| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/perf_event.h> |
| #include <linux/types.h> |
| |
| #include <asm/perf_event.h> |
| #include <asm/msr.h> |
| #include <asm/insn.h> |
| |
| #include "../perf_event.h" |
| |
| /* |
| * Intel LBR_SELECT bits |
| * Intel Vol3a, April 2011, Section 16.7 Table 16-10 |
| * |
| * Hardware branch filter (not available on all CPUs) |
| */ |
| #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ |
| #define LBR_USER_BIT 1 /* do not capture at ring > 0 */ |
| #define LBR_JCC_BIT 2 /* do not capture conditional branches */ |
| #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ |
| #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ |
| #define LBR_RETURN_BIT 5 /* do not capture near returns */ |
| #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ |
| #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ |
| #define LBR_FAR_BIT 8 /* do not capture far branches */ |
| #define LBR_CALL_STACK_BIT 9 /* enable call stack */ |
| |
| /* |
| * Following bit only exists in Linux; we mask it out before writing it to |
| * the actual MSR. But it helps the constraint perf code to understand |
| * that this is a separate configuration. |
| */ |
| #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ |
| |
| #define LBR_KERNEL (1 << LBR_KERNEL_BIT) |
| #define LBR_USER (1 << LBR_USER_BIT) |
| #define LBR_JCC (1 << LBR_JCC_BIT) |
| #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) |
| #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) |
| #define LBR_RETURN (1 << LBR_RETURN_BIT) |
| #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) |
| #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) |
| #define LBR_FAR (1 << LBR_FAR_BIT) |
| #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) |
| #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) |
| |
| #define LBR_PLM (LBR_KERNEL | LBR_USER) |
| |
| #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */ |
| #define LBR_NOT_SUPP -1 /* LBR filter not supported */ |
| #define LBR_IGN 0 /* ignored */ |
| |
| #define LBR_ANY \ |
| (LBR_JCC |\ |
| LBR_REL_CALL |\ |
| LBR_IND_CALL |\ |
| LBR_RETURN |\ |
| LBR_REL_JMP |\ |
| LBR_IND_JMP |\ |
| LBR_FAR) |
| |
| #define LBR_FROM_FLAG_MISPRED BIT_ULL(63) |
| #define LBR_FROM_FLAG_IN_TX BIT_ULL(62) |
| #define LBR_FROM_FLAG_ABORT BIT_ULL(61) |
| |
| #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59)) |
| |
| /* |
| * x86control flow change classification |
| * x86control flow changes include branches, interrupts, traps, faults |
| */ |
| enum { |
| X86_BR_NONE = 0, /* unknown */ |
| |
| X86_BR_USER = 1 << 0, /* branch target is user */ |
| X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ |
| |
| X86_BR_CALL = 1 << 2, /* call */ |
| X86_BR_RET = 1 << 3, /* return */ |
| X86_BR_SYSCALL = 1 << 4, /* syscall */ |
| X86_BR_SYSRET = 1 << 5, /* syscall return */ |
| X86_BR_INT = 1 << 6, /* sw interrupt */ |
| X86_BR_IRET = 1 << 7, /* return from interrupt */ |
| X86_BR_JCC = 1 << 8, /* conditional */ |
| X86_BR_JMP = 1 << 9, /* jump */ |
| X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ |
| X86_BR_IND_CALL = 1 << 11,/* indirect calls */ |
| X86_BR_ABORT = 1 << 12,/* transaction abort */ |
| X86_BR_IN_TX = 1 << 13,/* in transaction */ |
| X86_BR_NO_TX = 1 << 14,/* not in transaction */ |
| X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ |
| X86_BR_CALL_STACK = 1 << 16,/* call stack */ |
| X86_BR_IND_JMP = 1 << 17,/* indirect jump */ |
| |
| X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */ |
| |
| }; |
| |
| #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) |
| #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) |
| |
| #define X86_BR_ANY \ |
| (X86_BR_CALL |\ |
| X86_BR_RET |\ |
| X86_BR_SYSCALL |\ |
| X86_BR_SYSRET |\ |
| X86_BR_INT |\ |
| X86_BR_IRET |\ |
| X86_BR_JCC |\ |
| X86_BR_JMP |\ |
| X86_BR_IRQ |\ |
| X86_BR_ABORT |\ |
| X86_BR_IND_CALL |\ |
| X86_BR_IND_JMP |\ |
| X86_BR_ZERO_CALL) |
| |
| #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) |
| |
| #define X86_BR_ANY_CALL \ |
| (X86_BR_CALL |\ |
| X86_BR_IND_CALL |\ |
| X86_BR_ZERO_CALL |\ |
| X86_BR_SYSCALL |\ |
| X86_BR_IRQ |\ |
| X86_BR_INT) |
| |
| /* |
| * Intel LBR_CTL bits |
| * |
| * Hardware branch filter for Arch LBR |
| */ |
| #define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */ |
| #define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */ |
| #define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */ |
| #define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */ |
| #define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */ |
| #define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */ |
| #define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */ |
| #define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */ |
| #define ARCH_LBR_RETURN_BIT 21 /* capture near returns */ |
| #define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */ |
| |
| #define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT) |
| #define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT) |
| #define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT) |
| #define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT) |
| #define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT) |
| #define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT) |
| #define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT) |
| #define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT) |
| #define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT) |
| #define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT) |
| |
| #define ARCH_LBR_ANY \ |
| (ARCH_LBR_JCC |\ |
| ARCH_LBR_REL_JMP |\ |
| ARCH_LBR_IND_JMP |\ |
| ARCH_LBR_REL_CALL |\ |
| ARCH_LBR_IND_CALL |\ |
| ARCH_LBR_RETURN |\ |
| ARCH_LBR_OTHER_BRANCH) |
| |
| #define ARCH_LBR_CTL_MASK 0x7f000e |
| |
| static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); |
| |
| static __always_inline bool is_lbr_call_stack_bit_set(u64 config) |
| { |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| return !!(config & ARCH_LBR_CALL_STACK); |
| |
| return !!(config & LBR_CALL_STACK); |
| } |
| |
| /* |
| * We only support LBR implementations that have FREEZE_LBRS_ON_PMI |
| * otherwise it becomes near impossible to get a reliable stack. |
| */ |
| |
| static void __intel_pmu_lbr_enable(bool pmi) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| u64 debugctl, lbr_select = 0, orig_debugctl; |
| |
| /* |
| * No need to unfreeze manually, as v4 can do that as part |
| * of the GLOBAL_STATUS ack. |
| */ |
| if (pmi && x86_pmu.version >= 4) |
| return; |
| |
| /* |
| * No need to reprogram LBR_SELECT in a PMI, as it |
| * did not change. |
| */ |
