blob: 51a0fe60c050d13e5ba74162b832483d7d224139 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <drm/drm_managed.h>
#include "gem/i915_gem_internal.h"
#include "gem/i915_gem_lmem.h"
#include "pxp/intel_pxp.h"
#include "i915_drv.h"
#include "intel_context.h"
#include "intel_engine_regs.h"
#include "intel_gt.h"
#include "intel_gt_buffer_pool.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_debugfs.h"
#include "intel_gt_gmch.h"
#include "intel_gt_pm.h"
#include "intel_gt_regs.h"
#include "intel_gt_requests.h"
#include "intel_migrate.h"
#include "intel_mocs.h"
#include "intel_pm.h"
#include "intel_rc6.h"
#include "intel_renderstate.h"
#include "intel_rps.h"
#include "intel_gt_sysfs.h"
#include "intel_uncore.h"
#include "shmem_utils.h"
static void __intel_gt_init_early(struct intel_gt *gt)
{
spin_lock_init(&gt->irq_lock);
mutex_init(&gt->tlb_invalidate_lock);
INIT_LIST_HEAD(&gt->closed_vma);
spin_lock_init(&gt->closed_lock);
init_llist_head(&gt->watchdog.list);
INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
intel_gt_init_buffer_pool(gt);
intel_gt_init_reset(gt);
intel_gt_init_requests(gt);
intel_gt_init_timelines(gt);
intel_gt_pm_init_early(gt);
intel_uc_init_early(&gt->uc);
intel_rps_init_early(&gt->rps);
}
/* Preliminary initialization of Tile 0 */
void intel_root_gt_init_early(struct drm_i915_private *i915)
{
struct intel_gt *gt = to_gt(i915);
gt->i915 = i915;
gt->uncore = &i915->uncore;
__intel_gt_init_early(gt);
}
static int intel_gt_probe_lmem(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
unsigned int instance = gt->info.id;
int id = INTEL_REGION_LMEM_0 + instance;
struct intel_memory_region *mem;
int err;
mem = intel_gt_setup_lmem(gt);
if (IS_ERR(mem)) {
err = PTR_ERR(mem);
if (err == -ENODEV)
return 0;
drm_err(&i915->drm,
"Failed to setup region(%d) type=%d\n",
err, INTEL_MEMORY_LOCAL);
return err;
}
mem->id = id;
mem->instance = instance;
intel_memory_region_set_name(mem, "local%u", mem->instance);
GEM_BUG_ON(!HAS_REGION(i915, id));
GEM_BUG_ON(i915->mm.regions[id]);
i915->mm.regions[id] = mem;
return 0;
}
int intel_gt_assign_ggtt(struct intel_gt *gt)
{
gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
return gt->ggtt ? 0 : -ENOMEM;
}
static const char * const intel_steering_types[] = {
"L3BANK",
"MSLICE",
"LNCF",
};
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
{ 0x00B100, 0x00B3FF },
{},
};
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
{ 0x004000, 0x004AFF },
{ 0x00C800, 0x00CFFF },
{ 0x00DD00, 0x00DDFF },
{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
{},
};
static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
{ 0x00B000, 0x00B0FF },
{ 0x00D800, 0x00D8FF },
{},
};
static const struct intel_mmio_range dg2_lncf_steering_table[] = {
{ 0x00B000, 0x00B0FF },
{ 0x00D880, 0x00D8FF },
{},
};
static u16 slicemask(struct intel_gt *gt, int count)
{
u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);
return intel_slicemask_from_dssmask(dss_mask, count);
}
int intel_gt_init_mmio(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
intel_gt_init_clock_frequency(gt);
intel_uc_init_mmio(&gt->uc);
intel_sseu_info_init(gt);
/*
* An mslice is unavailable only if both the meml3 for the slice is
* disabled *and* all of the DSS in the slice (quadrant) are disabled.
