| /* |
| * Copyright 2006 Dave Airlie <airlied@linux.ie> |
| * Copyright © 2006-2009 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * Jesse Barnes <jesse.barnes@intel.com> |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/hdmi.h> |
| #include <drm/drmP.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_edid.h> |
| #include "intel_drv.h" |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| |
| static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi) |
| { |
| return hdmi_to_dig_port(intel_hdmi)->base.base.dev; |
| } |
| |
| static void |
| assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) |
| { |
| struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t enabled_bits; |
| |
| enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; |
| |
| WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits, |
| "HDMI port enabled, expecting disabled\n"); |
| } |
| |
| struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder) |
| { |
| struct intel_digital_port *intel_dig_port = |
| container_of(encoder, struct intel_digital_port, base.base); |
| return &intel_dig_port->hdmi; |
| } |
| |
| static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector) |
| { |
| return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base); |
| } |
| |
| static u32 g4x_infoframe_index(enum hdmi_infoframe_type type) |
| { |
| switch (type) { |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return VIDEO_DIP_SELECT_AVI; |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return VIDEO_DIP_SELECT_SPD; |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return VIDEO_DIP_SELECT_VENDOR; |
| default: |
| DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); |
| return 0; |
| } |
| } |
| |
| static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type) |
| { |
| switch (type) { |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return VIDEO_DIP_ENABLE_AVI; |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return VIDEO_DIP_ENABLE_SPD; |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return VIDEO_DIP_ENABLE_VENDOR; |
| default: |
| DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); |
| return 0; |
| } |
| } |
| |
| static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type) |
| { |
| switch (type) { |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return VIDEO_DIP_ENABLE_AVI_HSW; |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return VIDEO_DIP_ENABLE_SPD_HSW; |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return VIDEO_DIP_ENABLE_VS_HSW; |
| default: |
| DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); |
| return 0; |
| } |
| } |
| |
| static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type, |
| enum transcoder cpu_transcoder, |
| struct drm_i915_private *dev_priv) |
| { |
| switch (type) { |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder); |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder); |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder); |
| default: |
| DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); |
| return 0; |
| } |
| } |
| |
| static void g4x_write_infoframe(struct drm_encoder *encoder, |
| enum hdmi_infoframe_type type, |
| const void *frame, ssize_t len) |
| { |
| const uint32_t *data = frame; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val = I915_READ(VIDEO_DIP_CTL); |
| int i; |
| |
| WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| val &= ~g4x_infoframe_enable(type); |
| |
| I915_WRITE(VIDEO_DIP_CTL, val); |
| |
| mmiowb(); |
| for (i = 0; i < len; i += 4) { |
| I915_WRITE(VIDEO_DIP_DATA, *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| I915_WRITE(VIDEO_DIP_DATA, 0); |
| mmiowb(); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| I915_WRITE(VIDEO_DIP_CTL, val); |
| POSTING_READ(VIDEO_DIP_CTL); |
| } |
| |
| static void ibx_write_infoframe(struct drm_encoder *encoder, |
| enum hdmi_infoframe_type type, |
| const void *frame, ssize_t len) |
| { |
| const uint32_t *data = frame; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe); |
| u32 val = I915_READ(reg); |
| |
| WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| val &= ~g4x_infoframe_enable(type); |
| |
| I915_WRITE(reg, val); |
| |
| mmiowb(); |
| for (i = 0; i < len; i += 4) { |
| I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); |
| mmiowb(); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| |
| static void cpt_write_infoframe(struct drm_encoder *encoder, |
| enum hdmi_infoframe_type type, |
| const void *frame, ssize_t len) |
| { |
| const uint32_t *data = frame; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe); |
| u32 val = I915_READ(reg); |
| |
| WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| /* The DIP control register spec says that we need to update the AVI |
| * infoframe without clearing its enable bit */ |
| if (type != HDMI_INFOFRAME_TYPE_AVI) |
| val &= ~g4x_infoframe_enable(type); |
| |
| I915_WRITE(reg, val); |
| |
| mmiowb(); |
| for (i = 0; i < len; i += 4) { |
