| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. |
| * Copyright (C) 2010 Red Hat, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_quota.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_log.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_trace.h" |
| #include "xfs_error.h" |
| #include "xfs_defer.h" |
| #include "xfs_inode.h" |
| #include "xfs_dquot_item.h" |
| #include "xfs_dquot.h" |
| #include "xfs_icache.h" |
| |
| struct kmem_cache *xfs_trans_cache; |
| |
| #if defined(CONFIG_TRACEPOINTS) |
| static void |
| xfs_trans_trace_reservations( |
| struct xfs_mount *mp) |
| { |
| struct xfs_trans_res *res; |
| struct xfs_trans_res *end_res; |
| int i; |
| |
| res = (struct xfs_trans_res *)M_RES(mp); |
| end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); |
| for (i = 0; res < end_res; i++, res++) |
| trace_xfs_trans_resv_calc(mp, i, res); |
| } |
| #else |
| # define xfs_trans_trace_reservations(mp) |
| #endif |
| |
| /* |
| * Initialize the precomputed transaction reservation values |
| * in the mount structure. |
| */ |
| void |
| xfs_trans_init( |
| struct xfs_mount *mp) |
| { |
| xfs_trans_resv_calc(mp, M_RES(mp)); |
| xfs_trans_trace_reservations(mp); |
| } |
| |
| /* |
| * Free the transaction structure. If there is more clean up |
| * to do when the structure is freed, add it here. |
| */ |
| STATIC void |
| xfs_trans_free( |
| struct xfs_trans *tp) |
| { |
| xfs_extent_busy_sort(&tp->t_busy); |
| xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); |
| |
| trace_xfs_trans_free(tp, _RET_IP_); |
| xfs_trans_clear_context(tp); |
| if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) |
| sb_end_intwrite(tp->t_mountp->m_super); |
| xfs_trans_free_dqinfo(tp); |
| kmem_cache_free(xfs_trans_cache, tp); |
| } |
| |
| /* |
| * This is called to create a new transaction which will share the |
| * permanent log reservation of the given transaction. The remaining |
| * unused block and rt extent reservations are also inherited. This |
| * implies that the original transaction is no longer allowed to allocate |
| * blocks. Locks and log items, however, are no inherited. They must |
| * be added to the new transaction explicitly. |
| */ |
| STATIC struct xfs_trans * |
| xfs_trans_dup( |
| struct xfs_trans *tp) |
| { |
| struct xfs_trans *ntp; |
| |
| trace_xfs_trans_dup(tp, _RET_IP_); |
| |
| ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); |
| |
| /* |
| * Initialize the new transaction structure. |
| */ |
| ntp->t_magic = XFS_TRANS_HEADER_MAGIC; |
| ntp->t_mountp = tp->t_mountp; |
| INIT_LIST_HEAD(&ntp->t_items); |
| INIT_LIST_HEAD(&ntp->t_busy); |
| INIT_LIST_HEAD(&ntp->t_dfops); |
| ntp->t_firstblock = NULLFSBLOCK; |
| |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| ASSERT(tp->t_ticket != NULL); |
| |
| ntp->t_flags = XFS_TRANS_PERM_LOG_RES | |
| (tp->t_flags & XFS_TRANS_RESERVE) | |
| (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | |
| (tp->t_flags & XFS_TRANS_RES_FDBLKS); |
| /* We gave our writer reference to the new transaction */ |
| tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; |
| ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); |
| |
| ASSERT(tp->t_blk_res >= tp->t_blk_res_used); |
| ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; |
| tp->t_blk_res = tp->t_blk_res_used; |
| |
| ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; |
| tp->t_rtx_res = tp->t_rtx_res_used; |
| |
| xfs_trans_switch_context(tp, ntp); |
| |
| /* move deferred ops over to the new tp */ |
| xfs_defer_move(ntp, tp); |
| |
| xfs_trans_dup_dqinfo(tp, ntp); |
| return ntp; |
| } |
| |
| /* |
| * This is called to reserve free disk blocks and log space for the |
| * given transaction. This must be done before allocating any resources |
| * within the transaction. |
| * |
| * This will return ENOSPC if there are not enough blocks available. |
| * It will sleep waiting for available log space. |
| * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which |
| * is used by long running transactions. If any one of the reservations |
| * fails then they will all be backed out. |
| * |
| * This does not do quota reservations. That typically is done by the |
| * caller afterwards. |
| */ |
| static int |
| xfs_trans_reserve( |
| struct xfs_trans *tp, |
| struct xfs_trans_res *resp, |
| uint blocks, |
| uint rtextents) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| int error = 0; |
| bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; |
| |
| /* |
| * Attempt to reserve the needed disk blocks by decrementing |
| * the number needed from the number available. This will |
| * fail if the count would go below zero. |
| */ |
| if (blocks > 0) { |
| error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd); |
| if (error != 0) |
| return -ENOSPC; |
| tp->t_blk_res += blocks; |
| } |
| |
| /* |
| * Reserve the log space needed for this transaction. |
| */ |
| if (resp->tr_logres > 0) { |
| bool permanent = false; |
| |
| ASSERT(tp->t_log_res == 0 || |
| tp->t_log_res == resp->tr_logres); |
| ASSERT(tp->t_log_count == 0 || |
| tp->t_log_count == resp->tr_logcount); |
| |
| if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { |
| tp->t_flags |= XFS_TRANS_PERM_LOG_RES; |
| permanent = true; |
| } else { |
| ASSERT(tp->t_ticket == NULL); |
| ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); |
| } |
| |
| if (tp->t_ticket != NULL) { |
| ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); |
| error = xfs_log_regrant(mp, tp->t_ticket); |
| } else { |
| error = xfs_log_reserve(mp, resp->tr_logres, |
| resp->tr_logcount, |
| &tp->t_ticket, permanent); |
| } |
| |
| if (error) |
| goto undo_blocks; |
| |
| tp->t_log_res = resp->tr_logres; |
| tp->t_log_count = resp->tr_logcount; |
| } |
| |
| /* |
| * Attempt to reserve the needed realtime extents by decrementing |
| * the number needed from the number available. This will |
| * fail if the count would go below zero. |
| */ |
| if (rtextents > 0) { |
| error = xfs_mod_frextents(mp, -((int64_t)rtextents)); |
| if (error) { |
| error = -ENOSPC; |
| goto undo_log; |
| } |
| tp->t_rtx_res += rtextents; |
| } |
| |
| return 0; |
| |
| /* |
| * Error cases jump to one of these labels to undo any |
| * reservations which have already been performed. |
| */ |
| undo_log: |
| if (resp->tr_logres > 0) { |
| xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); |
| tp->t_ticket = NULL; |
| tp->t_log_res = 0; |
| tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; |
| } |
| |
| undo_blocks: |
| if (blocks > 0) { |
| xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd); |
| tp->t_blk_res = 0; |
| } |
| return error; |
| } |
| |
| int |
| xfs_trans_alloc( |
| struct xfs_mount *mp, |
| struct xfs_trans_res *resp, |
| uint blocks, |
| uint rtextents, |
| uint flags, |
| struct xfs_trans **tpp) |
| { |
| struct xfs_trans *tp; |
| bool want_retry = true; |
| int error; |
| |
| /* |
| * Allocate the handle before we do our freeze accounting and setting up |
| * GFP_NOFS allocation context so that we avoid lockdep false positives |
| * by doing GFP_KERNEL allocations inside sb_start_intwrite(). |
| */ |
| retry: |
| tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); |
| if (!(flags & XFS_TRANS_NO_WRITECOUNT)) |
| sb_start_intwrite(mp->m_super); |
| xfs_trans_set_context(tp); |
| |
| /* |
| * Zero-reservation ("empty") transactions can't modify anything, so |
| * they're allowed to run while we're frozen. |
| */ |
| WARN_ON(resp->tr_logres > 0 && |
| mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); |
| ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || |
| xfs_has_lazysbcount(mp)); |
| |
| tp->t_magic = XFS_TRANS_HEADER_MAGIC; |
| tp->t_flags = flags; |
| tp->t_mountp = mp; |
| INIT_LIST_HEAD(&tp->t_items); |
| INIT_LIST_HEAD(&tp->t_busy); |
| INIT_LIST_HEAD(&tp->t_dfops); |
| tp->t_firstblock = NULLFSBLOCK; |
| |
| error = xfs_trans_reserve(tp, resp, blocks, rtextents); |
| if (error == -ENOSPC && want_retry) { |
| xfs_trans_cancel(tp); |
| |
| /* |
| * We weren't able to reserve enough space for the transaction. |
| * Flush the other speculative space allocations to free space. |
| * Do not perform a synchronous scan because callers can hold |
| * other locks. |
| */ |
| xfs_blockgc_flush_all(mp); |
| want_retry = false; |
| goto retry; |
| } |
| if (error) { |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| trace_xfs_trans_alloc(tp, _RET_IP_); |
| |
| *tpp = tp; |
| return 0; |
| } |
| |
| /* |
| * Create an empty transaction with no reservation. This is a defensive |
| * mechanism for routines that query metadata without actually modifying them -- |
| * if the metadata being queried is somehow cross-linked (think a btree block |
| * pointer that points higher in the tree), we risk deadlock. However, blocks |
| * grabbed as part of a transaction can be re-grabbed. The verifiers will |
| * notice the corrupt block and the operation will fail back to userspace |
| * without deadlocking. |
| * |
| * Note the zero-length reservation; this transaction MUST be cancelled without |
| * any dirty data. |
| * |
| * Callers should obtain freeze protection to avoid a conflict with fs freezing |
| * where we can be grabbing buffers at the same time that freeze is trying to |
| * drain the buffer LRU list. |
| */ |
| int |
| xfs_trans_alloc_empty( |
| struct xfs_mount *mp, |
| struct xfs_trans **tpp) |
| { |
| struct xfs_trans_res resv = {0}; |
| |
| return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); |
| } |
| |
| /* |
| * Record the indicated change to the given field for application |
| * to the file system's superblock when the transaction commits. |
| * For now, just store the change in the transaction structure. |
| * |
| * Mark the transaction structure to indicate that the superblock |
| * needs to be updated before committing. |
| * |
| * Because we may not be keeping track of allocated/free inodes and |
| * used filesystem blocks in the superblock, we do not mark the |
| * superblock dirty in this transaction if we modify these fields. |
| * We still need to update the transaction deltas so that they get |
| * applied to the incore superblock, but we don't want them to |
| * cause the superblock to get locked and logged if these are the |
| * only fields in the superblock that the transaction modifies. |
| */ |
| void |
| xfs_trans_mod_sb( |
| xfs_trans_t *tp, |
| uint field, |
| int64_t delta) |
| { |
| uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); |
| xfs_mount_t *mp = tp->t_mountp; |
| |
| switch (field) { |
| case XFS_TRANS_SB_ICOUNT: |
| tp->t_icount_delta += delta; |