| if (cpuc->lbr_sel) |
| lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; |
| if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel) |
| wrmsrl(MSR_LBR_SELECT, lbr_select); |
| |
| rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| orig_debugctl = debugctl; |
| |
| if (!static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| debugctl |= DEBUGCTLMSR_LBR; |
| /* |
| * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. |
| * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions |
| * may cause superfluous increase/decrease of LBR_TOS. |
| */ |
| if (is_lbr_call_stack_bit_set(lbr_select)) |
| debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; |
| else |
| debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; |
| |
| if (orig_debugctl != debugctl) |
| wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN); |
| } |
| |
| void intel_pmu_lbr_reset_32(void) |
| { |
| int i; |
| |
| for (i = 0; i < x86_pmu.lbr_nr; i++) |
| wrmsrl(x86_pmu.lbr_from + i, 0); |
| } |
| |
| void intel_pmu_lbr_reset_64(void) |
| { |
| int i; |
| |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| wrmsrl(x86_pmu.lbr_from + i, 0); |
| wrmsrl(x86_pmu.lbr_to + i, 0); |
| if (x86_pmu.lbr_has_info) |
| wrmsrl(x86_pmu.lbr_info + i, 0); |
| } |
| } |
| |
| static void intel_pmu_arch_lbr_reset(void) |
| { |
| /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */ |
| wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr); |
| } |
| |
| void intel_pmu_lbr_reset(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!x86_pmu.lbr_nr) |
| return; |
| |
| x86_pmu.lbr_reset(); |
| |
| cpuc->last_task_ctx = NULL; |
| cpuc->last_log_id = 0; |
| if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select) |
| wrmsrl(MSR_LBR_SELECT, 0); |
| } |
| |
| /* |
| * TOS = most recently recorded branch |
| */ |
| static inline u64 intel_pmu_lbr_tos(void) |
| { |
| u64 tos; |
| |
| rdmsrl(x86_pmu.lbr_tos, tos); |
| return tos; |
| } |
| |
| enum { |
| LBR_NONE, |
| LBR_VALID, |
| }; |
| |
| /* |
| * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in |
| * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when |
| * TSX is not supported they have no consistent behavior: |
| * |
| * - For wrmsr(), bits 61:62 are considered part of the sign extension. |
| * - For HW updates (branch captures) bits 61:62 are always OFF and are not |
| * part of the sign extension. |
| * |
| * Therefore, if: |
| * |
| * 1) LBR has TSX format |
| * 2) CPU has no TSX support enabled |
| * |
| * ... then any value passed to wrmsr() must be sign extended to 63 bits and any |
| * value from rdmsr() must be converted to have a 61 bits sign extension, |
| * ignoring the TSX flags. |
| */ |
| static inline bool lbr_from_signext_quirk_needed(void) |
| { |
| bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) || |
| boot_cpu_has(X86_FEATURE_RTM); |
| |
| return !tsx_support && x86_pmu.lbr_has_tsx; |
| } |
| |
| static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key); |
| |
| /* If quirk is enabled, ensure sign extension is 63 bits: */ |
| inline u64 lbr_from_signext_quirk_wr(u64 val) |
| { |
| if (static_branch_unlikely(&lbr_from_quirk_key)) { |
| /* |
| * Sign extend into bits 61:62 while preserving bit 63. |
| * |
| * Quirk is enabled when TSX is disabled. Therefore TSX bits |
| * in val are always OFF and must be changed to be sign |
| * extension bits. Since bits 59:60 are guaranteed to be |
| * part of the sign extension bits, we can just copy them |
| * to 61:62. |
| */ |
| val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2; |
| } |
| return val; |
| } |
| |
| /* |
| * If quirk is needed, ensure sign extension is 61 bits: |
| */ |
| static u64 lbr_from_signext_quirk_rd(u64 val) |
| { |
| if (static_branch_unlikely(&lbr_from_quirk_key)) { |
| /* |
| * Quirk is on when TSX is not enabled. Therefore TSX |
| * flags must be read as OFF. |
| */ |
| val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT); |
| } |
| return val; |
| } |
| |
| static __always_inline void wrlbr_from(unsigned int idx, u64 val) |
| { |
| val = lbr_from_signext_quirk_wr(val); |
| wrmsrl(x86_pmu.lbr_from + idx, val); |
| } |
| |
| static __always_inline void wrlbr_to(unsigned int idx, u64 val) |
| { |
| wrmsrl(x86_pmu.lbr_to + idx, val); |
| } |
| |
| static __always_inline void wrlbr_info(unsigned int idx, u64 val) |
| { |
| wrmsrl(x86_pmu.lbr_info + idx, val); |
| } |
| |
| static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr) |
| { |
| u64 val; |
| |
| if (lbr) |
| return lbr->from; |
| |
| rdmsrl(x86_pmu.lbr_from + idx, val); |
| |
| return lbr_from_signext_quirk_rd(val); |
| } |
| |
| static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr) |
| { |
| u64 val; |
| |
| if (lbr) |
| return lbr->to; |
| |
| rdmsrl(x86_pmu.lbr_to + idx, val); |
| |
| return val; |
| } |
| |
| static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr) |
| { |
| u64 val; |
| |
| if (lbr) |
| return lbr->info; |
| |
| rdmsrl(x86_pmu.lbr_info + idx, val); |
| |
| return val; |
| } |
| |
| static inline void |
| wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info) |
| { |
| wrlbr_from(idx, lbr->from); |
| wrlbr_to(idx, lbr->to); |
| if (need_info) |
| wrlbr_info(idx, lbr->info); |
| } |
| |
| static inline bool |
| rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info) |
| { |
| u64 from = rdlbr_from(idx, NULL); |
| |
| /* Don't read invalid entry */ |
| if (!from) |
| return false; |
| |
| lbr->from = from; |
| lbr->to = rdlbr_to(idx, NULL); |
| if (need_info) |
| lbr->info = rdlbr_info(idx, NULL); |
| |
| return true; |
| } |
| |
| void intel_pmu_lbr_restore(void *ctx) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct x86_perf_task_context *task_ctx = ctx; |
| bool need_info = x86_pmu.lbr_has_info; |
| u64 tos = task_ctx->tos; |
| unsigned lbr_idx, mask; |
| int i; |
| |
| mask = x86_pmu.lbr_nr - 1; |
| for (i = 0; i < task_ctx->valid_lbrs; i++) { |
| lbr_idx = (tos - i) & mask; |
| wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info); |
| } |
| |
| for (; i < x86_pmu.lbr_nr; i++) { |
| lbr_idx = (tos - i) & mask; |
| wrlbr_from(lbr_idx, 0); |
| wrlbr_to(lbr_idx, 0); |
| if (need_info) |
| wrlbr_info(lbr_idx, 0); |
| } |
| |
| wrmsrl(x86_pmu.lbr_tos, tos); |
| |
| if (cpuc->lbr_select) |
| wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel); |
| } |
| |
| static void intel_pmu_arch_lbr_restore(void *ctx) |
| { |
| struct x86_perf_task_context_arch_lbr *task_ctx = ctx; |
| struct lbr_entry *entries = task_ctx->entries; |
| int i; |
| |
| /* Fast reset the LBRs before restore if the call stack is not full. */ |
| if (!entries[x86_pmu.lbr_nr - 1].from) |
| intel_pmu_arch_lbr_reset(); |
