blob: 948dd8382686b1e20c525e6070cd4f554167c8d9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* cs_dsp.c -- Cirrus Logic DSP firmware support
*
* Based on sound/soc/codecs/wm_adsp.c
*
* Copyright 2012 Wolfson Microelectronics plc
* Copyright (C) 2015-2021 Cirrus Logic, Inc. and
* Cirrus Logic International Semiconductor Ltd.
*/
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/firmware/cirrus/cs_dsp.h>
#include <linux/firmware/cirrus/wmfw.h>
#define cs_dsp_err(_dsp, fmt, ...) \
dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define cs_dsp_warn(_dsp, fmt, ...) \
dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define cs_dsp_info(_dsp, fmt, ...) \
dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define cs_dsp_dbg(_dsp, fmt, ...) \
dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define ADSP1_CONTROL_1 0x00
#define ADSP1_CONTROL_2 0x02
#define ADSP1_CONTROL_3 0x03
#define ADSP1_CONTROL_4 0x04
#define ADSP1_CONTROL_5 0x06
#define ADSP1_CONTROL_6 0x07
#define ADSP1_CONTROL_7 0x08
#define ADSP1_CONTROL_8 0x09
#define ADSP1_CONTROL_9 0x0A
#define ADSP1_CONTROL_10 0x0B
#define ADSP1_CONTROL_11 0x0C
#define ADSP1_CONTROL_12 0x0D
#define ADSP1_CONTROL_13 0x0F
#define ADSP1_CONTROL_14 0x10
#define ADSP1_CONTROL_15 0x11
#define ADSP1_CONTROL_16 0x12
#define ADSP1_CONTROL_17 0x13
#define ADSP1_CONTROL_18 0x14
#define ADSP1_CONTROL_19 0x16
#define ADSP1_CONTROL_20 0x17
#define ADSP1_CONTROL_21 0x18
#define ADSP1_CONTROL_22 0x1A
#define ADSP1_CONTROL_23 0x1B
#define ADSP1_CONTROL_24 0x1C
#define ADSP1_CONTROL_25 0x1E
#define ADSP1_CONTROL_26 0x20
#define ADSP1_CONTROL_27 0x21
#define ADSP1_CONTROL_28 0x22
#define ADSP1_CONTROL_29 0x23
#define ADSP1_CONTROL_30 0x24
#define ADSP1_CONTROL_31 0x26
/*
* ADSP1 Control 19
*/
#define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
/*
* ADSP1 Control 30
*/
#define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
#define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP1_START 0x0001 /* DSP1_START */
#define ADSP1_START_MASK 0x0001 /* DSP1_START */
#define ADSP1_START_SHIFT 0 /* DSP1_START */
#define ADSP1_START_WIDTH 1 /* DSP1_START */
/*
* ADSP1 Control 31
*/
#define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2_CONTROL 0x0
#define ADSP2_CLOCKING 0x1
#define ADSP2V2_CLOCKING 0x2
#define ADSP2_STATUS1 0x4
#define ADSP2_WDMA_CONFIG_1 0x30
#define ADSP2_WDMA_CONFIG_2 0x31
#define ADSP2V2_WDMA_CONFIG_2 0x32
#define ADSP2_RDMA_CONFIG_1 0x34
#define ADSP2_SCRATCH0 0x40
#define ADSP2_SCRATCH1 0x41
#define ADSP2_SCRATCH2 0x42
#define ADSP2_SCRATCH3 0x43
#define ADSP2V2_SCRATCH0_1 0x40
#define ADSP2V2_SCRATCH2_3 0x42
/*
* ADSP2 Control
*/
#define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
#define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP2_START 0x0001 /* DSP1_START */
#define ADSP2_START_MASK 0x0001 /* DSP1_START */
#define ADSP2_START_SHIFT 0 /* DSP1_START */
#define ADSP2_START_WIDTH 1 /* DSP1_START */
/*
* ADSP2 clocking
*/
#define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
/*
* ADSP2V2 clocking
*/
#define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
#define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
#define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
/*
* ADSP2 Status 1
*/
#define ADSP2_RAM_RDY 0x0001
#define ADSP2_RAM_RDY_MASK 0x0001
#define ADSP2_RAM_RDY_SHIFT 0
#define ADSP2_RAM_RDY_WIDTH 1
/*
* ADSP2 Lock support
*/
#define ADSP2_LOCK_CODE_0 0x5555
#define ADSP2_LOCK_CODE_1 0xAAAA
#define ADSP2_WATCHDOG 0x0A
#define ADSP2_BUS_ERR_ADDR 0x52
#define ADSP2_REGION_LOCK_STATUS 0x64
#define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
#define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
#define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
#define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
#define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
#define ADSP2_LOCK_REGION_CTRL 0x7A
#define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
#define ADSP2_REGION_LOCK_ERR_MASK 0x8000
#define ADSP2_ADDR_ERR_MASK 0x4000
#define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
#define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
#define ADSP2_CTRL_ERR_EINT 0x0001
#define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
#define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
#define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
#define ADSP2_PMEM_ERR_ADDR_SHIFT 16
#define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
#define ADSP2_LOCK_REGION_SHIFT 16
/*
* Event control messages
*/
#define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
/*
* HALO system info
*/
#define HALO_AHBM_WINDOW_DEBUG_0 0x02040
#define HALO_AHBM_WINDOW_DEBUG_1 0x02044
/*
* HALO core
*/
#define HALO_SCRATCH1 0x005c0
#define HALO_SCRATCH2 0x005c8
#define HALO_SCRATCH3 0x005d0
#define HALO_SCRATCH4 0x005d8
#define HALO_CCM_CORE_CONTROL 0x41000
#define HALO_CORE_SOFT_RESET 0x00010
#define HALO_WDT_CONTROL 0x47000
/*
* HALO MPU banks
*/
#define HALO_MPU_XMEM_ACCESS_0 0x43000
#define HALO_MPU_YMEM_ACCESS_0 0x43004
#define HALO_MPU_WINDOW_ACCESS_0 0x43008
#define HALO_MPU_XREG_ACCESS_0 0x4300C
#define HALO_MPU_YREG_ACCESS_0 0x43014
#define HALO_MPU_XMEM_ACCESS_1 0x43018
#define HALO_MPU_YMEM_ACCESS_1 0x4301C
#define HALO_MPU_WINDOW_ACCESS_1 0x43020
#define HALO_MPU_XREG_ACCESS_1 0x43024
#define HALO_MPU_YREG_ACCESS_1 0x4302C
#define HALO_MPU_XMEM_ACCESS_2 0x43030
#define HALO_MPU_YMEM_ACCESS_2 0x43034
#define HALO_MPU_WINDOW_ACCESS_2 0x43038
#define HALO_MPU_XREG_ACCESS_2 0x4303C
#define HALO_MPU_YREG_ACCESS_2 0x43044
#define HALO_MPU_XMEM_ACCESS_3 0x43048
#define HALO_MPU_YMEM_ACCESS_3 0x4304C
#define HALO_MPU_WINDOW_ACCESS_3 0x43050
#define HALO_MPU_XREG_ACCESS_3 0x43054
#define HALO_MPU_YREG_ACCESS_3 0x4305C
#define HALO_MPU_XM_VIO_ADDR 0x43100