| if (xfs_has_lazysbcount(mp)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_IFREE: |
| tp->t_ifree_delta += delta; |
| if (xfs_has_lazysbcount(mp)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_FDBLOCKS: |
| /* |
| * Track the number of blocks allocated in the transaction. |
| * Make sure it does not exceed the number reserved. If so, |
| * shutdown as this can lead to accounting inconsistency. |
| */ |
| if (delta < 0) { |
| tp->t_blk_res_used += (uint)-delta; |
| if (tp->t_blk_res_used > tp->t_blk_res) |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { |
| int64_t blkres_delta; |
| |
| /* |
| * Return freed blocks directly to the reservation |
| * instead of the global pool, being careful not to |
| * overflow the trans counter. This is used to preserve |
| * reservation across chains of transaction rolls that |
| * repeatedly free and allocate blocks. |
| */ |
| blkres_delta = min_t(int64_t, delta, |
| UINT_MAX - tp->t_blk_res); |
| tp->t_blk_res += blkres_delta; |
| delta -= blkres_delta; |
| } |
| tp->t_fdblocks_delta += delta; |
| if (xfs_has_lazysbcount(mp)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_RES_FDBLOCKS: |
| /* |
| * The allocation has already been applied to the |
| * in-core superblock's counter. This should only |
| * be applied to the on-disk superblock. |
| */ |
| tp->t_res_fdblocks_delta += delta; |
| if (xfs_has_lazysbcount(mp)) |
| flags &= ~XFS_TRANS_SB_DIRTY; |
| break; |
| case XFS_TRANS_SB_FREXTENTS: |
| /* |
| * Track the number of blocks allocated in the |
| * transaction. Make sure it does not exceed the |
| * number reserved. |
| */ |
| if (delta < 0) { |
| tp->t_rtx_res_used += (uint)-delta; |
| ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); |
| } |
| tp->t_frextents_delta += delta; |
| break; |
| case XFS_TRANS_SB_RES_FREXTENTS: |
| /* |
| * The allocation has already been applied to the |
| * in-core superblock's counter. This should only |
| * be applied to the on-disk superblock. |
| */ |
| ASSERT(delta < 0); |
| tp->t_res_frextents_delta += delta; |
| break; |
| case XFS_TRANS_SB_DBLOCKS: |
| tp->t_dblocks_delta += delta; |
| break; |
| case XFS_TRANS_SB_AGCOUNT: |
| ASSERT(delta > 0); |
| tp->t_agcount_delta += delta; |
| break; |
| case XFS_TRANS_SB_IMAXPCT: |
| tp->t_imaxpct_delta += delta; |
| break; |
| case XFS_TRANS_SB_REXTSIZE: |
| tp->t_rextsize_delta += delta; |
| break; |
| case XFS_TRANS_SB_RBMBLOCKS: |
| tp->t_rbmblocks_delta += delta; |
| break; |
| case XFS_TRANS_SB_RBLOCKS: |
| tp->t_rblocks_delta += delta; |
| break; |
| case XFS_TRANS_SB_REXTENTS: |
| tp->t_rextents_delta += delta; |
| break; |
| case XFS_TRANS_SB_REXTSLOG: |
| tp->t_rextslog_delta += delta; |
| break; |
| default: |
| ASSERT(0); |
| return; |
| } |
| |
| tp->t_flags |= flags; |
| } |
| |
| /* |
| * xfs_trans_apply_sb_deltas() is called from the commit code |
| * to bring the superblock buffer into the current transaction |
| * and modify it as requested by earlier calls to xfs_trans_mod_sb(). |
| * |
| * For now we just look at each field allowed to change and change |
| * it if necessary. |
| */ |
| STATIC void |
| xfs_trans_apply_sb_deltas( |
| xfs_trans_t *tp) |
| { |
| struct xfs_dsb *sbp; |
| struct xfs_buf *bp; |
| int whole = 0; |
| |
| bp = xfs_trans_getsb(tp); |
| sbp = bp->b_addr; |
| |
| /* |
| * Only update the superblock counters if we are logging them |
| */ |
| if (!xfs_has_lazysbcount((tp->t_mountp))) { |
| if (tp->t_icount_delta) |
| be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); |
| if (tp->t_ifree_delta) |
| be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); |
| if (tp->t_fdblocks_delta) |
| be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); |
| if (tp->t_res_fdblocks_delta) |
| be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); |
| } |
| |
| /* |
| * Updating frextents requires careful handling because it does not |
| * behave like the lazysb counters because we cannot rely on log |
| * recovery in older kenels to recompute the value from the rtbitmap. |
| * This means that the ondisk frextents must be consistent with the |
| * rtbitmap. |
| * |
| * Therefore, log the frextents change to the ondisk superblock and |
| * update the incore superblock so that future calls to xfs_log_sb |
| * write the correct value ondisk. |
| * |
| * Don't touch m_frextents because it includes incore reservations, |
| * and those are handled by the unreserve function. |
| */ |
| if (tp->t_frextents_delta || tp->t_res_frextents_delta) { |
| struct xfs_mount *mp = tp->t_mountp; |
| int64_t rtxdelta; |
| |
| rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta; |
| |
| spin_lock(&mp->m_sb_lock); |
| be64_add_cpu(&sbp->sb_frextents, rtxdelta); |
| mp->m_sb.sb_frextents += rtxdelta; |
| spin_unlock(&mp->m_sb_lock); |
| } |
| |
| if (tp->t_dblocks_delta) { |
| be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); |
| whole = 1; |
| } |
| if (tp->t_agcount_delta) { |
| be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); |
| whole = 1; |
| } |
| if (tp->t_imaxpct_delta) { |
| sbp->sb_imax_pct += tp->t_imaxpct_delta; |
| whole = 1; |
| } |
| if (tp->t_rextsize_delta) { |
| be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); |
| whole = 1; |
| } |
| if (tp->t_rbmblocks_delta) { |
| be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); |