| |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| if (!entries[i].from) |
| break; |
| wrlbr_all(&entries[i], i, true); |
| } |
| } |
| |
| /* |
| * Restore the Architecture LBR state from the xsave area in the perf |
| * context data for the task via the XRSTORS instruction. |
| */ |
| static void intel_pmu_arch_lbr_xrstors(void *ctx) |
| { |
| struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx; |
| |
| xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR); |
| } |
| |
| static __always_inline bool lbr_is_reset_in_cstate(void *ctx) |
| { |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL); |
| |
| return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL); |
| } |
| |
| static void __intel_pmu_lbr_restore(void *ctx) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (task_context_opt(ctx)->lbr_callstack_users == 0 || |
| task_context_opt(ctx)->lbr_stack_state == LBR_NONE) { |
| intel_pmu_lbr_reset(); |
| return; |
| } |
| |
| /* |
| * Does not restore the LBR registers, if |
| * - No one else touched them, and |
| * - Was not cleared in Cstate |
| */ |
| if ((ctx == cpuc->last_task_ctx) && |
| (task_context_opt(ctx)->log_id == cpuc->last_log_id) && |
| !lbr_is_reset_in_cstate(ctx)) { |
| task_context_opt(ctx)->lbr_stack_state = LBR_NONE; |
| return; |
| } |
| |
| x86_pmu.lbr_restore(ctx); |
| |
| task_context_opt(ctx)->lbr_stack_state = LBR_NONE; |
| } |
| |
| void intel_pmu_lbr_save(void *ctx) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct x86_perf_task_context *task_ctx = ctx; |
| bool need_info = x86_pmu.lbr_has_info; |
| unsigned lbr_idx, mask; |
| u64 tos; |
| int i; |
| |
| mask = x86_pmu.lbr_nr - 1; |
| tos = intel_pmu_lbr_tos(); |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| lbr_idx = (tos - i) & mask; |
| if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info)) |
| break; |
| } |
| task_ctx->valid_lbrs = i; |
| task_ctx->tos = tos; |
| |
| if (cpuc->lbr_select) |
| rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel); |
| } |
| |
| static void intel_pmu_arch_lbr_save(void *ctx) |
| { |
| struct x86_perf_task_context_arch_lbr *task_ctx = ctx; |
| struct lbr_entry *entries = task_ctx->entries; |
| int i; |
| |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| if (!rdlbr_all(&entries[i], i, true)) |
| break; |
| } |
| |
| /* LBR call stack is not full. Reset is required in restore. */ |
| if (i < x86_pmu.lbr_nr) |
| entries[x86_pmu.lbr_nr - 1].from = 0; |
| } |
| |
| /* |
| * Save the Architecture LBR state to the xsave area in the perf |
| * context data for the task via the XSAVES instruction. |
| */ |
| static void intel_pmu_arch_lbr_xsaves(void *ctx) |
| { |
| struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx; |
| |
| xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR); |
| } |
| |
| static void __intel_pmu_lbr_save(void *ctx) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (task_context_opt(ctx)->lbr_callstack_users == 0) { |
| task_context_opt(ctx)->lbr_stack_state = LBR_NONE; |
| return; |
| } |
| |
| x86_pmu.lbr_save(ctx); |
| |
| task_context_opt(ctx)->lbr_stack_state = LBR_VALID; |
| |
| cpuc->last_task_ctx = ctx; |
| cpuc->last_log_id = ++task_context_opt(ctx)->log_id; |
| } |
| |
| void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev, |
| struct perf_event_context *next) |
| { |
| void *prev_ctx_data, *next_ctx_data; |
| |
| swap(prev->task_ctx_data, next->task_ctx_data); |
| |
| /* |
| * Architecture specific synchronization makes sense in |
| * case both prev->task_ctx_data and next->task_ctx_data |
| * pointers are allocated. |
| */ |
| |
| prev_ctx_data = next->task_ctx_data; |
| next_ctx_data = prev->task_ctx_data; |
| |
| if (!prev_ctx_data || !next_ctx_data) |
| return; |
| |
| swap(task_context_opt(prev_ctx_data)->lbr_callstack_users, |
| task_context_opt(next_ctx_data)->lbr_callstack_users); |
| } |
| |
| void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| void *task_ctx; |
| |
| if (!cpuc->lbr_users) |
| return; |
| |
| /* |
| * If LBR callstack feature is enabled and the stack was saved when |
| * the task was scheduled out, restore the stack. Otherwise flush |
| * the LBR stack. |
| */ |
| task_ctx = ctx ? ctx->task_ctx_data : NULL; |
| if (task_ctx) { |
| if (sched_in) |
| __intel_pmu_lbr_restore(task_ctx); |
| else |
| __intel_pmu_lbr_save(task_ctx); |
| return; |
| } |
| |
| /* |
| * Since a context switch can flip the address space and LBR entries |
| * are not tagged with an identifier, we need to wipe the LBR, even for |
| * per-cpu events. You simply cannot resolve the branches from the old |
| * address space. |
| */ |
| if (sched_in) |
| intel_pmu_lbr_reset(); |
| } |
| |
| static inline bool branch_user_callstack(unsigned br_sel) |
| { |
| return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); |
| } |
| |
| void intel_pmu_lbr_add(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!x86_pmu.lbr_nr) |
| return; |
| |
| if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT) |
| cpuc->lbr_select = 1; |
| |
| cpuc->br_sel = event->hw.branch_reg.reg; |
| |
| if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) |
| task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users++; |
| |
| /* |
| * Request pmu::sched_task() callback, which will fire inside the |
| * regular perf event scheduling, so that call will: |
| * |
| * - restore or wipe; when LBR-callstack, |
| * - wipe; otherwise, |
| * |
| * when this is from __perf_event_task_sched_in(). |
| * |
| * However, if this is from perf_install_in_context(), no such callback |
| * will follow and we'll need to reset the LBR here if this is the |
| * first LBR event. |
| * |
| * The problem is, we cannot tell these cases apart... but we can |
| * exclude the biggest chunk of cases by looking at |
| * event->total_time_running. An event that has accrued runtime cannot |
| * be 'new'. Conversely, a new event can get installed through the |
| * context switch path for the first time. |
| */ |
| if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0) |
| cpuc->lbr_pebs_users++; |
| perf_sched_cb_inc(event->ctx->pmu); |
| if (!cpuc->lbr_users++ && !event->total_time_running) |
| intel_pmu_lbr_reset(); |
| } |
| |
| void release_lbr_buffers(void) |
| { |
| struct kmem_cache *kmem_cache; |
| struct cpu_hw_events *cpuc; |
| int cpu; |
| |
| if (!static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| return; |
| |
| for_each_possible_cpu(cpu) { |
| cpuc = per_cpu_ptr(&cpu_hw_events, cpu); |
| kmem_cache = x86_get_pmu(cpu)->task_ctx_cache; |
| if (kmem_cache && cpuc->lbr_xsave) { |
| kmem_cache_free(kmem_cache, cpuc->lbr_xsave); |
| cpuc->lbr_xsave = NULL; |
| } |
| } |
| } |
| |
| void reserve_lbr_buffers(void) |
| { |