#define HALO_MPU_XM_VIO_STATUS 0x43104
#define HALO_MPU_YM_VIO_ADDR 0x43108
#define HALO_MPU_YM_VIO_STATUS 0x4310C
#define HALO_MPU_PM_VIO_ADDR 0x43110
#define HALO_MPU_PM_VIO_STATUS 0x43114
#define HALO_MPU_LOCK_CONFIG 0x43140
/*
* HALO_AHBM_WINDOW_DEBUG_1
*/
#define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
#define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
#define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
/*
* HALO_CCM_CORE_CONTROL
*/
#define HALO_CORE_RESET 0x00000200
#define HALO_CORE_EN 0x00000001
/*
* HALO_CORE_SOFT_RESET
*/
#define HALO_CORE_SOFT_RESET_MASK 0x00000001
/*
* HALO_WDT_CONTROL
*/
#define HALO_WDT_EN_MASK 0x00000001
/*
* HALO_MPU_?M_VIO_STATUS
*/
#define HALO_MPU_VIO_STS_MASK 0x007e0000
#define HALO_MPU_VIO_STS_SHIFT 17
#define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
#define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
#define HALO_MPU_VIO_ERR_SRC_SHIFT 0
struct cs_dsp_ops {
bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
unsigned int (*parse_sizes)(struct cs_dsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware);
int (*setup_algs)(struct cs_dsp *dsp);
unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
unsigned int offset);
void (*show_fw_status)(struct cs_dsp *dsp);
void (*stop_watchdog)(struct cs_dsp *dsp);
int (*enable_memory)(struct cs_dsp *dsp);
void (*disable_memory)(struct cs_dsp *dsp);
int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
int (*enable_core)(struct cs_dsp *dsp);
void (*disable_core)(struct cs_dsp *dsp);
int (*start_core)(struct cs_dsp *dsp);
void (*stop_core)(struct cs_dsp *dsp);
};
static const struct cs_dsp_ops cs_dsp_adsp1_ops;
static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
static const struct cs_dsp_ops cs_dsp_halo_ops;
struct cs_dsp_buf {
struct list_head list;
void *buf;
};
static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
struct list_head *list)
{
struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (buf == NULL)
return NULL;
buf->buf = vmalloc(len);
if (!buf->buf) {
kfree(buf);
return NULL;
}
memcpy(buf->buf, src, len);
if (list)
list_add_tail(&buf->list, list);
return buf;
}
static void cs_dsp_buf_free(struct list_head *list)
{
while (!list_empty(list)) {
struct cs_dsp_buf *buf = list_first_entry(list,
struct cs_dsp_buf,
list);
list_del(&buf->list);
vfree(buf->buf);
kfree(buf);
}
}
/**
* cs_dsp_mem_region_name() - Return a name string for a memory type
* @type: the memory type to match
*
* Return: A const string identifying the memory region.
*/
const char *cs_dsp_mem_region_name(unsigned int type)
{
switch (type) {
case WMFW_ADSP1_PM:
return "PM";
case WMFW_HALO_PM_PACKED:
return "PM_PACKED";
case WMFW_ADSP1_DM:
return "DM";
case WMFW_ADSP2_XM:
return "XM";
case WMFW_HALO_XM_PACKED:
return "XM_PACKED";
case WMFW_ADSP2_YM:
return "YM";
case WMFW_HALO_YM_PACKED:
return "YM_PACKED";
case WMFW_ADSP1_ZM:
return "ZM";
default:
return NULL;
}
}
EXPORT_SYMBOL_GPL(cs_dsp_mem_region_name);
#ifdef CONFIG_DEBUG_FS
static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->wmfw_file_name);
dsp->wmfw_file_name = tmp;
}
static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->bin_file_name);
dsp->bin_file_name = tmp;
}
static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
{
kfree(dsp->wmfw_file_name);
kfree(dsp->bin_file_name);
dsp->wmfw_file_name = NULL;
dsp->bin_file_name = NULL;
}
static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct cs_dsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->wmfw_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->wmfw_file_name,
strlen(dsp->wmfw_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct cs_dsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->bin_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->bin_file_name,
strlen(dsp->bin_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static const struct {
const char *name;
const struct file_operations fops;
} cs_dsp_debugfs_fops[] = {
{
.name = "wmfw_file_name",
.fops = {
.open = simple_open,
.read = cs_dsp_debugfs_wmfw_read,
},
},
{
.name = "bin_file_name",
.fops = {
.open = simple_open,
.read = cs_dsp_debugfs_bin_read,
},
},
};
/**
* cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
* @dsp: pointer to DSP structure
* @debugfs_root: pointer to debugfs directory in which to create this DSP
* representation
*/
void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
{
struct dentry *root = NULL;
int i;
root = debugfs_create_dir(dsp->name, debugfs_root);
debugfs_create_bool("booted", 0444, root, &dsp->booted);
debugfs_create_bool("running", 0444, root, &dsp->running);
debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
dsp, &cs_dsp_debugfs_fops[i].fops);
dsp->debugfs_root = root;
}
EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
/**
* cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
* @dsp: pointer to DSP structure
*/
void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
{
cs_dsp_debugfs_clear(dsp);
debugfs_remove_recursive(dsp->debugfs_root);
dsp->debugfs_root = NULL;
}
EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
#else
void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
{
}
EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
{
}
EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
const char *s)
{
}
static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
const char *s)
{
}
static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
{
}
#endif
static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
int type)
{
int i;
for (i = 0; i < dsp->num_mems; i++)
if (dsp->mem[i].type == type)
return &dsp->mem[i];
return NULL;
}
static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
unsigned int offset)
{
switch (mem->type) {
case WMFW_ADSP1_PM:
return mem->base + (offset * 3);
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