*/
if (HAS_MSLICES(i915))
gt->info.mslice_mask =
slicemask(gt, GEN_DSS_PER_MSLICE) |
(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
GEN12_MEML3_EN_MASK);
if (IS_DG2(i915)) {
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
gt->steering_table[LNCF] = dg2_lncf_steering_table;
} else if (IS_XEHPSDV(i915)) {
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
} else if (GRAPHICS_VER(i915) >= 11 &&
GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
gt->steering_table[L3BANK] = icl_l3bank_steering_table;
gt->info.l3bank_mask =
~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
GEN10_L3BANK_MASK;
} else if (HAS_MSLICES(i915)) {
MISSING_CASE(INTEL_INFO(i915)->platform);
}
return intel_engines_init_mmio(gt);
}
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
struct intel_uncore *uncore = gt->uncore;
intel_uncore_write(uncore, RING_CTL(base), 0);
intel_uncore_write(uncore, RING_HEAD(base), 0);
intel_uncore_write(uncore, RING_TAIL(base), 0);
intel_uncore_write(uncore, RING_START(base), 0);
}
static void init_unused_rings(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
if (IS_I830(i915)) {
init_unused_ring(gt, PRB1_BASE);
init_unused_ring(gt, SRB0_BASE);
init_unused_ring(gt, SRB1_BASE);
init_unused_ring(gt, SRB2_BASE);
init_unused_ring(gt, SRB3_BASE);
} else if (GRAPHICS_VER(i915) == 2) {
init_unused_ring(gt, SRB0_BASE);
init_unused_ring(gt, SRB1_BASE);
} else if (GRAPHICS_VER(i915) == 3) {
init_unused_ring(gt, PRB1_BASE);
init_unused_ring(gt, PRB2_BASE);
}
}
int intel_gt_init_hw(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
int ret;
gt->last_init_time = ktime_get();
/* Double layer security blanket, see i915_gem_init() */
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
if (IS_HASWELL(i915))
intel_uncore_write(uncore,
HSW_MI_PREDICATE_RESULT_2,
IS_HSW_GT3(i915) ?
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
/* Apply the GT workarounds... */
intel_gt_apply_workarounds(gt);
/* ...and determine whether they are sticking. */
intel_gt_verify_workarounds(gt, "init");
intel_gt_init_swizzling(gt);
/*
* At least 830 can leave some of the unused rings
* "active" (ie. head != tail) after resume which
* will prevent c3 entry. Makes sure all unused rings
* are totally idle.
*/
init_unused_rings(gt);
ret = i915_ppgtt_init_hw(gt);
if (ret) {
DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
goto out;
}
/* We can't enable contexts until all firmware is loaded */
ret = intel_uc_init_hw(&gt->uc);
if (ret) {
i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
goto out;
}
intel_mocs_init(gt);
out:
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
return ret;
}
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
intel_uncore_rmw(uncore, reg, 0, set);
}
static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
intel_uncore_rmw(uncore, reg, clr, 0);
}
static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
intel_uncore_rmw(uncore, reg, 0, 0);
}
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
{
GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
GEN6_RING_FAULT_REG_POSTING_READ(engine);
}
void
intel_gt_clear_error_registers(struct intel_gt *gt,
intel_engine_mask_t engine_mask)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
u32 eir;
if (GRAPHICS_VER(i915) != 2)
clear_register(uncore, PGTBL_ER);
if (GRAPHICS_VER(i915) < 4)
clear_register(uncore, IPEIR(RENDER_RING_BASE));
else
clear_register(uncore, IPEIR_I965);
clear_register(uncore, EIR);
eir = intel_uncore_read(uncore, EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
rmw_set(uncore, EMR, eir);
intel_uncore_write(uncore, GEN2_IIR,
I915_MASTER_ERROR_INTERRUPT);
}
if (GRAPHICS_VER(i915) >= 12) {
rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
} else if (GRAPHICS_VER(i915) >= 8) {
rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
} else if (GRAPHICS_VER(i915) >= 6) {
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine_masked(engine, gt, engine_mask, id)
gen6_clear_engine_error_register(engine);
}
}
static void gen6_check_faults(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 fault;
for_each_engine(engine, gt, id) {
fault = GEN6_RING_FAULT_REG_READ(engine);
if (fault & RING_FAULT_VALID) {
drm_dbg(&engine->i915->drm, "Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %d\n"
"\tType: %d\n",
fault & PAGE_MASK,
fault & RING_FAULT_GTTSEL_MASK ?