| struct kmem_cache *kmem_cache; |
| struct cpu_hw_events *cpuc; |
| int cpu; |
| |
| if (!static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| return; |
| |
| for_each_possible_cpu(cpu) { |
| cpuc = per_cpu_ptr(&cpu_hw_events, cpu); |
| kmem_cache = x86_get_pmu(cpu)->task_ctx_cache; |
| if (!kmem_cache || cpuc->lbr_xsave) |
| continue; |
| |
| cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache, |
| GFP_KERNEL | __GFP_ZERO, |
| cpu_to_node(cpu)); |
| } |
| } |
| |
| void intel_pmu_lbr_del(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!x86_pmu.lbr_nr) |
| return; |
| |
| if (branch_user_callstack(cpuc->br_sel) && |
| event->ctx->task_ctx_data) |
| task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users--; |
| |
| if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT) |
| cpuc->lbr_select = 0; |
| |
| if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0) |
| cpuc->lbr_pebs_users--; |
| cpuc->lbr_users--; |
| WARN_ON_ONCE(cpuc->lbr_users < 0); |
| WARN_ON_ONCE(cpuc->lbr_pebs_users < 0); |
| perf_sched_cb_dec(event->ctx->pmu); |
| } |
| |
| static inline bool vlbr_exclude_host(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| return test_bit(INTEL_PMC_IDX_FIXED_VLBR, |
| (unsigned long *)&cpuc->intel_ctrl_guest_mask); |
| } |
| |
| void intel_pmu_lbr_enable_all(bool pmi) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (cpuc->lbr_users && !vlbr_exclude_host()) |
| __intel_pmu_lbr_enable(pmi); |
| } |
| |
| void intel_pmu_lbr_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (cpuc->lbr_users && !vlbr_exclude_host()) { |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR)) |
| return __intel_pmu_arch_lbr_disable(); |
| |
| __intel_pmu_lbr_disable(); |
| } |
| } |
| |
| void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) |
| { |
| unsigned long mask = x86_pmu.lbr_nr - 1; |
| struct perf_branch_entry *br = cpuc->lbr_entries; |
| u64 tos = intel_pmu_lbr_tos(); |
| int i; |
| |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| unsigned long lbr_idx = (tos - i) & mask; |
| union { |
| struct { |
| u32 from; |
| u32 to; |
| }; |
| u64 lbr; |
| } msr_lastbranch; |
| |
| rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); |
| |
| perf_clear_branch_entry_bitfields(br); |
| |
| br->from = msr_lastbranch.from; |
| br->to = msr_lastbranch.to; |
| br++; |
| } |
| cpuc->lbr_stack.nr = i; |
| cpuc->lbr_stack.hw_idx = tos; |
| } |
| |
| /* |
| * Due to lack of segmentation in Linux the effective address (offset) |
| * is the same as the linear address, allowing us to merge the LIP and EIP |
| * LBR formats. |
| */ |
| void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) |
| { |
| bool need_info = false, call_stack = false; |
| unsigned long mask = x86_pmu.lbr_nr - 1; |
| struct perf_branch_entry *br = cpuc->lbr_entries; |
| u64 tos = intel_pmu_lbr_tos(); |
| int i; |
| int out = 0; |
| int num = x86_pmu.lbr_nr; |
| |
| if (cpuc->lbr_sel) { |
| need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); |
| if (cpuc->lbr_sel->config & LBR_CALL_STACK) |
| call_stack = true; |
| } |
| |
| for (i = 0; i < num; i++) { |
| unsigned long lbr_idx = (tos - i) & mask; |
| u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; |
| u16 cycles = 0; |
| |
| from = rdlbr_from(lbr_idx, NULL); |
| to = rdlbr_to(lbr_idx, NULL); |
| |
| /* |
| * Read LBR call stack entries |
| * until invalid entry (0s) is detected. |
| */ |
| if (call_stack && !from) |
| break; |
| |
| if (x86_pmu.lbr_has_info) { |
| if (need_info) { |
| u64 info; |
| |
| info = rdlbr_info(lbr_idx, NULL); |
| mis = !!(info & LBR_INFO_MISPRED); |
| pred = !mis; |
| cycles = (info & LBR_INFO_CYCLES); |
| if (x86_pmu.lbr_has_tsx) { |
| in_tx = !!(info & LBR_INFO_IN_TX); |
| abort = !!(info & LBR_INFO_ABORT); |
| } |
| } |
| } else { |
| int skip = 0; |
| |
| if (x86_pmu.lbr_from_flags) { |
| mis = !!(from & LBR_FROM_FLAG_MISPRED); |
| pred = !mis; |
| skip = 1; |
| } |
| if (x86_pmu.lbr_has_tsx) { |
| in_tx = !!(from & LBR_FROM_FLAG_IN_TX); |
| abort = !!(from & LBR_FROM_FLAG_ABORT); |
| skip = 3; |
| } |
| from = (u64)((((s64)from) << skip) >> skip); |
| |
| if (x86_pmu.lbr_to_cycles) { |
| cycles = ((to >> 48) & LBR_INFO_CYCLES); |
| to = (u64)((((s64)to) << 16) >> 16); |
| } |
| } |
| |
| /* |
| * Some CPUs report duplicated abort records, |
| * with the second entry not having an abort bit set. |
| * Skip them here. This loop runs backwards, |
| * so we need to undo the previous record. |
| * If the abort just happened outside the window |
| * the extra entry cannot be removed. |
| */ |
| if (abort && x86_pmu.lbr_double_abort && out > 0) |
| out--; |
| |
| perf_clear_branch_entry_bitfields(br+out); |
| br[out].from = from; |
| br[out].to = to; |
| br[out].mispred = mis; |
| br[out].predicted = pred; |
| br[out].in_tx = in_tx; |
| br[out].abort = abort; |
| br[out].cycles = cycles; |
| out++; |
| } |
| cpuc->lbr_stack.nr = out; |
| cpuc->lbr_stack.hw_idx = tos; |
| } |
| |
| static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred); |
| static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles); |
| static DEFINE_STATIC_KEY_FALSE(x86_lbr_type); |
| |
| static __always_inline int get_lbr_br_type(u64 info) |
| { |
| int type = 0; |
| |
| if (static_branch_likely(&x86_lbr_type)) |
| type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET; |
| |
| return type; |
| } |
| |
| static __always_inline bool get_lbr_mispred(u64 info) |
| { |
| bool mispred = 0; |
| |
| if (static_branch_likely(&x86_lbr_mispred)) |
| mispred = !!(info & LBR_INFO_MISPRED); |
| |
| return mispred; |
| } |
| |
| static __always_inline u16 get_lbr_cycles(u64 info) |
| { |
| u16 cycles = info & LBR_INFO_CYCLES; |
| |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR) && |
| (!static_branch_likely(&x86_lbr_cycles) || |
| !(info & LBR_INFO_CYC_CNT_VALID))) |
| cycles = 0; |
| |
| return cycles; |
| } |
| |
| static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc, |
| struct lbr_entry *entries) |
| { |
| struct perf_branch_entry *e; |
| struct lbr_entry *lbr; |
| u64 from, to, info; |
| int i; |
| |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| lbr = entries ? &entries[i] : NULL; |
| e = &cpuc->lbr_entries[i]; |
| |
| from = rdlbr_from(i, lbr); |
| /* |
| * Read LBR entries until invalid entry (0s) is detected. |
| */ |
| if (!from) |
| break; |
| |
| to = rdlbr_to(i, lbr); |
| info = rdlbr_info(i, lbr); |
| |
| perf_clear_branch_entry_bitfields(e); |
| |
| e->from = from; |
| e->to = to; |
| e->mispred = get_lbr_mispred(info); |
| e->predicted = !e->mispred; |
| e->in_tx = !!(info & LBR_INFO_IN_TX); |
| e->abort = !!(info & LBR_INFO_ABORT); |
| e->cycles = get_lbr_cycles(info); |