return mem->base + (offset * 2);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
unsigned int offset)
{
switch (mem->type) {
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
return mem->base + (offset * 4);
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
return (mem->base + (offset * 3)) & ~0x3;
case WMFW_HALO_PM_PACKED:
return mem->base + (offset * 5);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
int noffs, unsigned int *offs)
{
unsigned int i;
int ret;
for (i = 0; i < noffs; ++i) {
ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
if (ret) {
cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
return;
}
}
}
static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
{
unsigned int offs[] = {
ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
};
cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0], offs[1], offs[2], offs[3]);
}
static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
{
unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0] & 0xFFFF, offs[0] >> 16,
offs[1] & 0xFFFF, offs[1] >> 16);
}
static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
{
unsigned int offs[] = {
HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
};
cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0], offs[1], offs[2], offs[3]);
}
static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg)
{
const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
struct cs_dsp *dsp = ctl->dsp;
const struct cs_dsp_region *mem;
mem = cs_dsp_find_region(dsp, alg_region->type);
if (!mem) {
cs_dsp_err(dsp, "No base for region %x\n",
alg_region->type);
return -EINVAL;
}
*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset);
return 0;
}
/**
* cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
* @ctl: pointer to acked coefficient control
* @event_id: the value to write to the given acked control
*
* Once the value has been written to the control the function shall block
* until the running firmware acknowledges the write or timeout is exceeded.
*
* Must be called with pwr_lock held.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
{
struct cs_dsp *dsp = ctl->dsp;
__be32 val = cpu_to_be32(event_id);
unsigned int reg;
int i, ret;
if (!dsp->running)
return -EPERM;
ret = cs_dsp_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
event_id, ctl->alg_region.alg,
cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
return ret;
}
/*
* Poll for ack, we initially poll at ~1ms intervals for firmwares
* that respond quickly, then go to ~10ms polls. A firmware is unlikely
* to ack instantly so we do the first 1ms delay before reading the
* control to avoid a pointless bus transaction
*/
for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
switch (i) {
case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
usleep_range(1000, 2000);
i++;
break;
default:
usleep_range(10000, 20000);
i += 10;
break;
}
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
return ret;
}
if (val == 0) {
cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
return 0;
}
}
cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
reg, ctl->alg_region.alg,
cs_dsp_mem_region_name(ctl->alg_region.type),
ctl->offset);
return -ETIMEDOUT;
}
EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_acked_control);
static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
const void *buf, size_t len)
{
struct cs_dsp *dsp = ctl->dsp;
void *scratch;
int ret;
unsigned int reg;
ret = cs_dsp_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_write(dsp->regmap, reg, scratch,
len);
if (ret) {
cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
len, reg, ret);
kfree(scratch);
return ret;
}
cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
kfree(scratch);
return 0;
}
/**
* cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
* @ctl: pointer to coefficient control
* @buf: the buffer to write to the given control
* @len: the length of the buffer
*
* Must be called with pwr_lock held.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl, const void *buf, size_t len)
{
int ret = 0;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
ret = -EPERM;
else if (buf != ctl->cache)
memcpy(ctl->cache, buf, len);
ctl->set = 1;
if (ctl->enabled && ctl->dsp->running)
ret = cs_dsp_coeff_write_ctrl_raw(ctl, buf, len);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_ctrl);
static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl, void *buf, size_t len)
{
struct cs_dsp *dsp = ctl->dsp;
void *scratch;
int ret;
unsigned int reg;
ret = cs_dsp_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
if (ret) {
cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
len, reg, ret);
kfree(scratch);
return ret;
}
cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
memcpy(buf, scratch, len);
kfree(scratch);
return 0;
}
/**
* cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
* @ctl: pointer to coefficient control
* @buf: the buffer to store to the given control
* @len: the length of the buffer
*
* Must be called with pwr_lock held.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl, void *buf, size_t len)
{
int ret = 0;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
if (ctl->enabled && ctl->dsp->running)
return cs_dsp_coeff_read_ctrl_raw(ctl, buf, len);
else
return -EPERM;
} else {
if (!ctl->flags && ctl->enabled && ctl->dsp->running)
ret = cs_dsp_coeff_read_ctrl_raw(ctl, ctl->cache, ctl->len);
if (buf != ctl->cache)
memcpy(buf, ctl->cache, len);
}
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_coeff_read_ctrl);
static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled || ctl->set)
continue;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
continue;
/*
* For readable controls populate the cache from the DSP memory.
* For non-readable controls the cache was zero-filled when
* created so we don't need to do anything.