| whole = 1; |
| } |
| if (tp->t_rblocks_delta) { |
| be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); |
| whole = 1; |
| } |
| if (tp->t_rextents_delta) { |
| be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); |
| whole = 1; |
| } |
| if (tp->t_rextslog_delta) { |
| sbp->sb_rextslog += tp->t_rextslog_delta; |
| whole = 1; |
| } |
| |
| xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); |
| if (whole) |
| /* |
| * Log the whole thing, the fields are noncontiguous. |
| */ |
| xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); |
| else |
| /* |
| * Since all the modifiable fields are contiguous, we |
| * can get away with this. |
| */ |
| xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount), |
| offsetof(struct xfs_dsb, sb_frextents) + |
| sizeof(sbp->sb_frextents) - 1); |
| } |
| |
| /* |
| * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and |
| * apply superblock counter changes to the in-core superblock. The |
| * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT |
| * applied to the in-core superblock. The idea is that that has already been |
| * done. |
| * |
| * If we are not logging superblock counters, then the inode allocated/free and |
| * used block counts are not updated in the on disk superblock. In this case, |
| * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we |
| * still need to update the incore superblock with the changes. |
| * |
| * Deltas for the inode count are +/-64, hence we use a large batch size of 128 |
| * so we don't need to take the counter lock on every update. |
| */ |
| #define XFS_ICOUNT_BATCH 128 |
| |
| void |
| xfs_trans_unreserve_and_mod_sb( |
| struct xfs_trans *tp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; |
| int64_t blkdelta = 0; |
| int64_t rtxdelta = 0; |
| int64_t idelta = 0; |
| int64_t ifreedelta = 0; |
| int error; |
| |
| /* calculate deltas */ |
| if (tp->t_blk_res > 0) |
| blkdelta = tp->t_blk_res; |
| if ((tp->t_fdblocks_delta != 0) && |
| (xfs_has_lazysbcount(mp) || |
| (tp->t_flags & XFS_TRANS_SB_DIRTY))) |
| blkdelta += tp->t_fdblocks_delta; |
| |
| if (tp->t_rtx_res > 0) |
| rtxdelta = tp->t_rtx_res; |
| if ((tp->t_frextents_delta != 0) && |
| (tp->t_flags & XFS_TRANS_SB_DIRTY)) |
| rtxdelta += tp->t_frextents_delta; |
| |
| if (xfs_has_lazysbcount(mp) || |
| (tp->t_flags & XFS_TRANS_SB_DIRTY)) { |
| idelta = tp->t_icount_delta; |
| ifreedelta = tp->t_ifree_delta; |
| } |
| |
| /* apply the per-cpu counters */ |
| if (blkdelta) { |
| error = xfs_mod_fdblocks(mp, blkdelta, rsvd); |
| ASSERT(!error); |
| } |
| |
| if (idelta) |
| percpu_counter_add_batch(&mp->m_icount, idelta, |
| XFS_ICOUNT_BATCH); |
| |
| if (ifreedelta) |
| percpu_counter_add(&mp->m_ifree, ifreedelta); |
| |
| if (rtxdelta) { |
| error = xfs_mod_frextents(mp, rtxdelta); |
| ASSERT(!error); |
| } |
| |
| if (!(tp->t_flags & XFS_TRANS_SB_DIRTY)) |
| return; |
| |
| /* apply remaining deltas */ |
| spin_lock(&mp->m_sb_lock); |
| mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta; |
| mp->m_sb.sb_icount += idelta; |
| mp->m_sb.sb_ifree += ifreedelta; |
| /* |
| * Do not touch sb_frextents here because we are dealing with incore |
| * reservation. sb_frextents is not part of the lazy sb counters so it |
| * must be consistent with the ondisk rtbitmap and must never include |
| * incore reservations. |
| */ |
| mp->m_sb.sb_dblocks += tp->t_dblocks_delta; |
| mp->m_sb.sb_agcount += tp->t_agcount_delta; |
| mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; |
| mp->m_sb.sb_rextsize += tp->t_rextsize_delta; |
| mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; |
| mp->m_sb.sb_rblocks += tp->t_rblocks_delta; |
| mp->m_sb.sb_rextents += tp->t_rextents_delta; |
| mp->m_sb.sb_rextslog += tp->t_rextslog_delta; |
| spin_unlock(&mp->m_sb_lock); |
| |
| /* |
| * Debug checks outside of the spinlock so they don't lock up the |
| * machine if they fail. |
| */ |
| ASSERT(mp->m_sb.sb_imax_pct >= 0); |
| ASSERT(mp->m_sb.sb_rextslog >= 0); |
| return; |
| } |
| |
| /* Add the given log item to the transaction's list of log items. */ |
| void |
| xfs_trans_add_item( |
| struct xfs_trans *tp, |
| struct xfs_log_item *lip) |
| { |
| ASSERT(lip->li_log == tp->t_mountp->m_log); |
| ASSERT(lip->li_ailp == tp->t_mountp->m_ail); |
| ASSERT(list_empty(&lip->li_trans)); |
| ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); |
| |
| list_add_tail(&lip->li_trans, &tp->t_items); |
| trace_xfs_trans_add_item(tp, _RET_IP_); |
| } |
| |
| /* |
| * Unlink the log item from the transaction. the log item is no longer |
| * considered dirty in this transaction, as the linked transaction has |
| * finished, either by abort or commit completion. |
| */ |
| void |
| xfs_trans_del_item( |
| struct xfs_log_item *lip) |
| { |
| clear_bit(XFS_LI_DIRTY, &lip->li_flags); |
| list_del_init(&lip->li_trans); |
| } |
| |
| /* Detach and unlock all of the items in a transaction */ |
| static void |
| xfs_trans_free_items( |
| struct xfs_trans *tp, |
| bool abort) |
| { |
| struct xfs_log_item *lip, *next; |
| |
| trace_xfs_trans_free_items(tp, _RET_IP_); |
| |
| list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { |
| xfs_trans_del_item(lip); |
| if (abort) |
| set_bit(XFS_LI_ABORTED, &lip->li_flags); |
| if (lip->li_ops->iop_release) |