| e->type = get_lbr_br_type(info); |
| } |
| |
| cpuc->lbr_stack.nr = i; |
| } |
| |
| static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc) |
| { |
| intel_pmu_store_lbr(cpuc, NULL); |
| } |
| |
| static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc) |
| { |
| struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave; |
| |
| if (!xsave) { |
| intel_pmu_store_lbr(cpuc, NULL); |
| return; |
| } |
| xsaves(&xsave->xsave, XFEATURE_MASK_LBR); |
| |
| intel_pmu_store_lbr(cpuc, xsave->lbr.entries); |
| } |
| |
| void intel_pmu_lbr_read(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| /* |
| * Don't read when all LBRs users are using adaptive PEBS. |
| * |
| * This could be smarter and actually check the event, |
| * but this simple approach seems to work for now. |
| */ |
| if (!cpuc->lbr_users || vlbr_exclude_host() || |
| cpuc->lbr_users == cpuc->lbr_pebs_users) |
| return; |
| |
| x86_pmu.lbr_read(cpuc); |
| |
| intel_pmu_lbr_filter(cpuc); |
| } |
| |
| /* |
| * SW filter is used: |
| * - in case there is no HW filter |
| * - in case the HW filter has errata or limitations |
| */ |
| static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) |
| { |
| u64 br_type = event->attr.branch_sample_type; |
| int mask = 0; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_USER) |
| mask |= X86_BR_USER; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_KERNEL) |
| mask |= X86_BR_KERNEL; |
| |
| /* we ignore BRANCH_HV here */ |
| |
| if (br_type & PERF_SAMPLE_BRANCH_ANY) |
| mask |= X86_BR_ANY; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) |
| mask |= X86_BR_ANY_CALL; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) |
| mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) |
| mask |= X86_BR_IND_CALL; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) |
| mask |= X86_BR_ABORT; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_IN_TX) |
| mask |= X86_BR_IN_TX; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_NO_TX) |
| mask |= X86_BR_NO_TX; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_COND) |
| mask |= X86_BR_JCC; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { |
| if (!x86_pmu_has_lbr_callstack()) |
| return -EOPNOTSUPP; |
| if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) |
| return -EINVAL; |
| mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | |
| X86_BR_CALL_STACK; |
| } |
| |
| if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) |
| mask |= X86_BR_IND_JMP; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_CALL) |
| mask |= X86_BR_CALL | X86_BR_ZERO_CALL; |
| |
| if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE) |
| mask |= X86_BR_TYPE_SAVE; |
| |
| /* |
| * stash actual user request into reg, it may |
| * be used by fixup code for some CPU |
| */ |
| event->hw.branch_reg.reg = mask; |
| return 0; |
| } |
| |
| /* |
| * setup the HW LBR filter |
| * Used only when available, may not be enough to disambiguate |
| * all branches, may need the help of the SW filter |
| */ |
| static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) |
| { |
| struct hw_perf_event_extra *reg; |
| u64 br_type = event->attr.branch_sample_type; |
| u64 mask = 0, v; |
| int i; |
| |
| for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { |
| if (!(br_type & (1ULL << i))) |
| continue; |
| |
| v = x86_pmu.lbr_sel_map[i]; |
| if (v == LBR_NOT_SUPP) |
| return -EOPNOTSUPP; |
| |
| if (v != LBR_IGN) |
| mask |= v; |
| } |
| |
| reg = &event->hw.branch_reg; |
| reg->idx = EXTRA_REG_LBR; |
| |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR)) { |
| reg->config = mask; |
| return 0; |
| } |
| |
| /* |
| * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate |
| * in suppress mode. So LBR_SELECT should be set to |
| * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) |
| * But the 10th bit LBR_CALL_STACK does not operate |
| * in suppress mode. |
| */ |
| reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK); |
| |
| if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && |
| (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && |
| x86_pmu.lbr_has_info) |
| reg->config |= LBR_NO_INFO; |
| |
| return 0; |
| } |
| |
| int intel_pmu_setup_lbr_filter(struct perf_event *event) |
| { |
| int ret = 0; |
| |
| /* |
| * no LBR on this PMU |
| */ |
| if (!x86_pmu.lbr_nr) |
| return -EOPNOTSUPP; |
| |
| /* |
| * setup SW LBR filter |
| */ |
| ret = intel_pmu_setup_sw_lbr_filter(event); |
| if (ret) |
| return ret; |
| |
| /* |
| * setup HW LBR filter, if any |
| */ |
| if (x86_pmu.lbr_sel_map) |
| ret = intel_pmu_setup_hw_lbr_filter(event); |
| |
| return ret; |
| } |
| |
| /* |
| * return the type of control flow change at address "from" |
| * instruction is not necessarily a branch (in case of interrupt). |
| * |
| * The branch type returned also includes the priv level of the |
| * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). |
| * |
| * If a branch type is unknown OR the instruction cannot be |
| * decoded (e.g., text page not present), then X86_BR_NONE is |
| * returned. |
| */ |
| static int branch_type(unsigned long from, unsigned long to, int abort) |
| { |
| struct insn insn; |
| void *addr; |
| int bytes_read, bytes_left; |
| int ret = X86_BR_NONE; |
| int ext, to_plm, from_plm; |
| u8 buf[MAX_INSN_SIZE]; |
| int is64 = 0; |
| |
| to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; |
| from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; |
| |
| /* |
| * maybe zero if lbr did not fill up after a reset by the time |
| * we get a PMU interrupt |
| */ |
| if (from == 0 || to == 0) |
| return X86_BR_NONE; |
| |
| if (abort) |
| return X86_BR_ABORT | to_plm; |
| |
| if (from_plm == X86_BR_USER) { |
| /* |
| * can happen if measuring at the user level only |
| * and we interrupt in a kernel thread, e.g., idle. |
| */ |
| if (!current->mm) |
| return X86_BR_NONE; |
| |
| /* may fail if text not present */ |
| bytes_left = copy_from_user_nmi(buf, (void __user *)from, |
| MAX_INSN_SIZE); |
| bytes_read = MAX_INSN_SIZE - bytes_left; |
| if (!bytes_read) |
| return X86_BR_NONE; |
| |
| addr = buf; |
| } else { |
| /* |
| * The LBR logs any address in the IP, even if the IP just |
| * faulted. This means userspace can control the from address. |
| * Ensure we don't blindly read any address by validating it is |
| * a known text address. |
| */ |
| if (kernel_text_address(from)) { |
| addr = (void *)from; |
| /* |
| * Assume we can get the maximum possible size |
| * when grabbing kernel data. This is not |
| * _strictly_ true since we could possibly be |
| * executing up next to a memory hole, but |
| * it is very unlikely to be a problem. |
| */ |
| bytes_read = MAX_INSN_SIZE; |
| } else { |
| return X86_BR_NONE; |