| I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); |
| mmiowb(); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| |
| static void vlv_write_infoframe(struct drm_encoder *encoder, |
| enum hdmi_infoframe_type type, |
| const void *frame, ssize_t len) |
| { |
| const uint32_t *data = frame; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); |
| u32 val = I915_READ(reg); |
| |
| WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| val &= ~g4x_infoframe_enable(type); |
| |
| I915_WRITE(reg, val); |
| |
| mmiowb(); |
| for (i = 0; i < len; i += 4) { |
| I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0); |
| mmiowb(); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| |
| static void hsw_write_infoframe(struct drm_encoder *encoder, |
| enum hdmi_infoframe_type type, |
| const void *frame, ssize_t len) |
| { |
| const uint32_t *data = frame; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder); |
| u32 data_reg; |
| int i; |
| u32 val = I915_READ(ctl_reg); |
| |
| data_reg = hsw_infoframe_data_reg(type, |
| intel_crtc->config.cpu_transcoder, |
| dev_priv); |
| if (data_reg == 0) |
| return; |
| |
| val &= ~hsw_infoframe_enable(type); |
| I915_WRITE(ctl_reg, val); |
| |
| mmiowb(); |
| for (i = 0; i < len; i += 4) { |
| I915_WRITE(data_reg + i, *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| I915_WRITE(data_reg + i, 0); |
| mmiowb(); |
| |
| val |= hsw_infoframe_enable(type); |
| I915_WRITE(ctl_reg, val); |
| POSTING_READ(ctl_reg); |
| } |
| |
| /* |
| * The data we write to the DIP data buffer registers is 1 byte bigger than the |
| * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting |
| * at 0). It's also a byte used by DisplayPort so the same DIP registers can be |
| * used for both technologies. |
| * |
| * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 |
| * DW1: DB3 | DB2 | DB1 | DB0 |
| * DW2: DB7 | DB6 | DB5 | DB4 |
| * DW3: ... |
| * |
| * (HB is Header Byte, DB is Data Byte) |
| * |
| * The hdmi pack() functions don't know about that hardware specific hole so we |
| * trick them by giving an offset into the buffer and moving back the header |
| * bytes by one. |
| */ |
| static void intel_write_infoframe(struct drm_encoder *encoder, |
| union hdmi_infoframe *frame) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| uint8_t buffer[VIDEO_DIP_DATA_SIZE]; |
| ssize_t len; |
| |
| /* see comment above for the reason for this offset */ |
| len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1); |
| if (len < 0) |
| return; |
| |
| /* Insert the 'hole' (see big comment above) at position 3 */ |
| buffer[0] = buffer[1]; |
| buffer[1] = buffer[2]; |
| buffer[2] = buffer[3]; |
| buffer[3] = 0; |
| len++; |
| |
| intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len); |
| } |
| |
| static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| union hdmi_infoframe frame; |
| int ret; |
| |
| /* Set user selected PAR to incoming mode's member */ |
| adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio; |
| |
| ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, |
| adjusted_mode); |
| if (ret < 0) { |
| DRM_ERROR("couldn't fill AVI infoframe\n"); |
| return; |
| } |
| |
| if (intel_hdmi->rgb_quant_range_selectable) { |
| if (intel_crtc->config.limited_color_range) |
| frame.avi.quantization_range = |
| HDMI_QUANTIZATION_RANGE_LIMITED; |
| else |
| frame.avi.quantization_range = |
| HDMI_QUANTIZATION_RANGE_FULL; |
| } |
| |
| intel_write_infoframe(encoder, &frame); |
| } |
| |
| static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder) |
| { |
| union hdmi_infoframe frame; |
| int ret; |
| |
| ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx"); |
| if (ret < 0) { |
| DRM_ERROR("couldn't fill SPD infoframe\n"); |
| return; |
| } |
| |
| frame.spd.sdi = HDMI_SPD_SDI_PC; |
| |
| intel_write_infoframe(encoder, &frame); |
| } |
| |
| static void |
| intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder, |
| struct drm_display_mode *adjusted_mode) |
| { |
| union hdmi_infoframe frame; |
| int ret; |
| |
| ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, |
| adjusted_mode); |
| if (ret < 0) |
| return; |
| |
| intel_write_infoframe(encoder, &frame); |
| } |
| |
| static void g4x_set_infoframes(struct drm_encoder *encoder, |
| bool enable, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; |
| u32 reg = VIDEO_DIP_CTL; |
| u32 val = I915_READ(reg); |
| u32 port = VIDEO_DIP_PORT(intel_dig_port->port); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* If the registers were not initialized yet, they might be zeroes, |
| * which means we're selecting the AVI DIP and we're setting its |
| * frequency to once. This seems to really confuse the HW and make |
| * things stop working (the register spec says the AVI always needs to |
| * be sent every VSync). So here we avoid writing to the register more |
| * than we need and also explicitly select the AVI DIP and explicitly |
| * set its frequency to every VSync. Avoiding to write it twice seems to |