| lip->li_ops->iop_release(lip); |
| } |
| } |
| |
| static inline void |
| xfs_log_item_batch_insert( |
| struct xfs_ail *ailp, |
| struct xfs_ail_cursor *cur, |
| struct xfs_log_item **log_items, |
| int nr_items, |
| xfs_lsn_t commit_lsn) |
| { |
| int i; |
| |
| spin_lock(&ailp->ail_lock); |
| /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ |
| xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); |
| |
| for (i = 0; i < nr_items; i++) { |
| struct xfs_log_item *lip = log_items[i]; |
| |
| if (lip->li_ops->iop_unpin) |
| lip->li_ops->iop_unpin(lip, 0); |
| } |
| } |
| |
| /* |
| * Bulk operation version of xfs_trans_committed that takes a log vector of |
| * items to insert into the AIL. This uses bulk AIL insertion techniques to |
| * minimise lock traffic. |
| * |
| * If we are called with the aborted flag set, it is because a log write during |
| * a CIL checkpoint commit has failed. In this case, all the items in the |
| * checkpoint have already gone through iop_committed and iop_committing, which |
| * means that checkpoint commit abort handling is treated exactly the same |
| * as an iclog write error even though we haven't started any IO yet. Hence in |
| * this case all we need to do is iop_committed processing, followed by an |
| * iop_unpin(aborted) call. |
| * |
| * The AIL cursor is used to optimise the insert process. If commit_lsn is not |
| * at the end of the AIL, the insert cursor avoids the need to walk |
| * the AIL to find the insertion point on every xfs_log_item_batch_insert() |
| * call. This saves a lot of needless list walking and is a net win, even |
| * though it slightly increases that amount of AIL lock traffic to set it up |
| * and tear it down. |
| */ |
| void |
| xfs_trans_committed_bulk( |
| struct xfs_ail *ailp, |
| struct list_head *lv_chain, |
| xfs_lsn_t commit_lsn, |
| bool aborted) |
| { |
| #define LOG_ITEM_BATCH_SIZE 32 |
| struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; |
| struct xfs_log_vec *lv; |
| struct xfs_ail_cursor cur; |
| int i = 0; |
| |
| spin_lock(&ailp->ail_lock); |
| xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); |
| spin_unlock(&ailp->ail_lock); |
| |
| /* unpin all the log items */ |
| list_for_each_entry(lv, lv_chain, lv_list) { |
| struct xfs_log_item *lip = lv->lv_item; |
| xfs_lsn_t item_lsn; |
| |
| if (aborted) |
| set_bit(XFS_LI_ABORTED, &lip->li_flags); |
| |
| if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { |
| lip->li_ops->iop_release(lip); |
| continue; |
| } |
| |
| if (lip->li_ops->iop_committed) |
| item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); |
| else |
| item_lsn = commit_lsn; |
| |
| /* item_lsn of -1 means the item needs no further processing */ |
| if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) |
| continue; |
| |
| /* |
| * if we are aborting the operation, no point in inserting the |
| * object into the AIL as we are in a shutdown situation. |
| */ |
| if (aborted) { |
| ASSERT(xlog_is_shutdown(ailp->ail_log)); |
| if (lip->li_ops->iop_unpin) |
| lip->li_ops->iop_unpin(lip, 1); |
| continue; |
| } |
| |
| if (item_lsn != commit_lsn) { |
| |
| /* |
| * Not a bulk update option due to unusual item_lsn. |
| * Push into AIL immediately, rechecking the lsn once |
| * we have the ail lock. Then unpin the item. This does |
| * not affect the AIL cursor the bulk insert path is |
| * using. |
| */ |
| spin_lock(&ailp->ail_lock); |
| if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) |
| xfs_trans_ail_update(ailp, lip, item_lsn); |
| else |
| spin_unlock(&ailp->ail_lock); |
| if (lip->li_ops->iop_unpin) |
| lip->li_ops->iop_unpin(lip, 0); |
| continue; |
| } |
| |
| /* Item is a candidate for bulk AIL insert. */ |
| log_items[i++] = lv->lv_item; |
| if (i >= LOG_ITEM_BATCH_SIZE) { |
| xfs_log_item_batch_insert(ailp, &cur, log_items, |
| LOG_ITEM_BATCH_SIZE, commit_lsn); |
| i = 0; |
| } |
| } |
| |
| /* make sure we insert the remainder! */ |
| if (i) |
| xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); |
| |
| spin_lock(&ailp->ail_lock); |
| xfs_trans_ail_cursor_done(&cur); |
| spin_unlock(&ailp->ail_lock); |
| } |
| |
| /* |
| * Sort transaction items prior to running precommit operations. This will |
| * attempt to order the items such that they will always be locked in the same |
| * order. Items that have no sort function are moved to the end of the list |
| * and so are locked last. |
| * |
| * This may need refinement as different types of objects add sort functions. |
| * |
| * Function is more complex than it needs to be because we are comparing 64 bit |
| * values and the function only returns 32 bit values. |
| */ |
| static int |
| xfs_trans_precommit_sort( |
| void *unused_arg, |
| const struct list_head *a, |
| const struct list_head *b) |
| { |
| struct xfs_log_item *lia = container_of(a, |
| struct xfs_log_item, li_trans); |
| struct xfs_log_item *lib = container_of(b, |
| struct xfs_log_item, li_trans); |
| int64_t diff; |
| |
| /* |
| * If both items are non-sortable, leave them alone. If only one is |
| * sortable, move the non-sortable item towards the end of the list. |
| */ |
| if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort) |
| return 0; |
| if (!lia->li_ops->iop_sort) |
| return 1; |
| if (!lib->li_ops->iop_sort) |
| return -1; |
| |
| diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib); |
| if (diff < 0) |
| return -1; |
| if (diff > 0) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Run transaction precommit functions. |
| * |
| * If there is an error in any of the callouts, then stop immediately and |
| * trigger a shutdown to abort the transaction. There is no recovery possible |
| * from errors at this point as the transaction is dirty.... |
| */ |
| static int |
| xfs_trans_run_precommits( |
| struct xfs_trans *tp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_log_item *lip, *n; |
| int error = 0; |
| |
| /* |
| * Sort the item list to avoid ABBA deadlocks with other transactions |
| * running precommit operations that lock multiple shared items such as |
| * inode cluster buffers. |
| */ |
| list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort); |
| |
| /* |
| * Precommit operations can remove the log item from the transaction |
| * if the log item exists purely to delay modifications until they |
| * can be ordered against other operations. Hence we have to use |
| * list_for_each_entry_safe() here. |
| */ |
| list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) { |
| if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) |
| continue; |
| if (lip->li_ops->iop_precommit) { |
| error = lip->li_ops->iop_precommit(tp, lip); |
| if (error) |
| break; |
| } |
| } |
| if (error) |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| return error; |
| } |
| |
| /* |
| * Commit the given transaction to the log. |
| * |
| * XFS disk error handling mechanism is not based on a typical |
| * transaction abort mechanism. Logically after the filesystem |
| * gets marked 'SHUTDOWN', we can't let any new transactions |
| * be durable - ie. committed to disk - because some metadata might |
| * be inconsistent. In such cases, this returns an error, and the |
| * caller may assume that all locked objects joined to the transaction |
| * have already been unlocked as if the commit had succeeded. |
| * Do not reference the transaction structure after this call. |
| */ |
| static int |
| __xfs_trans_commit( |
| struct xfs_trans *tp, |
| bool regrant) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xlog *log = mp->m_log; |
| xfs_csn_t commit_seq = 0; |
| int error = 0; |
| int sync = tp->t_flags & XFS_TRANS_SYNC; |
| |
| trace_xfs_trans_commit(tp, _RET_IP_); |
| |
| error = xfs_trans_run_precommits(tp); |
| if (error) { |
| if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) |
| xfs_defer_cancel(tp); |
| goto out_unreserve; |
| } |
| |
| /* |
| * Finish deferred items on final commit. Only permanent transactions |
| * should ever have deferred ops. |
| */ |
| WARN_ON_ONCE(!list_empty(&tp->t_dfops) && |
| !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); |
| if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { |
| error = xfs_defer_finish_noroll(&tp); |
| if (error) |
| goto out_unreserve; |
| } |
| |
| /* |
| * If there is nothing to be logged by the transaction, |
| * then unlock all of the items associated with the |
| * transaction and free the transaction structure. |
| * Also make sure to return any reserved blocks to |
| * the free pool. |
| */ |
| if (!(tp->t_flags & XFS_TRANS_DIRTY)) |
| goto out_unreserve; |
| |
| /* |
| * We must check against log shutdown here because we cannot abort log |
| * items and leave them dirty, inconsistent and unpinned in memory while |
| * the log is active. This leaves them open to being written back to |
| * disk, and that will lead to on-disk corruption. |
| */ |
| if (xlog_is_shutdown(log)) { |
| error = -EIO; |
| goto out_unreserve; |
| } |
| |
| ASSERT(tp->t_ticket != NULL); |
| |
| /* |
| * If we need to update the superblock, then do it now. |
| */ |
| if (tp->t_flags & XFS_TRANS_SB_DIRTY) |
| xfs_trans_apply_sb_deltas(tp); |
| xfs_trans_apply_dquot_deltas(tp); |
| |
| xlog_cil_commit(log, tp, &commit_seq, regrant); |
| |
| xfs_trans_free(tp); |
| |
| /* |
| * If the transaction needs to be synchronous, then force the |
| * log out now and wait for it. |
| */ |
| if (sync) { |
| error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL); |
| XFS_STATS_INC(mp, xs_trans_sync); |
| } else { |
| XFS_STATS_INC(mp, xs_trans_async); |
| } |
| |
| return error; |
| |
| out_unreserve: |
| xfs_trans_unreserve_and_mod_sb(tp); |
| |
| /* |
| * It is indeed possible for the transaction to be not dirty but |
| * the dqinfo portion to be. All that means is that we have some |
| * (non-persistent) quota reservations that need to be unreserved. |
| */ |
| xfs_trans_unreserve_and_mod_dquots(tp); |
| if (tp->t_ticket) { |
| if (regrant && !xlog_is_shutdown(log)) |
| xfs_log_ticket_regrant(log, tp->t_ticket); |
| else |
| xfs_log_ticket_ungrant(log, tp->t_ticket); |
| tp->t_ticket = NULL; |
| } |
| xfs_trans_free_items(tp, !!error); |
| xfs_trans_free(tp); |
| |
| XFS_STATS_INC(mp, xs_trans_empty); |
| return error; |
| } |
| |
| int |
| xfs_trans_commit( |
| struct xfs_trans *tp) |
| { |
| return __xfs_trans_commit(tp, false); |
| } |
| |
| /* |
| * Unlock all of the transaction's items and free the transaction. If the |
| * transaction is dirty, we must shut down the filesystem because there is no |
| * way to restore them to their previous state. |
| * |