"GGTT" : "PPGTT",
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
}
static void gen8_check_faults(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
u32 fault;
if (GRAPHICS_VER(gt->i915) >= 12) {
fault_reg = GEN12_RING_FAULT_REG;
fault_data0_reg = GEN12_FAULT_TLB_DATA0;
fault_data1_reg = GEN12_FAULT_TLB_DATA1;
} else {
fault_reg = GEN8_RING_FAULT_REG;
fault_data0_reg = GEN8_FAULT_TLB_DATA0;
fault_data1_reg = GEN8_FAULT_TLB_DATA1;
}
fault = intel_uncore_read(uncore, fault_reg);
if (fault & RING_FAULT_VALID) {
u32 fault_data0, fault_data1;
u64 fault_addr;
fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
((u64)fault_data0 << 12);
drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
"\tAddr: 0x%08x_%08x\n"
"\tAddress space: %s\n"
"\tEngine ID: %d\n"
"\tSource ID: %d\n"
"\tType: %d\n",
upper_32_bits(fault_addr), lower_32_bits(fault_addr),
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
GEN8_RING_FAULT_ENGINE_ID(fault),
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
if (GRAPHICS_VER(i915) >= 8)
gen8_check_faults(gt);
else if (GRAPHICS_VER(i915) >= 6)
gen6_check_faults(gt);
else
return;
intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
intel_wakeref_t wakeref;
/*
* No actual flushing is required for the GTT write domain for reads
* from the GTT domain. Writes to it "immediately" go to main memory
* as far as we know, so there's no chipset flush. It also doesn't
* land in the GPU render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*
* We also have to wait a bit for the writes to land from the GTT.
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
* timing. This issue has only been observed when switching quickly
* between GTT writes and CPU reads from inside the kernel on recent hw,
* and it appears to only affect discrete GTT blocks (i.e. on LLC
* system agents we cannot reproduce this behaviour, until Cannonlake
* that was!).
*/
wmb();
if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
return;
intel_gt_chipset_flush(gt);
with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
unsigned long flags;
spin_lock_irqsave(&uncore->lock, flags);
intel_uncore_posting_read_fw(uncore,
RING_HEAD(RENDER_RING_BASE));
spin_unlock_irqrestore(&uncore->lock, flags);
}
}
void intel_gt_chipset_flush(struct intel_gt *gt)
{
wmb();
if (GRAPHICS_VER(gt->i915) < 6)
intel_gt_gmch_gen5_chipset_flush(gt);
}
void intel_gt_driver_register(struct intel_gt *gt)
{
intel_gsc_init(&gt->gsc, gt->i915);
intel_rps_driver_register(&gt->rps);
intel_gt_debugfs_register(gt);
intel_gt_sysfs_register(gt);
}
static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
{
struct drm_i915_private *i915 = gt->i915;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create_lmem(i915, size,
I915_BO_ALLOC_VOLATILE |
I915_BO_ALLOC_GPU_ONLY);
if (IS_ERR(obj))
obj = i915_gem_object_create_stolen(i915, size);
if (IS_ERR(obj))
obj = i915_gem_object_create_internal(i915, size);
if (IS_ERR(obj)) {
drm_err(&i915->drm, "Failed to allocate scratch page\n");
return PTR_ERR(obj);
}
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
if (ret)
goto err_unref;
gt->scratch = i915_vma_make_unshrinkable(vma);
return 0;
err_unref:
i915_gem_object_put(obj);
return ret;
}
static void intel_gt_fini_scratch(struct intel_gt *gt)
{
i915_vma_unpin_and_release(&gt->scratch, 0);
}
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
else
return i915_vm_get(&gt->ggtt->vm);
}
static int __engines_record_defaults(struct intel_gt *gt)
{
struct i915_request *requests[I915_NUM_ENGINES] = {};
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* As we reset the gpu during very early sanitisation, the current
* register state on the GPU should reflect its defaults values.