| } |
| } |
| |
| /* |
| * decoder needs to know the ABI especially |
| * on 64-bit systems running 32-bit apps |
| */ |
| #ifdef CONFIG_X86_64 |
| is64 = kernel_ip((unsigned long)addr) || any_64bit_mode(current_pt_regs()); |
| #endif |
| insn_init(&insn, addr, bytes_read, is64); |
| if (insn_get_opcode(&insn)) |
| return X86_BR_ABORT; |
| |
| switch (insn.opcode.bytes[0]) { |
| case 0xf: |
| switch (insn.opcode.bytes[1]) { |
| case 0x05: /* syscall */ |
| case 0x34: /* sysenter */ |
| ret = X86_BR_SYSCALL; |
| break; |
| case 0x07: /* sysret */ |
| case 0x35: /* sysexit */ |
| ret = X86_BR_SYSRET; |
| break; |
| case 0x80 ... 0x8f: /* conditional */ |
| ret = X86_BR_JCC; |
| break; |
| default: |
| ret = X86_BR_NONE; |
| } |
| break; |
| case 0x70 ... 0x7f: /* conditional */ |
| ret = X86_BR_JCC; |
| break; |
| case 0xc2: /* near ret */ |
| case 0xc3: /* near ret */ |
| case 0xca: /* far ret */ |
| case 0xcb: /* far ret */ |
| ret = X86_BR_RET; |
| break; |
| case 0xcf: /* iret */ |
| ret = X86_BR_IRET; |
| break; |
| case 0xcc ... 0xce: /* int */ |
| ret = X86_BR_INT; |
| break; |
| case 0xe8: /* call near rel */ |
| if (insn_get_immediate(&insn) || insn.immediate1.value == 0) { |
| /* zero length call */ |
| ret = X86_BR_ZERO_CALL; |
| break; |
| } |
| fallthrough; |
| case 0x9a: /* call far absolute */ |
| ret = X86_BR_CALL; |
| break; |
| case 0xe0 ... 0xe3: /* loop jmp */ |
| ret = X86_BR_JCC; |
| break; |
| case 0xe9 ... 0xeb: /* jmp */ |
| ret = X86_BR_JMP; |
| break; |
| case 0xff: /* call near absolute, call far absolute ind */ |
| if (insn_get_modrm(&insn)) |
| return X86_BR_ABORT; |
| |
| ext = (insn.modrm.bytes[0] >> 3) & 0x7; |
| switch (ext) { |
| case 2: /* near ind call */ |
| case 3: /* far ind call */ |
| ret = X86_BR_IND_CALL; |
| break; |
| case 4: |
| case 5: |
| ret = X86_BR_IND_JMP; |
| break; |
| } |
| break; |
| default: |
| ret = X86_BR_NONE; |
| } |
| /* |
| * interrupts, traps, faults (and thus ring transition) may |
| * occur on any instructions. Thus, to classify them correctly, |
| * we need to first look at the from and to priv levels. If they |
| * are different and to is in the kernel, then it indicates |
| * a ring transition. If the from instruction is not a ring |
| * transition instr (syscall, systenter, int), then it means |
| * it was a irq, trap or fault. |
| * |
| * we have no way of detecting kernel to kernel faults. |
| */ |
| if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL |
| && ret != X86_BR_SYSCALL && ret != X86_BR_INT) |
| ret = X86_BR_IRQ; |
| |
| /* |
| * branch priv level determined by target as |
| * is done by HW when LBR_SELECT is implemented |
| */ |
| if (ret != X86_BR_NONE) |
| ret |= to_plm; |
| |
| return ret; |
| } |
| |
| #define X86_BR_TYPE_MAP_MAX 16 |
| |
| static int branch_map[X86_BR_TYPE_MAP_MAX] = { |
| PERF_BR_CALL, /* X86_BR_CALL */ |
| PERF_BR_RET, /* X86_BR_RET */ |
| PERF_BR_SYSCALL, /* X86_BR_SYSCALL */ |
| PERF_BR_SYSRET, /* X86_BR_SYSRET */ |
| PERF_BR_UNKNOWN, /* X86_BR_INT */ |
| PERF_BR_ERET, /* X86_BR_IRET */ |
| PERF_BR_COND, /* X86_BR_JCC */ |
| PERF_BR_UNCOND, /* X86_BR_JMP */ |
| PERF_BR_IRQ, /* X86_BR_IRQ */ |
| PERF_BR_IND_CALL, /* X86_BR_IND_CALL */ |
| PERF_BR_UNKNOWN, /* X86_BR_ABORT */ |
| PERF_BR_UNKNOWN, /* X86_BR_IN_TX */ |
| PERF_BR_UNKNOWN, /* X86_BR_NO_TX */ |
| PERF_BR_CALL, /* X86_BR_ZERO_CALL */ |
| PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */ |
| PERF_BR_IND, /* X86_BR_IND_JMP */ |
| }; |
| |
| static int |
| common_branch_type(int type) |
| { |
| int i; |
| |
| type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */ |
| |
| if (type) { |
| i = __ffs(type); |
| if (i < X86_BR_TYPE_MAP_MAX) |
| return branch_map[i]; |
| } |
| |
| return PERF_BR_UNKNOWN; |
| } |
| |
| enum { |
| ARCH_LBR_BR_TYPE_JCC = 0, |
| ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1, |
| ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2, |
| ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3, |
| ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4, |
| ARCH_LBR_BR_TYPE_NEAR_RET = 5, |
| ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET, |
| |
| ARCH_LBR_BR_TYPE_MAP_MAX = 16, |
| }; |
| |
| static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = { |
| [ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC, |
| [ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP, |
| [ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP, |
| [ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL, |
| [ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL, |
| [ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET, |
| }; |
| |
| /* |
| * implement actual branch filter based on user demand. |
| * Hardware may not exactly satisfy that request, thus |
| * we need to inspect opcodes. Mismatched branches are |
| * discarded. Therefore, the number of branches returned |
| * in PERF_SAMPLE_BRANCH_STACK sample may vary. |
| */ |
| static void |
| intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) |
| { |
| u64 from, to; |
| int br_sel = cpuc->br_sel; |
| int i, j, type, to_plm; |
| bool compress = false; |
| |
| /* if sampling all branches, then nothing to filter */ |
| if (((br_sel & X86_BR_ALL) == X86_BR_ALL) && |
| ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE)) |
| return; |
| |
| for (i = 0; i < cpuc->lbr_stack.nr; i++) { |
| |
| from = cpuc->lbr_entries[i].from; |
| to = cpuc->lbr_entries[i].to; |
| type = cpuc->lbr_entries[i].type; |
| |
| /* |
| * Parse the branch type recorded in LBR_x_INFO MSR. |
| * Doesn't support OTHER_BRANCH decoding for now. |
| * OTHER_BRANCH branch type still rely on software decoding. |
| */ |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR) && |
| type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) { |
| to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; |
| type = arch_lbr_br_type_map[type] | to_plm; |
| } else |
| type = branch_type(from, to, cpuc->lbr_entries[i].abort); |
| if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { |
| if (cpuc->lbr_entries[i].in_tx) |
| type |= X86_BR_IN_TX; |
| else |
| type |= X86_BR_NO_TX; |
| } |
| |
| /* if type does not correspond, then discard */ |
| if (type == X86_BR_NONE || (br_sel & type) != type) { |
| cpuc->lbr_entries[i].from = 0; |
| compress = true; |
| } |
| |
| if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE) |
| cpuc->lbr_entries[i].type = common_branch_type(type); |
| } |
| |
| if (!compress) |
| return; |
| |
| /* remove all entries with from=0 */ |
| for (i = 0; i < cpuc->lbr_stack.nr; ) { |
| if (!cpuc->lbr_entries[i].from) { |
| j = i; |
| while (++j < cpuc->lbr_stack.nr) |
| cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; |