| * If the transaction has made a log reservation, make sure to release it as |
| * well. |
| * |
| * This is a high level function (equivalent to xfs_trans_commit()) and so can |
| * be called after the transaction has effectively been aborted due to the mount |
| * being shut down. However, if the mount has not been shut down and the |
| * transaction is dirty we will shut the mount down and, in doing so, that |
| * guarantees that the log is shut down, too. Hence we don't need to be as |
| * careful with shutdown state and dirty items here as we need to be in |
| * xfs_trans_commit(). |
| */ |
| void |
| xfs_trans_cancel( |
| struct xfs_trans *tp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xlog *log = mp->m_log; |
| bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); |
| |
| trace_xfs_trans_cancel(tp, _RET_IP_); |
| |
| /* |
| * It's never valid to cancel a transaction with deferred ops attached, |
| * because the transaction is effectively dirty. Complain about this |
| * loudly before freeing the in-memory defer items. |
| */ |
| if (!list_empty(&tp->t_dfops)) { |
| ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops)); |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| dirty = true; |
| xfs_defer_cancel(tp); |
| } |
| |
| /* |
| * See if the caller is relying on us to shut down the filesystem. We |
| * only want an error report if there isn't already a shutdown in |
| * progress, so we only need to check against the mount shutdown state |
| * here. |
| */ |
| if (dirty && !xfs_is_shutdown(mp)) { |
| XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| } |
| #ifdef DEBUG |
| /* Log items need to be consistent until the log is shut down. */ |
| if (!dirty && !xlog_is_shutdown(log)) { |
| struct xfs_log_item *lip; |
| |
| list_for_each_entry(lip, &tp->t_items, li_trans) |
| ASSERT(!xlog_item_is_intent_done(lip)); |
| } |
| #endif |
| xfs_trans_unreserve_and_mod_sb(tp); |
| xfs_trans_unreserve_and_mod_dquots(tp); |
| |
| if (tp->t_ticket) { |
| xfs_log_ticket_ungrant(log, tp->t_ticket); |
| tp->t_ticket = NULL; |
| } |
| |
| xfs_trans_free_items(tp, dirty); |
| xfs_trans_free(tp); |
| } |
| |
| /* |
| * Roll from one trans in the sequence of PERMANENT transactions to |
| * the next: permanent transactions are only flushed out when |
| * committed with xfs_trans_commit(), but we still want as soon |
| * as possible to let chunks of it go to the log. So we commit the |
| * chunk we've been working on and get a new transaction to continue. |
| */ |
| int |
| xfs_trans_roll( |
| struct xfs_trans **tpp) |
| { |
| struct xfs_trans *trans = *tpp; |
| struct xfs_trans_res tres; |
| int error; |
| |
| trace_xfs_trans_roll(trans, _RET_IP_); |
| |
| /* |
| * Copy the critical parameters from one trans to the next. |
| */ |
| tres.tr_logres = trans->t_log_res; |
| tres.tr_logcount = trans->t_log_count; |
| |
| *tpp = xfs_trans_dup(trans); |
| |
| /* |
| * Commit the current transaction. |
| * If this commit failed, then it'd just unlock those items that |
| * are not marked ihold. That also means that a filesystem shutdown |
| * is in progress. The caller takes the responsibility to cancel |
| * the duplicate transaction that gets returned. |
| */ |
| error = __xfs_trans_commit(trans, true); |
| if (error) |
| return error; |
| |
| /* |
| * Reserve space in the log for the next transaction. |
| * This also pushes items in the "AIL", the list of logged items, |
| * out to disk if they are taking up space at the tail of the log |
| * that we want to use. This requires that either nothing be locked |
| * across this call, or that anything that is locked be logged in |
| * the prior and the next transactions. |
| */ |
| tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; |
| return xfs_trans_reserve(*tpp, &tres, 0, 0); |
| } |
| |
| /* |
| * Allocate an transaction, lock and join the inode to it, and reserve quota. |
| * |
| * The caller must ensure that the on-disk dquots attached to this inode have |
| * already been allocated and initialized. The caller is responsible for |
| * releasing ILOCK_EXCL if a new transaction is returned. |
| */ |
| int |
| xfs_trans_alloc_inode( |
| struct xfs_inode *ip, |
| struct xfs_trans_res *resv, |
| unsigned int dblocks, |
| unsigned int rblocks, |
| bool force, |
| struct xfs_trans **tpp) |
| { |
| struct xfs_trans *tp; |
| struct xfs_mount *mp = ip->i_mount; |
| bool retried = false; |
| int error; |
| |
| retry: |
| error = xfs_trans_alloc(mp, resv, dblocks, |
| rblocks / mp->m_sb.sb_rextsize, |
| force ? XFS_TRANS_RESERVE : 0, &tp); |
| if (error) |
| return error; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, 0); |
| |
| error = xfs_qm_dqattach_locked(ip, false); |
| if (error) { |
| /* Caller should have allocated the dquots! */ |
| ASSERT(error != -ENOENT); |
| goto out_cancel; |
| } |
| |
| error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); |
| if ((error == -EDQUOT || error == -ENOSPC) && !retried) { |
| xfs_trans_cancel(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| xfs_blockgc_free_quota(ip, 0); |
| retried = true; |
| goto retry; |
| } |
| if (error) |
| goto out_cancel; |
| |
| *tpp = tp; |
| return 0; |
| |
| out_cancel: |
| xfs_trans_cancel(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| /* |
| * Allocate an transaction in preparation for inode creation by reserving quota |