| * be enough to solve the problem, but being defensive shouldn't hurt us |
| * either. */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~VIDEO_DIP_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| if (val & VIDEO_DIP_ENABLE) { |
| val &= ~VIDEO_DIP_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| val &= ~VIDEO_DIP_PORT_MASK; |
| val |= port; |
| } |
| |
| val |= VIDEO_DIP_ENABLE; |
| val &= ~VIDEO_DIP_ENABLE_VENDOR; |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| |
| intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); |
| intel_hdmi_set_spd_infoframe(encoder); |
| intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); |
| } |
| |
| static void ibx_set_infoframes(struct drm_encoder *encoder, |
| bool enable, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; |
| u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); |
| u32 val = I915_READ(reg); |
| u32 port = VIDEO_DIP_PORT(intel_dig_port->port); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* See the big comment in g4x_set_infoframes() */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~VIDEO_DIP_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| if (val & VIDEO_DIP_ENABLE) { |
| val &= ~VIDEO_DIP_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| val &= ~VIDEO_DIP_PORT_MASK; |
| val |= port; |
| } |
| |
| val |= VIDEO_DIP_ENABLE; |
| val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_GCP); |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| |
| intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); |
| intel_hdmi_set_spd_infoframe(encoder); |
| intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); |
| } |
| |
| static void cpt_set_infoframes(struct drm_encoder *encoder, |
| bool enable, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); |
| u32 val = I915_READ(reg); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* See the big comment in g4x_set_infoframes() */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI); |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| /* Set both together, unset both together: see the spec. */ |
| val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; |
| val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_GCP); |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| |
| intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); |
| intel_hdmi_set_spd_infoframe(encoder); |
| intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); |
| } |
| |
| static void vlv_set_infoframes(struct drm_encoder *encoder, |
| bool enable, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); |
| u32 val = I915_READ(reg); |
| u32 port = VIDEO_DIP_PORT(intel_dig_port->port); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* See the big comment in g4x_set_infoframes() */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~VIDEO_DIP_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| if (val & VIDEO_DIP_ENABLE) { |
| val &= ~VIDEO_DIP_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| val &= ~VIDEO_DIP_PORT_MASK; |
| val |= port; |
| } |
| |
| val |= VIDEO_DIP_ENABLE; |
| val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | |
| VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| |
| intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); |
| intel_hdmi_set_spd_infoframe(encoder); |
| intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); |
| } |
| |
| static void hsw_set_infoframes(struct drm_encoder *encoder, |
| bool enable, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder); |
| u32 val = I915_READ(reg); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| if (!enable) { |
| I915_WRITE(reg, 0); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW | |
| VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW); |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| |
| intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); |
| intel_hdmi_set_spd_infoframe(encoder); |
| intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); |
| } |
| |
| static void intel_hdmi_prepare(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; |
| u32 hdmi_val; |
| |
| hdmi_val = SDVO_ENCODING_HDMI; |
| if (!HAS_PCH_SPLIT(dev)) |
| hdmi_val |= intel_hdmi->color_range; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH; |
| |
| if (crtc->config.pipe_bpp > 24) |
| hdmi_val |= HDMI_COLOR_FORMAT_12bpc; |
| else |
| hdmi_val |= SDVO_COLOR_FORMAT_8bpc; |
| |
| if (crtc->config.has_hdmi_sink) |
| hdmi_val |= HDMI_MODE_SELECT_HDMI; |
| |
| if (crtc->config.has_audio) { |
| WARN_ON(!crtc->config.has_hdmi_sink); |
| DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n", |
| pipe_name(crtc->pipe)); |
| hdmi_val |= SDVO_AUDIO_ENABLE; |
| intel_write_eld(&encoder->base, adjusted_mode); |
| } |
| |
| if (HAS_PCH_CPT(dev)) |
| hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe); |
| else if (IS_CHERRYVIEW(dev)) |
| hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe); |
| else |