* We load a context onto the hw (with restore-inhibit), then switch
* over to a second context to save that default register state. We
* can then prime every new context with that state so they all start
* from the same default HW values.
*/
for_each_engine(engine, gt, id) {
struct intel_renderstate so;
struct intel_context *ce;
struct i915_request *rq;
/* We must be able to switch to something! */
GEM_BUG_ON(!engine->kernel_context);
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out;
}
err = intel_renderstate_init(&so, ce);
if (err)
goto err;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_fini;
}
err = intel_engine_emit_ctx_wa(rq);
if (err)
goto err_rq;
err = intel_renderstate_emit(&so, rq);
if (err)
goto err_rq;
err_rq:
requests[id] = i915_request_get(rq);
i915_request_add(rq);
err_fini:
intel_renderstate_fini(&so, ce);
err:
if (err) {
intel_context_put(ce);
goto out;
}
}
/* Flush the default context image to memory, and enable powersaving. */
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
err = -EIO;
goto out;
}
for (id = 0; id < ARRAY_SIZE(requests); id++) {
struct i915_request *rq;
struct file *state;
rq = requests[id];
if (!rq)
continue;
if (rq->fence.error) {
err = -EIO;
goto out;
}
GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
if (!rq->context->state)
continue;
/* Keep a copy of the state's backing pages; free the obj */
state = shmem_create_from_object(rq->context->state->obj);
if (IS_ERR(state)) {
err = PTR_ERR(state);
goto out;
}
rq->engine->default_state = state;
}
out:
/*
* If we have to abandon now, we expect the engines to be idle
* and ready to be torn-down. The quickest way we can accomplish
* this is by declaring ourselves wedged.
*/
if (err)
intel_gt_set_wedged(gt);
for (id = 0; id < ARRAY_SIZE(requests); id++) {
struct intel_context *ce;
struct i915_request *rq;
rq = requests[id];
if (!rq)
continue;
ce = rq->context;
i915_request_put(rq);
intel_context_put(ce);
}
return err;
}
static int __engines_verify_workarounds(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return 0;
for_each_engine(engine, gt, id) {
if (intel_engine_verify_workarounds(engine, "load"))
err = -EIO;
}
/* Flush and restore the kernel context for safety */
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
err = -EIO;
return err;
}
static void __intel_gt_disable(struct intel_gt *gt)
{
intel_gt_set_wedged_on_fini(gt);
intel_gt_suspend_prepare(gt);
intel_gt_suspend_late(gt);
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
{
long remaining_timeout;
/* If the device is asleep, we have no requests outstanding */
if (!intel_gt_pm_is_awake(gt))
return 0;
while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
&remaining_timeout)) > 0) {
cond_resched();
if (signal_pending(current))
return -EINTR;
}
return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
remaining_timeout);
}
int intel_gt_init(struct intel_gt *gt)
{
int err;
err = i915_inject_probe_error(gt->i915, -ENODEV);
if (err)
return err;
intel_gt_init_workarounds(gt);
/*
* This is just a security blanket to placate dragons.
* On some systems, we very sporadically observe that the first TLBs
* used by the CS may be stale, despite us poking the TLB reset. If
* we hold the forcewake during initialisation these problems
* just magically go away.