*/
if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
ret = cs_dsp_coeff_read_ctrl_raw(ctl, ctl->cache, ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled)
continue;
if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
ret = cs_dsp_coeff_write_ctrl_raw(ctl, ctl->cache,
ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
unsigned int event)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
continue;
if (!ctl->enabled)
continue;
ret = cs_dsp_coeff_write_acked_control(ctl, event);
if (ret)
cs_dsp_warn(dsp,
"Failed to send 0x%x event to alg 0x%x (%d)\n",
event, ctl->alg_region.alg, ret);
}
}
static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
{
kfree(ctl->cache);
kfree(ctl->subname);
kfree(ctl);
}
static int cs_dsp_create_control(struct cs_dsp *dsp,
const struct cs_dsp_alg_region *alg_region,
unsigned int offset, unsigned int len,
const char *subname, unsigned int subname_len,
unsigned int flags, unsigned int type)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->fw_name == dsp->fw_name &&
ctl->alg_region.alg == alg_region->alg &&
ctl->alg_region.type == alg_region->type) {
if ((!subname && !ctl->subname) ||
(subname && !strncmp(ctl->subname, subname, ctl->subname_len))) {
if (!ctl->enabled)
ctl->enabled = 1;
return 0;
}
}
}
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return -ENOMEM;
ctl->fw_name = dsp->fw_name;
ctl->alg_region = *alg_region;
if (subname && dsp->fw_ver >= 2) {
ctl->subname_len = subname_len;
ctl->subname = kmemdup(subname,
strlen(subname) + 1, GFP_KERNEL);
if (!ctl->subname) {
ret = -ENOMEM;
goto err_ctl;
}
}
ctl->enabled = 1;
ctl->set = 0;
ctl->dsp = dsp;
ctl->flags = flags;
ctl->type = type;
ctl->offset = offset;
ctl->len = len;
ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
if (!ctl->cache) {
ret = -ENOMEM;
goto err_ctl_subname;
}
list_add(&ctl->list, &dsp->ctl_list);
if (dsp->client_ops->control_add) {
ret = dsp->client_ops->control_add(ctl);
if (ret)
goto err_list_del;
}
return 0;
err_list_del:
list_del(&ctl->list);
kfree(ctl->cache);
err_ctl_subname:
kfree(ctl->subname);
err_ctl:
kfree(ctl);
return ret;
}
struct cs_dsp_coeff_parsed_alg {
int id;
const u8 *name;
int name_len;
int ncoeff;
};
struct cs_dsp_coeff_parsed_coeff {
int offset;
int mem_type;
const u8 *name;
int name_len;
unsigned int ctl_type;
int flags;
int len;
};
static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
{
int length;
switch (bytes) {
case 1:
length = **pos;
break;
case 2:
length = le16_to_cpu(*((__le16 *)*pos));
break;
default:
return 0;
}
if (str)
*str = *pos + bytes;
*pos += ((length + bytes) + 3) & ~0x03;
return length;
}
static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
{
int val = 0;
switch (bytes) {
case 2:
val = le16_to_cpu(*((__le16 *)*pos));
break;
case 4:
val = le32_to_cpu(*((__le32 *)*pos));
break;
default:
break;
}
*pos += bytes;
return val;
}
static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
struct cs_dsp_coeff_parsed_alg *blk)
{
const struct wmfw_adsp_alg_data *raw;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_alg_data *)*data;
*data = raw->data;
blk->id = le32_to_cpu(raw->id);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ncoeff = le32_to_cpu(raw->ncoeff);
break;
default:
blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
&blk->name);
cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
break;
}
cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
}
static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
struct cs_dsp_coeff_parsed_coeff *blk)
{
const struct wmfw_adsp_coeff_data *raw;
const u8 *tmp;
int length;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_coeff_data *)*data;
*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
blk->offset = le16_to_cpu(raw->hdr.offset);
blk->mem_type = le16_to_cpu(raw->hdr.type);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ctl_type = le16_to_cpu(raw->ctl_type);
blk->flags = le16_to_cpu(raw->flags);
blk->len = le32_to_cpu(raw->len);
break;
default:
tmp = *data;
blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
&blk->name);
cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
*data = *data + sizeof(raw->hdr) + length;
break;
}
cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
}
static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
unsigned int f_required,
unsigned int f_illegal)
{
if ((coeff_blk->flags & f_illegal) ||
((coeff_blk->flags & f_required) != f_required)) {
cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
coeff_blk->flags, coeff_blk->ctl_type);
return -EINVAL;
}
return 0;
}
static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
const struct wmfw_region *region)
{
struct cs_dsp_alg_region alg_region = {};
struct cs_dsp_coeff_parsed_alg alg_blk;
struct cs_dsp_coeff_parsed_coeff coeff_blk;
const u8 *data = region->data;
int i, ret;
cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
for (i = 0; i < alg_blk.ncoeff; i++) {
cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
switch (coeff_blk.ctl_type) {
case WMFW_CTL_TYPE_BYTES:
break;
case WMFW_CTL_TYPE_ACKED:
if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
continue; /* ignore */
ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOSTEVENT:
ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOST_BUFFER:
ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
default:
cs_dsp_err(dsp, "Unknown control type: %d\n",
coeff_blk.ctl_type);
return -EINVAL;
}
alg_region.type = coeff_blk.mem_type;
alg_region.alg = alg_blk.id;
ret = cs_dsp_create_control(dsp, &alg_region,
coeff_blk.offset,
coeff_blk.len,
coeff_blk.name,
coeff_blk.name_len,
coeff_blk.flags,
coeff_blk.ctl_type);
if (ret < 0)
cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
coeff_blk.name_len, coeff_blk.name, ret);
}
return 0;
}
static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware)
{
const struct wmfw_adsp1_sizes *adsp1_sizes;
adsp1_sizes = (void *)&firmware->data[pos];
cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
le32_to_cpu(adsp1_sizes->zm));
return pos + sizeof(*adsp1_sizes);
}
static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware)
{
const struct wmfw_adsp2_sizes *adsp2_sizes;
adsp2_sizes = (void *)&firmware->data[pos];
cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
return pos + sizeof(*adsp2_sizes);
}
static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
{
switch (version) {
case 0:
cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