| cpuc->lbr_stack.nr--; |
| if (!cpuc->lbr_entries[i].from) |
| continue; |
| } |
| i++; |
| } |
| } |
| |
| void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| /* Cannot get TOS for large PEBS and Arch LBR */ |
| if (static_cpu_has(X86_FEATURE_ARCH_LBR) || |
| (cpuc->n_pebs == cpuc->n_large_pebs)) |
| cpuc->lbr_stack.hw_idx = -1ULL; |
| else |
| cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos(); |
| |
| intel_pmu_store_lbr(cpuc, lbr); |
| intel_pmu_lbr_filter(cpuc); |
| } |
| |
| /* |
| * Map interface branch filters onto LBR filters |
| */ |
| static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { |
| [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, |
| [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, |
| [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, |
| [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, |
| [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP |
| | LBR_IND_JMP | LBR_FAR, |
| /* |
| * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches |
| */ |
| [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = |
| LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, |
| /* |
| * NHM/WSM erratum: must include IND_JMP to capture IND_CALL |
| */ |
| [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, |
| [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, |
| [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, |
| }; |
| |
| static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { |
| [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, |
| [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, |
| [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, |
| [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, |
| [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, |
| [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL |
| | LBR_FAR, |
| [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, |
| [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, |
| [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, |
| [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, |
| }; |
| |
| static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { |
| [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, |
| [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, |
| [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, |
| [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, |
| [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, |
| [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL |
| | LBR_FAR, |
| [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, |
| [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, |
| [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL |
| | LBR_RETURN | LBR_CALL_STACK, |
| [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, |
| [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, |
| }; |
| |
| static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { |
| [PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY, |
| [PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER, |
| [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL, |
| [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, |
| [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN | |
| ARCH_LBR_OTHER_BRANCH, |
| [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL | |
| ARCH_LBR_IND_CALL | |
| ARCH_LBR_OTHER_BRANCH, |
| [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL, |
| [PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC, |
| [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL | |
| ARCH_LBR_IND_CALL | |
| ARCH_LBR_RETURN | |
| ARCH_LBR_CALL_STACK, |
| [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP, |
| [PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL, |
| }; |
| |
| /* core */ |
| void __init intel_pmu_lbr_init_core(void) |
| { |
| x86_pmu.lbr_nr = 4; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_CORE_FROM; |
| x86_pmu.lbr_to = MSR_LBR_CORE_TO; |
| |
| /* |
| * SW branch filter usage: |
| * - compensate for lack of HW filter |
| */ |
| } |
| |
| /* nehalem/westmere */ |
| void __init intel_pmu_lbr_init_nhm(void) |
| { |
| x86_pmu.lbr_nr = 16; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_NHM_FROM; |
| x86_pmu.lbr_to = MSR_LBR_NHM_TO; |
| |
| x86_pmu.lbr_sel_mask = LBR_SEL_MASK; |
| x86_pmu.lbr_sel_map = nhm_lbr_sel_map; |
| |
| /* |
| * SW branch filter usage: |
| * - workaround LBR_SEL errata (see above) |
| * - support syscall, sysret capture. |
| * That requires LBR_FAR but that means far |
| * jmp need to be filtered out |
| */ |
| } |
| |
| /* sandy bridge */ |
| void __init intel_pmu_lbr_init_snb(void) |
| { |
| x86_pmu.lbr_nr = 16; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_NHM_FROM; |
| x86_pmu.lbr_to = MSR_LBR_NHM_TO; |
| |
| x86_pmu.lbr_sel_mask = LBR_SEL_MASK; |
| x86_pmu.lbr_sel_map = snb_lbr_sel_map; |
| |
| /* |
| * SW branch filter usage: |
| * - support syscall, sysret capture. |
| * That requires LBR_FAR but that means far |
| * jmp need to be filtered out |
| */ |
| } |
| |
| static inline struct kmem_cache * |
| create_lbr_kmem_cache(size_t size, size_t align) |
| { |
| return kmem_cache_create("x86_lbr", size, align, 0, NULL); |
| } |
| |
| /* haswell */ |
| void intel_pmu_lbr_init_hsw(void) |
| { |
| size_t size = sizeof(struct x86_perf_task_context); |
| |
| x86_pmu.lbr_nr = 16; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_NHM_FROM; |
| x86_pmu.lbr_to = MSR_LBR_NHM_TO; |
| |
| x86_pmu.lbr_sel_mask = LBR_SEL_MASK; |
| x86_pmu.lbr_sel_map = hsw_lbr_sel_map; |
| |
| x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0); |
| |
| if (lbr_from_signext_quirk_needed()) |
| static_branch_enable(&lbr_from_quirk_key); |
| } |
| |
| /* skylake */ |
| __init void intel_pmu_lbr_init_skl(void) |
| { |
| size_t size = sizeof(struct x86_perf_task_context); |
| |
| x86_pmu.lbr_nr = 32; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_NHM_FROM; |
| x86_pmu.lbr_to = MSR_LBR_NHM_TO; |
| x86_pmu.lbr_info = MSR_LBR_INFO_0; |
| |
| x86_pmu.lbr_sel_mask = LBR_SEL_MASK; |
| x86_pmu.lbr_sel_map = hsw_lbr_sel_map; |
| |
| x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0); |
| |
| /* |
| * SW branch filter usage: |
| * - support syscall, sysret capture. |
| * That requires LBR_FAR but that means far |
| * jmp need to be filtered out |
| */ |
| } |
| |
| /* atom */ |
| void __init intel_pmu_lbr_init_atom(void) |
| { |
| /* |
| * only models starting at stepping 10 seems |
| * to have an operational LBR which can freeze |
| * on PMU interrupt |
| */ |
| if (boot_cpu_data.x86_model == 28 |
| && boot_cpu_data.x86_stepping < 10) { |
| pr_cont("LBR disabled due to erratum"); |