| hdmi_val |= SDVO_PIPE_SEL(crtc->pipe); |
| |
| I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| } |
| |
| static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder, |
| enum pipe *pipe) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| enum intel_display_power_domain power_domain; |
| u32 tmp; |
| |
| power_domain = intel_display_port_power_domain(encoder); |
| if (!intel_display_power_enabled(dev_priv, power_domain)) |
| return false; |
| |
| tmp = I915_READ(intel_hdmi->hdmi_reg); |
| |
| if (!(tmp & SDVO_ENABLE)) |
| return false; |
| |
| if (HAS_PCH_CPT(dev)) |
| *pipe = PORT_TO_PIPE_CPT(tmp); |
| else if (IS_CHERRYVIEW(dev)) |
| *pipe = SDVO_PORT_TO_PIPE_CHV(tmp); |
| else |
| *pipe = PORT_TO_PIPE(tmp); |
| |
| return true; |
| } |
| |
| static void intel_hdmi_get_config(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 tmp, flags = 0; |
| int dotclock; |
| |
| tmp = I915_READ(intel_hdmi->hdmi_reg); |
| |
| if (tmp & SDVO_HSYNC_ACTIVE_HIGH) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (tmp & SDVO_VSYNC_ACTIVE_HIGH) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| |
| if (tmp & HDMI_MODE_SELECT_HDMI) |
| pipe_config->has_hdmi_sink = true; |
| |
| if (tmp & SDVO_AUDIO_ENABLE) |
| pipe_config->has_audio = true; |
| |
| if (!HAS_PCH_SPLIT(dev) && |
| tmp & HDMI_COLOR_RANGE_16_235) |
| pipe_config->limited_color_range = true; |
| |
| pipe_config->adjusted_mode.flags |= flags; |
| |
| if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc) |
| dotclock = pipe_config->port_clock * 2 / 3; |
| else |
| dotclock = pipe_config->port_clock; |
| |
| if (HAS_PCH_SPLIT(dev_priv->dev)) |
| ironlake_check_encoder_dotclock(pipe_config, dotclock); |
| |
| pipe_config->adjusted_mode.crtc_clock = dotclock; |
| } |
| |
| static void intel_enable_hdmi(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| u32 temp; |
| u32 enable_bits = SDVO_ENABLE; |
| |
| if (intel_crtc->config.has_audio) |
| enable_bits |= SDVO_AUDIO_ENABLE; |
| |
| temp = I915_READ(intel_hdmi->hdmi_reg); |
| |
| /* HW workaround for IBX, we need to move the port to transcoder A |
| * before disabling it, so restore the transcoder select bit here. */ |
| if (HAS_PCH_IBX(dev)) |
| enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe); |
| |
| /* HW workaround, need to toggle enable bit off and on for 12bpc, but |
| * we do this anyway which shows more stable in testing. |
| */ |
| if (HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| } |
| |
| temp |= enable_bits; |
| |
| I915_WRITE(intel_hdmi->hdmi_reg, temp); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| |
| /* HW workaround, need to write this twice for issue that may result |
| * in first write getting masked. |
| */ |
| if (HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(intel_hdmi->hdmi_reg, temp); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| } |
| } |
| |
| static void vlv_enable_hdmi(struct intel_encoder *encoder) |
| { |
| } |
| |
| static void intel_disable_hdmi(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| u32 temp; |
| u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE; |
| |
| temp = I915_READ(intel_hdmi->hdmi_reg); |
| |
| /* HW workaround for IBX, we need to move the port to transcoder A |
| * before disabling it. */ |
| if (HAS_PCH_IBX(dev)) { |
| struct drm_crtc *crtc = encoder->base.crtc; |
| int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1; |
| |
| if (temp & SDVO_PIPE_B_SELECT) { |
| temp &= ~SDVO_PIPE_B_SELECT; |
| I915_WRITE(intel_hdmi->hdmi_reg, temp); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| |
| /* Again we need to write this twice. */ |
| I915_WRITE(intel_hdmi->hdmi_reg, temp); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| |
| /* Transcoder selection bits only update |
| * effectively on vblank. */ |
| if (crtc) |
| intel_wait_for_vblank(dev, pipe); |
| else |
| msleep(50); |
| } |
| } |
| |
| /* HW workaround, need to toggle enable bit off and on for 12bpc, but |
| * we do this anyway which shows more stable in testing. |
| */ |
| if (HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| } |
| |
| temp &= ~enable_bits; |
| |
| I915_WRITE(intel_hdmi->hdmi_reg, temp); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| |
| /* HW workaround, need to write this twice for issue that may result |
| * in first write getting masked. |
| */ |
| if (HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(intel_hdmi->hdmi_reg, temp); |
| POSTING_READ(intel_hdmi->hdmi_reg); |
| } |
| } |
| |
| static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit) |
| { |
| struct drm_device *dev = intel_hdmi_to_dev(hdmi); |
| |
| if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev)) |
| return 165000; |
| else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) |
| return 300000; |
| else |
| return 225000; |
| } |
| |
| static enum drm_mode_status |
| intel_hdmi_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector), |
| true)) |
| return MODE_CLOCK_HIGH; |
| if (mode->clock < 20000) |