*/
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
err = intel_gt_init_scratch(gt,
GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
if (err)
goto out_fw;
intel_gt_pm_init(gt);
gt->vm = kernel_vm(gt);
if (!gt->vm) {
err = -ENOMEM;
goto err_pm;
}
intel_set_mocs_index(gt);
err = intel_engines_init(gt);
if (err)
goto err_engines;
err = intel_uc_init(&gt->uc);
if (err)
goto err_engines;
err = intel_gt_resume(gt);
if (err)
goto err_uc_init;
err = intel_gt_init_hwconfig(gt);
if (err)
drm_err(&gt->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
ERR_PTR(err));
err = __engines_record_defaults(gt);
if (err)
goto err_gt;
err = __engines_verify_workarounds(gt);
if (err)
goto err_gt;
intel_uc_init_late(&gt->uc);
err = i915_inject_probe_error(gt->i915, -EIO);
if (err)
goto err_gt;
intel_migrate_init(&gt->migrate, gt);
intel_pxp_init(&gt->pxp);
goto out_fw;
err_gt:
__intel_gt_disable(gt);
intel_uc_fini_hw(&gt->uc);
err_uc_init:
intel_uc_fini(&gt->uc);
err_engines:
intel_engines_release(gt);
i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
intel_gt_pm_fini(gt);
intel_gt_fini_scratch(gt);
out_fw:
if (err)
intel_gt_set_wedged_on_init(gt);
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
return err;
}
void intel_gt_driver_remove(struct intel_gt *gt)
{
__intel_gt_disable(gt);
intel_migrate_fini(&gt->migrate);
intel_uc_driver_remove(&gt->uc);
intel_engines_release(gt);
intel_gt_flush_buffer_pool(gt);
}
void intel_gt_driver_unregister(struct intel_gt *gt)
{
intel_wakeref_t wakeref;
intel_gt_sysfs_unregister(gt);
intel_rps_driver_unregister(&gt->rps);
intel_gsc_fini(&gt->gsc);
intel_pxp_fini(&gt->pxp);
/*
* Upon unregistering the device to prevent any new users, cancel
* all in-flight requests so that we can quickly unbind the active
* resources.
*/
intel_gt_set_wedged_on_fini(gt);
/* Scrub all HW state upon release */
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
__intel_gt_reset(gt, ALL_ENGINES);
}
void intel_gt_driver_release(struct intel_gt *gt)
{
struct i915_address_space *vm;
vm = fetch_and_zero(&gt->vm);
if (vm) /* FIXME being called twice on error paths :( */
i915_vm_put(vm);
intel_wa_list_free(&gt->wa_list);
intel_gt_pm_fini(gt);
intel_gt_fini_scratch(gt);
intel_gt_fini_buffer_pool(gt);
intel_gt_fini_hwconfig(gt);
}
void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
{
struct intel_gt *gt;
unsigned int id;
/* We need to wait for inflight RCU frees to release their grip */
rcu_barrier();
for_each_gt(gt, i915, id) {
intel_uc_driver_late_release(&gt->uc);
intel_gt_fini_requests(gt);
intel_gt_fini_reset(gt);
intel_gt_fini_timelines(gt);
intel_engines_free(gt);
}
}
/**
* intel_gt_reg_needs_read_steering - determine whether a register read
* requires explicit steering
* @gt: GT structure
* @reg: the register to check steering requirements for
* @type: type of multicast steering to check
*
* Determines whether @reg needs explicit steering of a specific type for
* reads.
*
* Returns false if @reg does not belong to a register range of the given
* steering type, or if the default (subslice-based) steering IDs are suitable
* for @type steering too.
*/
static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
i915_reg_t reg,
enum intel_steering_type type)
{
const u32 offset = i915_mmio_reg_offset(reg);
const struct intel_mmio_range *entry;
if (likely(!intel_gt_needs_read_steering(gt, type)))
return false;
for (entry = gt->steering_table[type]; entry->end; entry++) {
if (offset >= entry->start && offset <= entry->end)
return true;
}
return false;
}
/**
* intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
* @gt: GT structure
* @type: multicast register type
* @sliceid: Slice ID returned
* @subsliceid: Subslice ID returned
*
* Determines sliceid and subsliceid values that will steer reads
* of a specific multicast register class to a valid value.
*/
static void intel_gt_get_valid_steering(struct intel_gt *gt,
enum intel_steering_type type,
u8 *sliceid, u8 *subsliceid)
{
switch (type) {
case L3BANK:
GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
*sliceid = 0; /* unused */
*subsliceid = __ffs(gt->info.l3bank_mask);
break;
case MSLICE:
GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
*sliceid = __ffs(gt->info.mslice_mask);
*subsliceid = 0; /* unused */
break;
case LNCF:
GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
/*
* An LNCF is always present if its mslice is present, so we
* can safely just steer to LNCF 0 in all cases.