return true;
case 1:
case 2:
return true;
default:
return false;
}
}
static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
{
switch (version) {
case 3:
return true;
default:
return false;
}
}
static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
const char *file)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
unsigned int pos = 0;
const struct wmfw_header *header;
const struct wmfw_adsp1_sizes *adsp1_sizes;
const struct wmfw_footer *footer;
const struct wmfw_region *region;
const struct cs_dsp_region *mem;
const char *region_name;
char *text = NULL;
struct cs_dsp_buf *buf;
unsigned int reg;
int regions = 0;
int ret, offset, type;
ret = -EINVAL;
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
if (pos >= firmware->size) {
cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
header = (void *)&firmware->data[0];
if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
cs_dsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
if (!dsp->ops->validate_version(dsp, header->ver)) {
cs_dsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
dsp->fw_ver = header->ver;
if (header->core != dsp->type) {
cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
file, header->core, dsp->type);
goto out_fw;
}
pos = sizeof(*header);
pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
footer = (void *)&firmware->data[pos];
pos += sizeof(*footer);
if (le32_to_cpu(header->len) != pos) {
cs_dsp_err(dsp, "%s: unexpected header length %d\n",
file, le32_to_cpu(header->len));
goto out_fw;
}
cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
le64_to_cpu(footer->timestamp));
while (pos < firmware->size &&
sizeof(*region) < firmware->size - pos) {
region = (void *)&(firmware->data[pos]);
region_name = "Unknown";
reg = 0;
text = NULL;
offset = le32_to_cpu(region->offset) & 0xffffff;
type = be32_to_cpu(region->type) & 0xff;
switch (type) {
case WMFW_NAME_TEXT:
region_name = "Firmware name";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ALGORITHM_DATA:
region_name = "Algorithm";
ret = cs_dsp_parse_coeff(dsp, region);
if (ret != 0)
goto out_fw;
break;
case WMFW_INFO_TEXT:
region_name = "Information";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ABSOLUTE:
region_name = "Absolute";
reg = offset;
break;
case WMFW_ADSP1_PM:
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
case WMFW_HALO_PM_PACKED:
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
mem = cs_dsp_find_region(dsp, type);
if (!mem) {
cs_dsp_err(dsp, "No region of type: %x\n", type);
ret = -EINVAL;
goto out_fw;
}
region_name = cs_dsp_mem_region_name(type);
reg = dsp->ops->region_to_reg(mem, offset);
break;
default:
cs_dsp_warn(dsp,
"%s.%d: Unknown region type %x at %d(%x)\n",
file, regions, type, pos, pos);
break;
}
cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
regions, le32_to_cpu(region->len), offset,
region_name);
if (le32_to_cpu(region->len) >
firmware->size - pos - sizeof(*region)) {
cs_dsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, regions, region_name,
le32_to_cpu(region->len), firmware->size);
ret = -EINVAL;
goto out_fw;
}
if (text) {
memcpy(text, region->data, le32_to_cpu(region->len));
cs_dsp_info(dsp, "%s: %s\n", file, text);
kfree(text);
text = NULL;
}
if (reg) {
buf = cs_dsp_buf_alloc(region->data,
le32_to_cpu(region->len),
&buf_list);
if (!buf) {
cs_dsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(region->len));
if (ret != 0) {
cs_dsp_err(dsp,
"%s.%d: Failed to write %d bytes at %d in %s: %d\n",
file, regions,
le32_to_cpu(region->len), offset,
region_name, ret);
goto out_fw;
}
}
pos += le32_to_cpu(region->len) + sizeof(*region);
regions++;
}
ret = regmap_async_complete(regmap);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
goto out_fw;
}
if (pos > firmware->size)
cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, regions, pos - firmware->size);
cs_dsp_debugfs_save_wmfwname(dsp, file);
out_fw:
regmap_async_complete(regmap);
cs_dsp_buf_free(&buf_list);
kfree(text);
return ret;
}
/**
* cs_dsp_get_ctl() - Finds a matching coefficient control
* @dsp: pointer to DSP structure
* @name: pointer to string to match with a control's subname
* @type: the algorithm type to match
* @alg: the algorithm id to match
*
* Find cs_dsp_coeff_ctl with input name as its subname
*
* Return: pointer to the control on success, NULL if not found
*/
struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
unsigned int alg)
{
struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
list_for_each_entry(pos, &dsp->ctl_list, list) {
if (!pos->subname)
continue;
if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
pos->fw_name == dsp->fw_name &&
pos->alg_region.alg == alg &&
pos->alg_region.type == type) {
rslt = pos;
break;
}
}
return rslt;
}
EXPORT_SYMBOL_GPL(cs_dsp_get_ctl);
static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
const struct cs_dsp_alg_region *alg_region)
{
struct cs_dsp_coeff_ctl *ctl;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->fw_name == dsp->fw_name &&
alg_region->alg == ctl->alg_region.alg &&
alg_region->type == ctl->alg_region.type) {
ctl->alg_region.base = alg_region->base;
}
}
}
static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
const struct cs_dsp_region *mem,
unsigned int pos, unsigned int len)
{
void *alg;
unsigned int reg;
int ret;
__be32 val;
if (n_algs == 0) {
cs_dsp_err(dsp, "No algorithms\n");
return ERR_PTR(-EINVAL);
}
if (n_algs > 1024) {
cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
return ERR_PTR(-EINVAL);
}
/* Read the terminator first to validate the length */
reg = dsp->ops->region_to_reg(mem, pos + len);
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
ret);
return ERR_PTR(ret);
}
if (be32_to_cpu(val) != 0xbedead)
cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
reg, be32_to_cpu(val));
/* Convert length from DSP words to bytes */
len *= sizeof(u32);
alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
if (!alg)
return ERR_PTR(-ENOMEM);
reg = dsp->ops->region_to_reg(mem, pos);
ret = regmap_raw_read(dsp->regmap, reg, alg, len);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
kfree(alg);
return ERR_PTR(ret);
}
return alg;
}
/**
* cs_dsp_find_alg_region() - Finds a matching algorithm region
* @dsp: pointer to DSP structure
* @type: the algorithm type to match
* @id: the algorithm id to match
*
* Return: Pointer to matching algorithm region, or NULL if not found.