| return; |
| } |
| |
| x86_pmu.lbr_nr = 8; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_CORE_FROM; |
| x86_pmu.lbr_to = MSR_LBR_CORE_TO; |
| |
| /* |
| * SW branch filter usage: |
| * - compensate for lack of HW filter |
| */ |
| } |
| |
| /* slm */ |
| void __init intel_pmu_lbr_init_slm(void) |
| { |
| x86_pmu.lbr_nr = 8; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_CORE_FROM; |
| x86_pmu.lbr_to = MSR_LBR_CORE_TO; |
| |
| x86_pmu.lbr_sel_mask = LBR_SEL_MASK; |
| x86_pmu.lbr_sel_map = nhm_lbr_sel_map; |
| |
| /* |
| * SW branch filter usage: |
| * - compensate for lack of HW filter |
| */ |
| pr_cont("8-deep LBR, "); |
| } |
| |
| /* Knights Landing */ |
| void intel_pmu_lbr_init_knl(void) |
| { |
| x86_pmu.lbr_nr = 8; |
| x86_pmu.lbr_tos = MSR_LBR_TOS; |
| x86_pmu.lbr_from = MSR_LBR_NHM_FROM; |
| x86_pmu.lbr_to = MSR_LBR_NHM_TO; |
| |
| x86_pmu.lbr_sel_mask = LBR_SEL_MASK; |
| x86_pmu.lbr_sel_map = snb_lbr_sel_map; |
| |
| /* Knights Landing does have MISPREDICT bit */ |
| if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP) |
| x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS; |
| } |
| |
| void intel_pmu_lbr_init(void) |
| { |
| switch (x86_pmu.intel_cap.lbr_format) { |
| case LBR_FORMAT_EIP_FLAGS2: |
| x86_pmu.lbr_has_tsx = 1; |
| fallthrough; |
| case LBR_FORMAT_EIP_FLAGS: |
| x86_pmu.lbr_from_flags = 1; |
| break; |
| |
| case LBR_FORMAT_INFO: |
| x86_pmu.lbr_has_tsx = 1; |
| fallthrough; |
| case LBR_FORMAT_INFO2: |
| x86_pmu.lbr_has_info = 1; |
| break; |
| |
| case LBR_FORMAT_TIME: |
| x86_pmu.lbr_from_flags = 1; |
| x86_pmu.lbr_to_cycles = 1; |
| break; |
| } |
| |
| if (x86_pmu.lbr_has_info) { |
| /* |
| * Only used in combination with baseline pebs. |
| */ |
| static_branch_enable(&x86_lbr_mispred); |
| static_branch_enable(&x86_lbr_cycles); |
| } |
| } |
| |
| /* |
| * LBR state size is variable based on the max number of registers. |
| * This calculates the expected state size, which should match |
| * what the hardware enumerates for the size of XFEATURE_LBR. |
| */ |
| static inline unsigned int get_lbr_state_size(void) |
| { |
| return sizeof(struct arch_lbr_state) + |
| x86_pmu.lbr_nr * sizeof(struct lbr_entry); |
| } |
| |
| static bool is_arch_lbr_xsave_available(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_XSAVES)) |
| return false; |
| |
| /* |
| * Check the LBR state with the corresponding software structure. |
| * Disable LBR XSAVES support if the size doesn't match. |
| */ |
| if (xfeature_size(XFEATURE_LBR) == 0) |
| return false; |
| |
| if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size())) |
| return false; |
| |
| return true; |
| } |
| |
| void __init intel_pmu_arch_lbr_init(void) |
| { |
| struct pmu *pmu = x86_get_pmu(smp_processor_id()); |
| union cpuid28_eax eax; |
| union cpuid28_ebx ebx; |
| union cpuid28_ecx ecx; |
| unsigned int unused_edx; |
| bool arch_lbr_xsave; |
| size_t size; |
| u64 lbr_nr; |
| |
| /* Arch LBR Capabilities */ |
| cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx); |
| |
| lbr_nr = fls(eax.split.lbr_depth_mask) * 8; |
| if (!lbr_nr) |
| goto clear_arch_lbr; |
| |
| /* Apply the max depth of Arch LBR */ |
| if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr)) |
| goto clear_arch_lbr; |
| |
| x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask; |
| x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset; |
| x86_pmu.lbr_lip = eax.split.lbr_lip; |
| x86_pmu.lbr_cpl = ebx.split.lbr_cpl; |
| x86_pmu.lbr_filter = ebx.split.lbr_filter; |
| x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack; |
| x86_pmu.lbr_mispred = ecx.split.lbr_mispred; |
| x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr; |
| x86_pmu.lbr_br_type = ecx.split.lbr_br_type; |
| x86_pmu.lbr_nr = lbr_nr; |
| |
| if (x86_pmu.lbr_mispred) |
| static_branch_enable(&x86_lbr_mispred); |
| if (x86_pmu.lbr_timed_lbr) |
| static_branch_enable(&x86_lbr_cycles); |
| if (x86_pmu.lbr_br_type) |
| static_branch_enable(&x86_lbr_type); |
| |
| arch_lbr_xsave = is_arch_lbr_xsave_available(); |
| if (arch_lbr_xsave) { |
| size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) + |
| get_lbr_state_size(); |
| pmu->task_ctx_cache = create_lbr_kmem_cache(size, |
| XSAVE_ALIGNMENT); |
| } |
| |
| if (!pmu->task_ctx_cache) { |
| arch_lbr_xsave = false; |
| |
| size = sizeof(struct x86_perf_task_context_arch_lbr) + |
| lbr_nr * sizeof(struct lbr_entry); |
| pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0); |
| } |
| |
| x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0; |
| x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0; |
| x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0; |
| |
| /* LBR callstack requires both CPL and Branch Filtering support */ |
| if (!x86_pmu.lbr_cpl || |
| !x86_pmu.lbr_filter || |
| !x86_pmu.lbr_call_stack) |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP; |
| |
| if (!x86_pmu.lbr_cpl) { |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP; |
| } else if (!x86_pmu.lbr_filter) { |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP; |
| arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP; |
| } |
| |
| x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK; |
| x86_pmu.lbr_ctl_map = arch_lbr_ctl_map; |
| |
| if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter) |
| x86_pmu.lbr_ctl_map = NULL; |
| |
| x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset; |
| if (arch_lbr_xsave) { |
| x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves; |
| x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors; |
| x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave; |
| pr_cont("XSAVE "); |
| } else { |
| x86_pmu.lbr_save = intel_pmu_arch_lbr_save; |
| x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore; |
| x86_pmu.lbr_read = intel_pmu_arch_lbr_read; |
| } |
| |
| pr_cont("Architectural LBR, "); |
| |
| return; |
| |
| clear_arch_lbr: |
| clear_cpu_cap(&boot_cpu_data, X86_FEATURE_ARCH_LBR); |
| } |
| |
| /** |
| * x86_perf_get_lbr - get the LBR records information |
| * |
| * @lbr: the caller's memory to store the LBR records information |
| * |
| * Returns: 0 indicates the LBR info has been successfully obtained |
| */ |
| int x86_perf_get_lbr(struct x86_pmu_lbr *lbr) |
| { |
| int lbr_fmt = x86_pmu.intel_cap.lbr_format; |
| |
| lbr->nr = x86_pmu.lbr_nr; |
| lbr->from = x86_pmu.lbr_from; |
| lbr->to = x86_pmu.lbr_to; |
| lbr->info = (lbr_fmt == LBR_FORMAT_INFO) ? x86_pmu.lbr_info : 0; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(x86_perf_get_lbr); |
| |
| struct event_constraint vlbr_constraint = |
| __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR), |
| FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT); |