*/
*sliceid = __ffs(gt->info.mslice_mask) << 1;
*subsliceid = 0; /* unused */
break;
default:
MISSING_CASE(type);
*sliceid = 0;
*subsliceid = 0;
}
}
/**
* intel_gt_read_register_fw - reads a GT register with support for multicast
* @gt: GT structure
* @reg: register to read
*
* This function will read a GT register. If the register is a multicast
* register, the read will be steered to a valid instance (i.e., one that
* isn't fused off or powered down by power gating).
*
* Returns the value from a valid instance of @reg.
*/
u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
{
int type;
u8 sliceid, subsliceid;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
intel_gt_get_valid_steering(gt, type, &sliceid,
&subsliceid);
return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
reg,
sliceid,
subsliceid);
}
}
return intel_uncore_read_fw(gt->uncore, reg);
}
/**
* intel_gt_get_valid_steering_for_reg - get a valid steering for a register
* @gt: GT structure
* @reg: register for which the steering is required
* @sliceid: return variable for slice steering
* @subsliceid: return variable for subslice steering
*
* This function returns a slice/subslice pair that is guaranteed to work for
* read steering of the given register. Note that a value will be returned even
* if the register is not replicated and therefore does not actually require
* steering.
*/
void intel_gt_get_valid_steering_for_reg(struct intel_gt *gt, i915_reg_t reg,
u8 *sliceid, u8 *subsliceid)
{
int type;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
intel_gt_get_valid_steering(gt, type, sliceid,
subsliceid);
return;
}
}
*sliceid = gt->default_steering.groupid;
*subsliceid = gt->default_steering.instanceid;
}
u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg)
{
int type;
u8 sliceid, subsliceid;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
intel_gt_get_valid_steering(gt, type, &sliceid,
&subsliceid);
return intel_uncore_read_with_mcr_steering(gt->uncore,
reg,
sliceid,
subsliceid);
}
}
return intel_uncore_read(gt->uncore, reg);
}
static void report_steering_type(struct drm_printer *p,
struct intel_gt *gt,
enum intel_steering_type type,
bool dump_table)
{
const struct intel_mmio_range *entry;
u8 slice, subslice;
BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
if (!gt->steering_table[type]) {
drm_printf(p, "%s steering: uses default steering\n",
intel_steering_types[type]);
return;
}
intel_gt_get_valid_steering(gt, type, &slice, &subslice);
drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n",
intel_steering_types[type], slice, subslice);
if (!dump_table)
return;
for (entry = gt->steering_table[type]; entry->end; entry++)
drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
}
void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt,
bool dump_table)
{
drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n",
gt->default_steering.groupid,
gt->default_steering.instanceid);
if (HAS_MSLICES(gt->i915)) {
report_steering_type(p, gt, MSLICE, dump_table);
report_steering_type(p, gt, LNCF, dump_table);
}
}
static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
{
int ret;
if (!gt_is_root(gt)) {
struct intel_uncore_mmio_debug *mmio_debug;
struct intel_uncore *uncore;
uncore = kzalloc(sizeof(*uncore), GFP_KERNEL);
if (!uncore)
return -ENOMEM;
mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL);
if (!mmio_debug) {
kfree(uncore);
return -ENOMEM;
}
gt->uncore = uncore;
gt->uncore->debug = mmio_debug;
__intel_gt_init_early(gt);
}
intel_uncore_init_early(gt->uncore, gt);
ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
if (ret)
return ret;
gt->phys_addr = phys_addr;
return 0;
}
static void
intel_gt_tile_cleanup(struct intel_gt *gt)
{
intel_uncore_cleanup_mmio(gt->uncore);
if (!gt_is_root(gt)) {
kfree(gt->uncore->debug);
kfree(gt->uncore);
kfree(gt);
}
}
int intel_gt_probe_all(struct drm_i915_private *i915)