| return MODE_CLOCK_LOW; |
| |
| if (mode->flags & DRM_MODE_FLAG_DBLSCAN) |
| return MODE_NO_DBLESCAN; |
| |
| return MODE_OK; |
| } |
| |
| static bool hdmi_12bpc_possible(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *encoder; |
| int count = 0, count_hdmi = 0; |
| |
| if (HAS_GMCH_DISPLAY(dev)) |
| return false; |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { |
| if (encoder->new_crtc != crtc) |
| continue; |
| |
| count_hdmi += encoder->type == INTEL_OUTPUT_HDMI; |
| count++; |
| } |
| |
| /* |
| * HDMI 12bpc affects the clocks, so it's only possible |
| * when not cloning with other encoder types. |
| */ |
| return count_hdmi > 0 && count_hdmi == count; |
| } |
| |
| bool intel_hdmi_compute_config(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; |
| int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2; |
| int portclock_limit = hdmi_portclock_limit(intel_hdmi, false); |
| int desired_bpp; |
| |
| pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink; |
| |
| if (intel_hdmi->color_range_auto) { |
| /* See CEA-861-E - 5.1 Default Encoding Parameters */ |
| if (pipe_config->has_hdmi_sink && |
| drm_match_cea_mode(adjusted_mode) > 1) |
| intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235; |
| else |
| intel_hdmi->color_range = 0; |
| } |
| |
| if (intel_hdmi->color_range) |
| pipe_config->limited_color_range = true; |
| |
| if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev)) |
| pipe_config->has_pch_encoder = true; |
| |
| if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio) |
| pipe_config->has_audio = true; |
| |
| /* |
| * HDMI is either 12 or 8, so if the display lets 10bpc sneak |
| * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi |
| * outputs. We also need to check that the higher clock still fits |
| * within limits. |
| */ |
| if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink && |
| clock_12bpc <= portclock_limit && |
| hdmi_12bpc_possible(encoder->new_crtc)) { |
| DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n"); |
| desired_bpp = 12*3; |
| |
| /* Need to adjust the port link by 1.5x for 12bpc. */ |
| pipe_config->port_clock = clock_12bpc; |
| } else { |
| DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n"); |
| desired_bpp = 8*3; |
| } |
| |
| if (!pipe_config->bw_constrained) { |
| DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp); |
| pipe_config->pipe_bpp = desired_bpp; |
| } |
| |
| if (adjusted_mode->crtc_clock > portclock_limit) { |
| DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static enum drm_connector_status |
| intel_hdmi_detect(struct drm_connector *connector, bool force) |
| { |
| struct drm_device *dev = connector->dev; |
| struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); |
| struct intel_digital_port *intel_dig_port = |
| hdmi_to_dig_port(intel_hdmi); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct edid *edid; |
| enum intel_display_power_domain power_domain; |
| enum drm_connector_status status = connector_status_disconnected; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", |
| connector->base.id, connector->name); |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| intel_hdmi->has_hdmi_sink = false; |
| intel_hdmi->has_audio = false; |
| intel_hdmi->rgb_quant_range_selectable = false; |
| edid = drm_get_edid(connector, |
| intel_gmbus_get_adapter(dev_priv, |
| intel_hdmi->ddc_bus)); |
| |
| if (edid) { |
| if (edid->input & DRM_EDID_INPUT_DIGITAL) { |
| status = connector_status_connected; |
| if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI) |
| intel_hdmi->has_hdmi_sink = |
| drm_detect_hdmi_monitor(edid); |
| intel_hdmi->has_audio = drm_detect_monitor_audio(edid); |
| intel_hdmi->rgb_quant_range_selectable = |
| drm_rgb_quant_range_selectable(edid); |
| } |
| kfree(edid); |
| } |
| |
| if (status == connector_status_connected) { |
| if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO) |
| intel_hdmi->has_audio = |
| (intel_hdmi->force_audio == HDMI_AUDIO_ON); |
| intel_encoder->type = INTEL_OUTPUT_HDMI; |
| } |
| |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return status; |
| } |
| |
| static int intel_hdmi_get_modes(struct drm_connector *connector) |
| { |
| struct intel_encoder *intel_encoder = intel_attached_encoder(connector); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| int ret; |
| |
| /* We should parse the EDID data and find out if it's an HDMI sink so |
| * we can send audio to it. |
| */ |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| ret = intel_ddc_get_modes(connector, |
| intel_gmbus_get_adapter(dev_priv, |
| intel_hdmi->ddc_bus)); |
| |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return ret; |
| } |
| |
| static bool |
| intel_hdmi_detect_audio(struct drm_connector *connector) |
| { |
| struct intel_encoder *intel_encoder = intel_attached_encoder(connector); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| struct edid *edid; |
