
| { |
| struct ldt_struct *new_ldt; |
| int retval = 0; |
| |
| if (!old_mm) |
| return 0; |
| |
| mutex_lock(&old_mm->context.lock); |
| if (!old_mm->context.ldt) |
| goto out_unlock; |
| |
| new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); |
| if (!new_ldt) { |
| retval = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| memcpy(new_ldt->entries, old_mm->context.ldt->entries, |
| new_ldt->nr_entries * LDT_ENTRY_SIZE); |
| finalize_ldt_struct(new_ldt); |
| |
| retval = map_ldt_struct(mm, new_ldt, 0); |
| if (retval) { |
| free_ldt_pgtables(mm); |
| free_ldt_struct(new_ldt); |
| goto out_unlock; |
| } |
| mm->context.ldt = new_ldt; |
| |
| out_unlock: |
| mutex_unlock(&old_mm->context.lock); |
| return retval; |
| } |
| |
| /* |
| * No need to lock the MM as we are the last user |
| * |
| * 64bit: Don't touch the LDT register - we're already in the next thread. |
| */ |
| void destroy_context_ldt(struct mm_struct *mm) |
| { |
| free_ldt_struct(mm->context.ldt); |
| mm->context.ldt = NULL; |
| } |
| |
| void ldt_arch_exit_mmap(struct mm_struct *mm) |
| { |
| free_ldt_pgtables(mm); |
| } |
| |
| static int read_ldt(void __user *ptr, unsigned long bytecount) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long entries_size; |
| int retval; |
| |
| down_read(&mm->context.ldt_usr_sem); |
| |
| if (!mm->context.ldt) { |
| retval = 0; |
| goto out_unlock; |
| } |
| |
| if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) |
| bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; |
| |
| entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; |
| if (entries_size > bytecount) |
| entries_size = bytecount; |
| |
| if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { |
| retval = -EFAULT; |
| goto out_unlock; |
| } |
| |
| if (entries_size != bytecount) { |
| /* Zero-fill the rest and pretend we read bytecount bytes. */ |
| if (clear_user(ptr + entries_size, bytecount - entries_size)) { |
| retval = -EFAULT; |
| goto out_unlock; |
| } |
| } |
| retval = bytecount; |
| |
| out_unlock: |
| up_read(&mm->context.ldt_usr_sem); |
| return retval; |
| } |
| |
| static int read_default_ldt(void __user *ptr, unsigned long bytecount) |
| { |
| /* CHECKME: Can we use _one_ random number ? */ |
| #ifdef CONFIG_X86_32 |
| unsigned long size = 5 * sizeof(struct desc_struct); |
| #else |
| unsigned long size = 128; |
| #endif |
| if (bytecount > size) |
| bytecount = size; |
| if (clear_user(ptr, bytecount)) |
| return -EFAULT; |
| return bytecount; |
| } |
| |
| static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) |
| { |
| struct mm_struct *mm = current->mm; |
| struct ldt_struct *new_ldt, *old_ldt; |
| unsigned int old_nr_entries, new_nr_entries; |
| struct user_desc ldt_info; |
| struct desc_struct ldt; |
| int error; |
| |
| error = -EINVAL; |
| if (bytecount != sizeof(ldt_info)) |
| goto out; |
| error = -EFAULT; |
| if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) |
| goto out; |
| |
| error = -EINVAL; |
| if (ldt_info.entry_number >= LDT_ENTRIES) |
| goto out; |
| if (ldt_info.contents == 3) { |
| if (oldmode) |
| goto out; |
| if (ldt_info.seg_not_present == 0) |
| goto out; |
| } |
| |
| if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || |
| LDT_empty(&ldt_info)) { |
| /* The user wants to clear the entry. */ |
| memset(&ldt, 0, sizeof(ldt)); |
| } else { |
| if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) { |
| error = -EINVAL; |
| goto out; |
| } |
| |
| fill_ldt(&ldt, &ldt_info); |
| if (oldmode) |
| ldt.avl = 0; |
| } |
| |
| if (down_write_killable(&mm->context.ldt_usr_sem)) |
| return -EINTR; |
| |
| old_ldt = mm->context.ldt; |
| old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; |
| new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); |
| |
| error = -ENOMEM; |
| new_ldt = alloc_ldt_struct(new_nr_entries); |
| if (!new_ldt) |
| goto out_unlock; |
| |
| if (old_ldt) |
| memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); |
| |
| new_ldt->entries[ldt_info.entry_number] = ldt; |
| finalize_ldt_struct(new_ldt); |
| |
| /* |
| * If we are using PTI, map the new LDT into the userspace pagetables. |
| * If there is already an LDT, use the other slot so that other CPUs |
| * will continue to use the old LDT until install_ldt() switches |
| * them over to the new LDT. |
| */ |
| error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); |
| if (error) { |
| /* |
| * This only can fail for the first LDT setup. If an LDT is |
| * already installed then the PTE page is already |
| * populated. Mop up a half populated page table. |
| */ |
| if (!WARN_ON_ONCE(old_ldt)) |
| free_ldt_pgtables(mm); |
| free_ldt_struct(new_ldt); |
| goto out_unlock; |
| } |
| |
| install_ldt(mm, new_ldt); |
| unmap_ldt_struct(mm, old_ldt); |
| free_ldt_struct(old_ldt); |
| error = 0; |
| |
| out_unlock: |
| up_write(&mm->context.ldt_usr_sem); |
| out: |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , |
| unsigned long , bytecount) |
| { |
| int ret = -ENOSYS; |
| |
| switch (func) { |
| case 0: |
| ret = read_ldt(ptr, bytecount); |
| break; |
| case 1: |
| ret = write_ldt(ptr, bytecount, 1); |
| break; |
| case 2: |
| ret = read_default_ldt(ptr, bytecount); |
| break; |
| case 0x11: |
| ret = write_ldt(ptr, bytecount, 0); |
| break; |
| } |
| /* |
| * The SYSCALL_DEFINE() macros give us an 'unsigned long' |
| * return type, but tht ABI for sys_modify_ldt() expects |
| * 'int'. This cast gives us an int-sized value in %rax |
| * for the return code. The 'unsigned' is necessary so |
| * the compiler does not try to sign-extend the negative |
| * return codes into the high half of the register when |
| * taking the value from int->long. |
| */ |
| return (unsigned int)ret; |
| } |