*/
struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
int type, unsigned int id)
{
struct cs_dsp_alg_region *alg_region;
list_for_each_entry(alg_region, &dsp->alg_regions, list) {
if (id == alg_region->alg && type == alg_region->type)
return alg_region;
}
return NULL;
}
EXPORT_SYMBOL_GPL(cs_dsp_find_alg_region);
static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
int type, __be32 id,
__be32 base)
{
struct cs_dsp_alg_region *alg_region;
alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
if (!alg_region)
return ERR_PTR(-ENOMEM);
alg_region->type = type;
alg_region->alg = be32_to_cpu(id);
alg_region->base = be32_to_cpu(base);
list_add_tail(&alg_region->list, &dsp->alg_regions);
if (dsp->fw_ver > 0)
cs_dsp_ctl_fixup_base(dsp, alg_region);
return alg_region;
}
static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
{
struct cs_dsp_alg_region *alg_region;
while (!list_empty(&dsp->alg_regions)) {
alg_region = list_first_entry(&dsp->alg_regions,
struct cs_dsp_alg_region,
list);
list_del(&alg_region->list);
kfree(alg_region);
}
}
static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
struct wmfw_id_hdr *fw, int nalgs)
{
dsp->fw_id = be32_to_cpu(fw->id);
dsp->fw_id_version = be32_to_cpu(fw->ver);
cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
nalgs);
}
static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
struct wmfw_v3_id_hdr *fw, int nalgs)
{
dsp->fw_id = be32_to_cpu(fw->id);
dsp->fw_id_version = be32_to_cpu(fw->ver);
dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
dsp->fw_id, dsp->fw_vendor_id,
(dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
nalgs);
}
static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, int nregions,
const int *type, __be32 *base)
{
struct cs_dsp_alg_region *alg_region;
int i;
for (i = 0; i < nregions; i++) {
alg_region = cs_dsp_create_region(dsp, type[i], id, base[i]);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
}
return 0;
}
static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
{
struct wmfw_adsp1_id_hdr adsp1_id;
struct wmfw_adsp1_alg_hdr *adsp1_alg;
struct cs_dsp_alg_region *alg_region;
const struct cs_dsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
sizeof(adsp1_id));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(adsp1_id.n_algs);
cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_id.fw.id, adsp1_id.zm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_id.fw.id, adsp1_id.dm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
/* Calculate offset and length in DSP words */
pos = sizeof(adsp1_id) / sizeof(u32);
len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp1_alg))
return PTR_ERR(adsp1_alg);
for (i = 0; i < n_algs; i++) {
cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
i, be32_to_cpu(adsp1_alg[i].alg.id),
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp1_alg[i].dm),
be32_to_cpu(adsp1_alg[i].zm));
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_alg[i].alg.id,
adsp1_alg[i].dm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].dm);
len -= be32_to_cpu(adsp1_alg[i].dm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_alg[i].alg.id,
adsp1_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].zm);
len -= be32_to_cpu(adsp1_alg[i].zm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
}
out:
kfree(adsp1_alg);
return ret;
}
static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
{
struct wmfw_adsp2_id_hdr adsp2_id;
struct wmfw_adsp2_alg_hdr *adsp2_alg;
struct cs_dsp_alg_region *alg_region;
const struct cs_dsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
sizeof(adsp2_id));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(adsp2_id.n_algs);
cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_id.fw.id, adsp2_id.xm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_id.fw.id, adsp2_id.ym);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_id.fw.id, adsp2_id.zm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
/* Calculate offset and length in DSP words */
pos = sizeof(adsp2_id) / sizeof(u32);
len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp2_alg))
return PTR_ERR(adsp2_alg);
for (i = 0; i < n_algs; i++) {
cs_dsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
i, be32_to_cpu(adsp2_alg[i].alg.id),
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp2_alg[i].xm),
be32_to_cpu(adsp2_alg[i].ym),
be32_to_cpu(adsp2_alg[i].zm));
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_alg[i].alg.id,
adsp2_alg[i].xm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].xm);
len -= be32_to_cpu(adsp2_alg[i].xm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_alg[i].alg.id,
adsp2_alg[i].ym);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].ym);
len -= be32_to_cpu(adsp2_alg[i].ym);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_alg[i].alg.id,
adsp2_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].zm);
len -= be32_to_cpu(adsp2_alg[i].zm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
}
out:
kfree(adsp2_alg);
return ret;
}
static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id,
__be32 xm_base, __be32 ym_base)
{
static const int types[] = {
WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
};
__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
return cs_dsp_create_regions(dsp, id, ARRAY_SIZE(types), types, bases);
}
static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
{
struct wmfw_halo_id_hdr halo_id;
struct wmfw_halo_alg_hdr *halo_alg;
const struct cs_dsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
sizeof(halo_id));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(halo_id.n_algs);
cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id,
halo_id.xm_base, halo_id.ym_base);
if (ret)
return ret;
/* Calculate offset and length in DSP words */
pos = sizeof(halo_id) / sizeof(u32);
len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(halo_alg))
return PTR_ERR(halo_alg);
for (i = 0; i < n_algs; i++) {
cs_dsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
i, be32_to_cpu(halo_alg[i].alg.id),
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
be32_to_cpu(halo_alg[i].xm_base),
be32_to_cpu(halo_alg[i].ym_base));
ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
halo_alg[i].xm_base,
halo_alg[i].ym_base);
if (ret)
goto out;
}
out:
kfree(halo_alg);
return ret;
}
static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
const char *file)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
struct wmfw_coeff_hdr *hdr;
struct wmfw_coeff_item *blk;
const struct cs_dsp_region *mem;
struct cs_dsp_alg_region *alg_region;
const char *region_name;
int ret, pos, blocks, type, offset, reg;
struct cs_dsp_buf *buf;
if (!firmware)
return 0;
ret = -EINVAL;
if (sizeof(*hdr) >= firmware->size) {
cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
hdr = (void *)&firmware->data[0];
if (memcmp(hdr->magic, "WMDR", 4) != 0) {
cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
goto out_fw;
}
switch (be32_to_cpu(hdr->rev) & 0xff) {
case 1:
break;
default:
cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
file, be32_to_cpu(hdr->rev) & 0xff);
ret = -EINVAL;
goto out_fw;
}
cs_dsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
(le32_to_cpu(hdr->ver) >> 16) & 0xff,
(le32_to_cpu(hdr->ver) >> 8) & 0xff,
le32_to_cpu(hdr->ver) & 0xff);
pos = le32_to_cpu(hdr->len);
blocks = 0;
while (pos < firmware->size &&
sizeof(*blk) < firmware->size - pos) {
blk = (void *)(&firmware->data[pos]);
type = le16_to_cpu(blk->type);
offset = le16_to_cpu(blk->offset);
cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
file, blocks, le32_to_cpu(blk->id),
(le32_to_cpu(blk->ver) >> 16) & 0xff,
(le32_to_cpu(blk->ver) >> 8) & 0xff,
le32_to_cpu(blk->ver) & 0xff);
cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
file, blocks, le32_to_cpu(blk->len), offset, type);
reg = 0;
region_name = "Unknown";
switch (type) {
case (WMFW_NAME_TEXT << 8):
case (WMFW_INFO_TEXT << 8):
case (WMFW_METADATA << 8):
break;
case (WMFW_ABSOLUTE << 8):
/*
* Old files may use this for global
* coefficients.