| bool has_audio = false; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| edid = drm_get_edid(connector, |
| intel_gmbus_get_adapter(dev_priv, |
| intel_hdmi->ddc_bus)); |
| if (edid) { |
| if (edid->input & DRM_EDID_INPUT_DIGITAL) |
| has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return has_audio; |
| } |
| |
| static int |
| intel_hdmi_set_property(struct drm_connector *connector, |
| struct drm_property *property, |
| uint64_t val) |
| { |
| struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); |
| struct intel_digital_port *intel_dig_port = |
| hdmi_to_dig_port(intel_hdmi); |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| int ret; |
| |
| ret = drm_object_property_set_value(&connector->base, property, val); |
| if (ret) |
| return ret; |
| |
| if (property == dev_priv->force_audio_property) { |
| enum hdmi_force_audio i = val; |
| bool has_audio; |
| |
| if (i == intel_hdmi->force_audio) |
| return 0; |
| |
| intel_hdmi->force_audio = i; |
| |
| if (i == HDMI_AUDIO_AUTO) |
| has_audio = intel_hdmi_detect_audio(connector); |
| else |
| has_audio = (i == HDMI_AUDIO_ON); |
| |
| if (i == HDMI_AUDIO_OFF_DVI) |
| intel_hdmi->has_hdmi_sink = 0; |
| |
| intel_hdmi->has_audio = has_audio; |
| goto done; |
| } |
| |
| if (property == dev_priv->broadcast_rgb_property) { |
| bool old_auto = intel_hdmi->color_range_auto; |
| uint32_t old_range = intel_hdmi->color_range; |
| |
| switch (val) { |
| case INTEL_BROADCAST_RGB_AUTO: |
| intel_hdmi->color_range_auto = true; |
| break; |
| case INTEL_BROADCAST_RGB_FULL: |
| intel_hdmi->color_range_auto = false; |
| intel_hdmi->color_range = 0; |
| break; |
| case INTEL_BROADCAST_RGB_LIMITED: |
| intel_hdmi->color_range_auto = false; |
| intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (old_auto == intel_hdmi->color_range_auto && |
| old_range == intel_hdmi->color_range) |
| return 0; |
| |
| goto done; |
| } |
| |
| if (property == connector->dev->mode_config.aspect_ratio_property) { |
| switch (val) { |
| case DRM_MODE_PICTURE_ASPECT_NONE: |
| intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE; |
| break; |
| case DRM_MODE_PICTURE_ASPECT_4_3: |
| intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3; |
| break; |
| case DRM_MODE_PICTURE_ASPECT_16_9: |
| intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9; |
| break; |
| default: |
| return -EINVAL; |
| } |
| goto done; |
| } |
| |
| return -EINVAL; |
| |
| done: |
| if (intel_dig_port->base.base.crtc) |
| intel_crtc_restore_mode(intel_dig_port->base.base.crtc); |
| |
| return 0; |
| } |
| |
| static void intel_hdmi_pre_enable(struct intel_encoder *encoder) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); |
| struct drm_display_mode *adjusted_mode = |
| &intel_crtc->config.adjusted_mode; |
| |
| intel_hdmi_prepare(encoder); |
| |
| intel_hdmi->set_infoframes(&encoder->base, |
| intel_crtc->config.has_hdmi_sink, |
| adjusted_mode); |
| } |
| |
| static void vlv_hdmi_pre_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct intel_hdmi *intel_hdmi = &dport->hdmi; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| struct drm_display_mode *adjusted_mode = |
| &intel_crtc->config.adjusted_mode; |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| u32 val; |
| |
| /* Enable clock channels for this port */ |
| mutex_lock(&dev_priv->dpio_lock); |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); |
| val = 0; |
| if (pipe) |
| val |= (1<<21); |
| else |
| val &= ~(1<<21); |
| val |= 0x001000c4; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); |
| |
| /* HDMI 1.0V-2dB */ |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); |
| |
| /* Program lane clock */ |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| intel_hdmi->set_infoframes(&encoder->base, |
| intel_crtc->config.has_hdmi_sink, |
| adjusted_mode); |
| |
| intel_enable_hdmi(encoder); |
| |
| vlv_wait_port_ready(dev_priv, dport); |
| } |
| |
| static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| |
| intel_hdmi_prepare(encoder); |
| |
| /* Program Tx lane resets to default */ |
| mutex_lock(&dev_priv->dpio_lock); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), |
| DPIO_PCS_TX_LANE2_RESET | |
| DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), |
| DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | |
| DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | |
| (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | |
| DPIO_PCS_CLK_SOFT_RESET); |
| |
| /* Fix up inter-pair skew failure */ |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); |
| |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| u32 val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* program left/right clock distribution */ |
| if (pipe != PIPE_B) { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); |
| val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA1_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA1_FORCE; |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); |
| } else { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); |