| * against the given dquots. Callers are not required to hold any inode locks. |
| */ |
| int |
| xfs_trans_alloc_icreate( |
| struct xfs_mount *mp, |
| struct xfs_trans_res *resv, |
| struct xfs_dquot *udqp, |
| struct xfs_dquot *gdqp, |
| struct xfs_dquot *pdqp, |
| unsigned int dblocks, |
| struct xfs_trans **tpp) |
| { |
| struct xfs_trans *tp; |
| bool retried = false; |
| int error; |
| |
| retry: |
| error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); |
| if ((error == -EDQUOT || error == -ENOSPC) && !retried) { |
| xfs_trans_cancel(tp); |
| xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); |
| retried = true; |
| goto retry; |
| } |
| if (error) { |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| *tpp = tp; |
| return 0; |
| } |
| |
| /* |
| * Allocate an transaction, lock and join the inode to it, and reserve quota |
| * in preparation for inode attribute changes that include uid, gid, or prid |
| * changes. |
| * |
| * The caller must ensure that the on-disk dquots attached to this inode have |
| * already been allocated and initialized. The ILOCK will be dropped when the |
| * transaction is committed or cancelled. |
| */ |
| int |
| xfs_trans_alloc_ichange( |
| struct xfs_inode *ip, |
| struct xfs_dquot *new_udqp, |
| struct xfs_dquot *new_gdqp, |
| struct xfs_dquot *new_pdqp, |
| bool force, |
| struct xfs_trans **tpp) |
| { |
| struct xfs_trans *tp; |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_dquot *udqp; |
| struct xfs_dquot *gdqp; |
| struct xfs_dquot *pdqp; |
| bool retried = false; |
| int error; |
| |
| retry: |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| |
| error = xfs_qm_dqattach_locked(ip, false); |
| if (error) { |
| /* Caller should have allocated the dquots! */ |
| ASSERT(error != -ENOENT); |
| goto out_cancel; |
| } |
| |
| /* |
| * For each quota type, skip quota reservations if the inode's dquots |
| * now match the ones that came from the caller, or the caller didn't |
| * pass one in. The inode's dquots can change if we drop the ILOCK to |
| * perform a blockgc scan, so we must preserve the caller's arguments. |
| */ |
| udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL; |
| gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL; |
| pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL; |
| if (udqp || gdqp || pdqp) { |
| unsigned int qflags = XFS_QMOPT_RES_REGBLKS; |
| |
| if (force) |
| qflags |= XFS_QMOPT_FORCE_RES; |
| |
| /* |
| * Reserve enough quota to handle blocks on disk and reserved |
| * for a delayed allocation. We'll actually transfer the |
| * delalloc reservation between dquots at chown time, even |
| * though that part is only semi-transactional. |
| */ |
| error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, |
| pdqp, ip->i_nblocks + ip->i_delayed_blks, |
| 1, qflags); |
| if ((error == -EDQUOT || error == -ENOSPC) && !retried) { |
| xfs_trans_cancel(tp); |
| xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); |
| retried = true; |
| goto retry; |
| } |
| if (error) |
| goto out_cancel; |
| } |
| |
| *tpp = tp; |
| return 0; |
| |
| out_cancel: |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| /* |
| * Allocate an transaction, lock and join the directory and child inodes to it, |
| * and reserve quota for a directory update. If there isn't sufficient space, |
| * @dblocks will be set to zero for a reservationless directory update and |
| * @nospace_error will be set to a negative errno describing the space |
| * constraint we hit. |
| * |
| * The caller must ensure that the on-disk dquots attached to this inode have |
| * already been allocated and initialized. The ILOCKs will be dropped when the |
| * transaction is committed or cancelled. |
| */ |
| int |
| xfs_trans_alloc_dir( |
| struct xfs_inode *dp, |
| struct xfs_trans_res *resv, |
| struct xfs_inode *ip, |
| unsigned int *dblocks, |
| struct xfs_trans **tpp, |
| int *nospace_error) |
| { |
| struct xfs_trans *tp; |
| struct xfs_mount *mp = ip->i_mount; |
| unsigned int resblks; |
| bool retried = false; |
| int error; |
| |
| retry: |
| *nospace_error = 0; |
| resblks = *dblocks; |
| error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| *nospace_error = error; |
| resblks = 0; |
| error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); |
| } |
| if (error) |
| return error; |
| |
| xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| |
| error = xfs_qm_dqattach_locked(dp, false); |
| if (error) { |
| /* Caller should have allocated the dquots! */ |
| ASSERT(error != -ENOENT); |
| goto out_cancel; |
| } |
| |
| error = xfs_qm_dqattach_locked(ip, false); |
| if (error) { |
| /* Caller should have allocated the dquots! */ |
| ASSERT(error != -ENOENT); |
| goto out_cancel; |
| } |
| |
| if (resblks == 0) |
| goto done; |
| |
| error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false); |
| if (error == -EDQUOT || error == -ENOSPC) { |
| if (!retried) { |
| xfs_trans_cancel(tp); |
| xfs_blockgc_free_quota(dp, 0); |
| retried = true; |
| goto retry; |
| } |
| |
| *nospace_error = error; |
| resblks = 0; |
| error = 0; |
| } |
| if (error) |
| goto out_cancel; |
| |
| done: |
| *tpp = tp; |
| *dblocks = resblks; |
| return 0; |
| |
| out_cancel: |
| xfs_trans_cancel(tp); |
| return error; |
| } |