*/
if (le32_to_cpu(blk->id) == dsp->fw_id &&
offset == 0) {
region_name = "global coefficients";
mem = cs_dsp_find_region(dsp, type);
if (!mem) {
cs_dsp_err(dsp, "No ZM\n");
break;
}
reg = dsp->ops->region_to_reg(mem, 0);
} else {
region_name = "register";
reg = offset;
}
break;
case WMFW_ADSP1_DM:
case WMFW_ADSP1_ZM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
case WMFW_HALO_PM_PACKED:
cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
file, blocks, le32_to_cpu(blk->len),
type, le32_to_cpu(blk->id));
mem = cs_dsp_find_region(dsp, type);
if (!mem) {
cs_dsp_err(dsp, "No base for region %x\n", type);
break;
}
alg_region = cs_dsp_find_alg_region(dsp, type,
le32_to_cpu(blk->id));
if (alg_region) {
reg = alg_region->base;
reg = dsp->ops->region_to_reg(mem, reg);
reg += offset;
} else {
cs_dsp_err(dsp, "No %x for algorithm %x\n",
type, le32_to_cpu(blk->id));
}
break;
default:
cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
file, blocks, type, pos);
break;
}
if (reg) {
if (le32_to_cpu(blk->len) >
firmware->size - pos - sizeof(*blk)) {
cs_dsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, blocks, region_name,
le32_to_cpu(blk->len),
firmware->size);
ret = -EINVAL;
goto out_fw;
}
buf = cs_dsp_buf_alloc(blk->data,
le32_to_cpu(blk->len),
&buf_list);
if (!buf) {
cs_dsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
file, blocks, le32_to_cpu(blk->len),
reg);
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(blk->len));
if (ret != 0) {
cs_dsp_err(dsp,
"%s.%d: Failed to write to %x in %s: %d\n",
file, blocks, reg, region_name, ret);
}
}
pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
blocks++;
}
ret = regmap_async_complete(regmap);
if (ret != 0)
cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
if (pos > firmware->size)
cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, blocks, pos - firmware->size);
cs_dsp_debugfs_save_binname(dsp, file);
out_fw:
regmap_async_complete(regmap);
cs_dsp_buf_free(&buf_list);
return ret;
}
static int cs_dsp_create_name(struct cs_dsp *dsp)
{
if (!dsp->name) {
dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
dsp->num);
if (!dsp->name)
return -ENOMEM;
}
return 0;
}
static int cs_dsp_common_init(struct cs_dsp *dsp)
{
int ret;
ret = cs_dsp_create_name(dsp);
if (ret)
return ret;
INIT_LIST_HEAD(&dsp->alg_regions);
INIT_LIST_HEAD(&dsp->ctl_list);
mutex_init(&dsp->pwr_lock);
return 0;
}
/**
* cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
* @dsp: pointer to DSP structure
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_adsp1_init(struct cs_dsp *dsp)
{
dsp->ops = &cs_dsp_adsp1_ops;
return cs_dsp_common_init(dsp);
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp1_init);
/**
* cs_dsp_adsp1_power_up() - Load and start the named firmware
* @dsp: pointer to DSP structure
* @wmfw_firmware: the firmware to be sent
* @wmfw_filename: file name of firmware to be sent
* @coeff_firmware: the coefficient data to be sent
* @coeff_filename: file name of coefficient to data be sent
* @fw_name: the user-friendly firmware name
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
const struct firmware *wmfw_firmware, char *wmfw_filename,
const struct firmware *coeff_firmware, char *coeff_filename,
const char *fw_name)
{
unsigned int val;
int ret;
mutex_lock(&dsp->pwr_lock);
dsp->fw_name = fw_name;
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, ADSP1_SYS_ENA);
/*
* For simplicity set the DSP clock rate to be the
* SYSCLK rate rather than making it configurable.