| val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA2_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA2_FORCE; |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); |
| } |
| |
| /* program clock channel usage */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); |
| val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe != PIPE_B) |
| val &= ~CHV_PCS_USEDCLKCHANNEL; |
| else |
| val |= CHV_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); |
| val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe != PIPE_B) |
| val &= ~CHV_PCS_USEDCLKCHANNEL; |
| else |
| val |= CHV_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); |
| |
| /* |
| * This a a bit weird since generally CL |
| * matches the pipe, but here we need to |
| * pick the CL based on the port. |
| */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); |
| if (pipe != PIPE_B) |
| val &= ~CHV_CMN_USEDCLKCHANNEL; |
| else |
| val |= CHV_CMN_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void vlv_hdmi_post_disable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| |
| /* Reset lanes to avoid HDMI flicker (VLV w/a) */ |
| mutex_lock(&dev_priv->dpio_lock); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060); |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void chv_hdmi_post_disable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| u32 val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Propagate soft reset to data lane reset */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void chv_hdmi_pre_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| int data, i; |
| u32 val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Deassert soft data lane reset*/ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); |
| val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); |
| val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); |
| |
| /* Program Tx latency optimal setting */ |
| for (i = 0; i < 4; i++) { |
| /* Set the latency optimal bit */ |
| data = (i == 1) ? 0x0 : 0x6; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i), |
| data << DPIO_FRC_LATENCY_SHFIT); |
| |
| /* Set the upar bit */ |
| data = (i == 1) ? 0x0 : 0x1; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), |
| data << DPIO_UPAR_SHIFT); |
| } |
| |
| /* Data lane stagger programming */ |
| /* FIXME: Fix up value only after power analysis */ |
| |
| /* Clear calc init */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); |
| |
| /* FIXME: Program the support xxx V-dB */ |
| /* Use 800mV-0dB */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); |
| val &= ~DPIO_SWING_DEEMPH9P5_MASK; |
| val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); |
| val &= ~DPIO_SWING_MARGIN_MASK; |
| val |= 102 << DPIO_SWING_MARGIN_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); |
| } |
| |
| /* Disable unique transition scale */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); |
| val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); |
| } |
| |
| /* Additional steps for 1200mV-0dB */ |
| #if 0 |
| val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch)); |
| if (ch) |
| val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1; |
| else |
| val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0; |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val); |
| |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), |
| vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) | |
| (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT)); |
| #endif |
| /* Start swing calculation */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); |
| |
| /* LRC Bypass */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); |
| val |= DPIO_LRC_BYPASS; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| intel_enable_hdmi(encoder); |
| |
| vlv_wait_port_ready(dev_priv, dport); |
| } |
| |
| static void intel_hdmi_destroy(struct drm_connector *connector) |
| { |
| drm_connector_cleanup(connector); |
| kfree(connector); |
| } |
| |
| static const struct drm_connector_funcs intel_hdmi_connector_funcs = { |
| .dpms = intel_connector_dpms, |
| .detect = intel_hdmi_detect, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .set_property = intel_hdmi_set_property, |
| .destroy = intel_hdmi_destroy, |
| }; |
| |
| static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { |
| .get_modes = intel_hdmi_get_modes, |
| .mode_valid = intel_hdmi_mode_valid, |
| .best_encoder = intel_best_encoder, |
| }; |
| |
| static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { |
| .destroy = intel_encoder_destroy, |
| }; |
| |
| static void |
| intel_attach_aspect_ratio_property(struct drm_connector *connector) |
| { |
| if (!drm_mode_create_aspect_ratio_property(connector->dev)) |
| drm_object_attach_property(&connector->base, |
| connector->dev->mode_config.aspect_ratio_property, |
| DRM_MODE_PICTURE_ASPECT_NONE); |
| } |
| |
| static void |
| intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) |