{
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
struct intel_gt *gt = &i915->gt0;
phys_addr_t phys_addr;
unsigned int mmio_bar;
int ret;
mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0;
phys_addr = pci_resource_start(pdev, mmio_bar);
/*
* We always have at least one primary GT on any device
* and it has been already initialized early during probe
* in i915_driver_probe()
*/
ret = intel_gt_tile_setup(gt, phys_addr);
if (ret)
return ret;
i915->gt[0] = gt;
/* TODO: add more tiles */
return 0;
}
int intel_gt_tiles_init(struct drm_i915_private *i915)
{
struct intel_gt *gt;
unsigned int id;
int ret;
for_each_gt(gt, i915, id) {
ret = intel_gt_probe_lmem(gt);
if (ret)
return ret;
}
return 0;
}
void intel_gt_release_all(struct drm_i915_private *i915)
{
struct intel_gt *gt;
unsigned int id;
for_each_gt(gt, i915, id) {
intel_gt_tile_cleanup(gt);
i915->gt[id] = NULL;
}
}
void intel_gt_info_print(const struct intel_gt_info *info,
struct drm_printer *p)
{
drm_printf(p, "available engines: %x\n", info->engine_mask);
intel_sseu_dump(&info->sseu, p);
}
struct reg_and_bit {
i915_reg_t reg;
u32 bit;
};
static struct reg_and_bit
get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
const i915_reg_t *regs, const unsigned int num)
{
const unsigned int class = engine->class;
struct reg_and_bit rb = { };
if (drm_WARN_ON_ONCE(&engine->i915->drm,
class >= num || !regs[class].reg))
return rb;
rb.reg = regs[class];
if (gen8 && class == VIDEO_DECODE_CLASS)
rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
else
rb.bit = engine->instance;
rb.bit = BIT(rb.bit);
return rb;
}
void intel_gt_invalidate_tlbs(struct intel_gt *gt)
{
static const i915_reg_t gen8_regs[] = {
[RENDER_CLASS] = GEN8_RTCR,
[VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */
[VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR,
[COPY_ENGINE_CLASS] = GEN8_BTCR,
};
static const i915_reg_t gen12_regs[] = {
[RENDER_CLASS] = GEN12_GFX_TLB_INV_CR,
[VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR,
[VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR,
[COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR,
[COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR,
};
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
struct intel_engine_cs *engine;
enum intel_engine_id id;
const i915_reg_t *regs;
unsigned int num = 0;
if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
return;
if (GRAPHICS_VER(i915) == 12) {
regs = gen12_regs;
num = ARRAY_SIZE(gen12_regs);
} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
regs = gen8_regs;
num = ARRAY_SIZE(gen8_regs);
} else if (GRAPHICS_VER(i915) < 8) {
return;
}
if (drm_WARN_ONCE(&i915->drm, !num,
"Platform does not implement TLB invalidation!"))
return;
GEM_TRACE("\n");
assert_rpm_wakelock_held(&i915->runtime_pm);
mutex_lock(&gt->tlb_invalidate_lock);
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
for_each_engine(engine, gt, id) {
/*
* HW architecture suggest typical invalidation time at 40us,
* with pessimistic cases up to 100us and a recommendation to
* cap at 1ms. We go a bit higher just in case.
*/
const unsigned int timeout_us = 100;
const unsigned int timeout_ms = 4;
struct reg_and_bit rb;
rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
if (!i915_mmio_reg_offset(rb.reg))
continue;
intel_uncore_write_fw(uncore, rb.reg, rb.bit);
if (__intel_wait_for_register_fw(uncore,
rb.reg, rb.bit, 0,
timeout_us, timeout_ms,
NULL))
drm_err_ratelimited(&gt->i915->drm,
"%s TLB invalidation did not complete in %ums!\n",
engine->name, timeout_ms);
}
/*
* Use delayed put since a) we mostly expect a flurry of TLB
* invalidations so it is good to avoid paying the forcewake cost and
* b) it works around a bug in Icelake which cannot cope with too rapid
* transitions.
*/
intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
mutex_unlock(&gt->tlb_invalidate_lock);
}