| { |
| intel_attach_force_audio_property(connector); |
| intel_attach_broadcast_rgb_property(connector); |
| intel_hdmi->color_range_auto = true; |
| intel_attach_aspect_ratio_property(connector); |
| intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE; |
| } |
| |
| void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port, |
| struct intel_connector *intel_connector) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| |
| drm_connector_init(dev, connector, &intel_hdmi_connector_funcs, |
| DRM_MODE_CONNECTOR_HDMIA); |
| drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); |
| |
| connector->interlace_allowed = 1; |
| connector->doublescan_allowed = 0; |
| connector->stereo_allowed = 1; |
| |
| switch (port) { |
| case PORT_B: |
| intel_hdmi->ddc_bus = GMBUS_PORT_DPB; |
| intel_encoder->hpd_pin = HPD_PORT_B; |
| break; |
| case PORT_C: |
| intel_hdmi->ddc_bus = GMBUS_PORT_DPC; |
| intel_encoder->hpd_pin = HPD_PORT_C; |
| break; |
| case PORT_D: |
| if (IS_CHERRYVIEW(dev)) |
| intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV; |
| else |
| intel_hdmi->ddc_bus = GMBUS_PORT_DPD; |
| intel_encoder->hpd_pin = HPD_PORT_D; |
| break; |
| case PORT_A: |
| intel_encoder->hpd_pin = HPD_PORT_A; |
| /* Internal port only for eDP. */ |
| default: |
| BUG(); |
| } |
| |
| if (IS_VALLEYVIEW(dev)) { |
| intel_hdmi->write_infoframe = vlv_write_infoframe; |
| intel_hdmi->set_infoframes = vlv_set_infoframes; |
| } else if (IS_G4X(dev)) { |
| intel_hdmi->write_infoframe = g4x_write_infoframe; |
| intel_hdmi->set_infoframes = g4x_set_infoframes; |
| } else if (HAS_DDI(dev)) { |
| intel_hdmi->write_infoframe = hsw_write_infoframe; |
| intel_hdmi->set_infoframes = hsw_set_infoframes; |
| } else if (HAS_PCH_IBX(dev)) { |
| intel_hdmi->write_infoframe = ibx_write_infoframe; |
| intel_hdmi->set_infoframes = ibx_set_infoframes; |
| } else { |
| intel_hdmi->write_infoframe = cpt_write_infoframe; |
| intel_hdmi->set_infoframes = cpt_set_infoframes; |
| } |
| |
| if (HAS_DDI(dev)) |
| intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; |
| else |
| intel_connector->get_hw_state = intel_connector_get_hw_state; |
| intel_connector->unregister = intel_connector_unregister; |
| |
| intel_hdmi_add_properties(intel_hdmi, connector); |
| |
| intel_connector_attach_encoder(intel_connector, intel_encoder); |
| drm_connector_register(connector); |
| |
| /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written |
| * 0xd. Failure to do so will result in spurious interrupts being |
| * generated on the port when a cable is not attached. |
| */ |
| if (IS_G4X(dev) && !IS_GM45(dev)) { |
| u32 temp = I915_READ(PEG_BAND_GAP_DATA); |
| I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); |
| } |
| } |
| |
| void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port) |
| { |
| struct intel_digital_port *intel_dig_port; |
| struct intel_encoder *intel_encoder; |
| struct intel_connector *intel_connector; |
| |
| intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); |
| if (!intel_dig_port) |
| return; |
| |
| intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); |
| if (!intel_connector) { |
| kfree(intel_dig_port); |
| return; |
| } |
| |
| intel_encoder = &intel_dig_port->base; |
| |
| drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| |
| intel_encoder->compute_config = intel_hdmi_compute_config; |
| intel_encoder->disable = intel_disable_hdmi; |
| intel_encoder->get_hw_state = intel_hdmi_get_hw_state; |
| intel_encoder->get_config = intel_hdmi_get_config; |
| if (IS_CHERRYVIEW(dev)) { |
| intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable; |
| intel_encoder->pre_enable = chv_hdmi_pre_enable; |
| intel_encoder->enable = vlv_enable_hdmi; |
| intel_encoder->post_disable = chv_hdmi_post_disable; |
| } else if (IS_VALLEYVIEW(dev)) { |
| intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable; |
| intel_encoder->pre_enable = vlv_hdmi_pre_enable; |
| intel_encoder->enable = vlv_enable_hdmi; |
| intel_encoder->post_disable = vlv_hdmi_post_disable; |
| } else { |
| intel_encoder->pre_enable = intel_hdmi_pre_enable; |
| intel_encoder->enable = intel_enable_hdmi; |
| } |
| |
| intel_encoder->type = INTEL_OUTPUT_HDMI; |
| if (IS_CHERRYVIEW(dev)) { |
| if (port == PORT_D) |
| intel_encoder->crtc_mask = 1 << 2; |
| else |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1); |
| } else { |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); |
| } |
| intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG; |
| /* |
| * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems |
| * to work on real hardware. And since g4x can send infoframes to |
| * only one port anyway, nothing is lost by allowing it. |
| */ |
| if (IS_G4X(dev)) |
| intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI; |
| |
| intel_dig_port->port = port; |
| intel_dig_port->hdmi.hdmi_reg = hdmi_reg; |
| intel_dig_port->dp.output_reg = 0; |
| |
| intel_hdmi_init_connector(intel_dig_port, intel_connector); |
| } |