*/
if (dsp->sysclk_reg) {
ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
goto err_mutex;
}
val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP1_CONTROL_31,
ADSP1_CLK_SEL_MASK, val);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
goto err_mutex;
}
}
ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
if (ret != 0)
goto err_ena;
ret = cs_dsp_adsp1_setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = cs_dsp_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
/* Sync set controls */
ret = cs_dsp_coeff_sync_controls(dsp);
if (ret != 0)
goto err_ena;
dsp->booted = true;
/* Start the core running */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START,
ADSP1_CORE_ENA | ADSP1_START);
dsp->running = true;
mutex_unlock(&dsp->pwr_lock);
return 0;
err_ena:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_up);
/**
* cs_dsp_adsp1_power_down() - Halts the DSP
* @dsp: pointer to DSP structure
*/
void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
mutex_lock(&dsp->pwr_lock);
dsp->running = false;
dsp->booted = false;
/* Halt the core */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
cs_dsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_down);
static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
{
unsigned int val;
int ret, count;
/* Wait for the RAM to start, should be near instantaneous */
for (count = 0; count < 10; ++count) {
ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
if (ret != 0)
return ret;
if (val & ADSP2_RAM_RDY)
break;
usleep_range(250, 500);
}
if (!(val & ADSP2_RAM_RDY)) {
cs_dsp_err(dsp, "Failed to start DSP RAM\n");
return -EBUSY;
}
cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
return 0;
}
static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
{
int ret;
ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, ADSP2_SYS_ENA);
if (ret != 0)
return ret;
return cs_dsp_adsp2v2_enable_core(dsp);
}
static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
{
struct regmap *regmap = dsp->regmap;
unsigned int code0, code1, lock_reg;
if (!(lock_regions & CS_ADSP2_REGION_ALL))
return 0;
lock_regions &= CS_ADSP2_REGION_ALL;
lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
while (lock_regions) {
code0 = code1 = 0;
if (lock_regions & BIT(0)) {
code0 = ADSP2_LOCK_CODE_0;
code1 = ADSP2_LOCK_CODE_1;
}
if (lock_regions & BIT(1)) {
code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
}
regmap_write(regmap, lock_reg, code0);
regmap_write(regmap, lock_reg, code1);
lock_regions >>= 2;
lock_reg += 2;
}
return 0;
}
static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
{
return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, ADSP2_MEM_ENA);
}
static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
}
static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
{
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, 0);
}
static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
{
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
}
static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
{
struct reg_sequence config[] = {
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
{ dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
};
return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
}
/**
* cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
* @dsp: pointer to DSP structure
* @freq: clock rate to set
*
* This is only for use on ADSP2 cores.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
{
int ret;
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
ADSP2_CLK_SEL_MASK,
freq << ADSP2_CLK_SEL_SHIFT);
if (ret)
cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_set_dspclk);
static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
ADSP2_WDT_ENA_MASK, 0);
}
static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
HALO_WDT_EN_MASK, 0);
}
/**
* cs_dsp_power_up() - Downloads firmware to the DSP
* @dsp: pointer to DSP structure
* @wmfw_firmware: the firmware to be sent
* @wmfw_filename: file name of firmware to be sent
* @coeff_firmware: the coefficient data to be sent
* @coeff_filename: file name of coefficient to data be sent
* @fw_name: the user-friendly firmware name
*
* This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
* and downloads the firmware but does not start the firmware running. The
* cs_dsp booted flag will be set once completed and if the core has a low-power
* memory retention mode it will be put into this state after the firmware is
* downloaded.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_power_up(struct cs_dsp *dsp,
const struct firmware *wmfw_firmware, char *wmfw_filename,
const struct firmware *coeff_firmware, char *coeff_filename,
const char *fw_name)
{
int ret;
mutex_lock(&dsp->pwr_lock);
dsp->fw_name = fw_name;
if (dsp->ops->enable_memory) {
ret = dsp->ops->enable_memory(dsp);
if (ret != 0)
goto err_mutex;
}
if (dsp->ops->enable_core) {
ret = dsp->ops->enable_core(dsp);
if (ret != 0)
goto err_mem;
}
ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
if (ret != 0)
goto err_ena;
ret = dsp->ops->setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = cs_dsp_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
dsp->booted = true;
mutex_unlock(&dsp->pwr_lock);
return 0;
err_ena:
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
err_mem:
if (dsp->ops->disable_memory)
dsp->ops->disable_memory(dsp);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_power_up);
/**
* cs_dsp_power_down() - Powers-down the DSP
* @dsp: pointer to DSP structure
*
* cs_dsp_stop() must have been called before this function. The core will be
* fully powered down and so the memory will not be retained.
*/
void cs_dsp_power_down(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
mutex_lock(&dsp->pwr_lock);
cs_dsp_debugfs_clear(dsp);
dsp->fw_id = 0;
dsp->fw_id_version = 0;
dsp->booted = false;
if (dsp->ops->disable_memory)
dsp->ops->disable_memory(dsp);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
cs_dsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
cs_dsp_dbg(dsp, "Shutdown complete\n");
}
EXPORT_SYMBOL_GPL(cs_dsp_power_down);
static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
{
return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START,
ADSP2_CORE_ENA | ADSP2_START);
}
static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START, 0);
}
/**
* cs_dsp_run() - Starts the firmware running
* @dsp: pointer to DSP structure
*
* cs_dsp_power_up() must have previously been called successfully.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_run(struct cs_dsp *dsp)
{
int ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->booted) {
ret = -EIO;
goto err;
}
if (dsp->ops->enable_core) {
ret = dsp->ops->enable_core(dsp);
if (ret != 0)
goto err;
}
/* Sync set controls */
ret = cs_dsp_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
if (dsp->ops->lock_memory) {
ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
if (ret != 0) {
cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
goto err;
}
}
if (dsp->ops->start_core) {
ret = dsp->ops->start_core(dsp);
if (ret != 0)
goto err;
}
dsp->running = true;
if (dsp->client_ops->post_run) {
ret = dsp->client_ops->post_run(dsp);
if (ret)
goto err;
}
mutex_unlock(&dsp->pwr_lock);
return 0;
err:
if (dsp->ops->stop_core)
dsp->ops->stop_core(dsp);
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_run);
/**
* cs_dsp_stop() - Stops the firmware
* @dsp: pointer to DSP structure
*
* Memory will not be disabled so firmware will remain loaded.
*/
void cs_dsp_stop(struct cs_dsp *dsp)
{
/* Tell the firmware to cleanup */
cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
if (dsp->ops->stop_watchdog)
dsp->ops->stop_watchdog(dsp);
/* Log firmware state, it can be useful for analysis */
if (dsp->ops->show_fw_status)
dsp->ops->show_fw_status(dsp);
mutex_lock(&dsp->pwr_lock);
dsp->running = false;
if (dsp->ops->stop_core)
dsp->ops->stop_core(dsp);
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
if (dsp->client_ops->post_stop)
dsp->client_ops->post_stop(dsp);
mutex_unlock(&dsp->pwr_lock);
cs_dsp_dbg(dsp, "Execution stopped\n");
}
EXPORT_SYMBOL_GPL(cs_dsp_stop);
static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
{
return regmap_update_bits(dsp->regmap,
dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_RESET | HALO_CORE_EN,
HALO_CORE_RESET | HALO_CORE_EN);
}
static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, 0);
/* reset halo core with CORE_SOFT_RESET */
regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
HALO_CORE_SOFT_RESET_MASK, 1);
}
/**
* cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
* @dsp: pointer to DSP structure
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_adsp2_init(struct cs_dsp *dsp)
{
int ret;
switch (dsp->rev) {
case 0:
/*
* Disable the DSP memory by default when in reset for a small
* power saving.
*/
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
if (ret) {
cs_dsp_err(dsp,
"Failed to clear memory retention: %d\n", ret);
return ret;
}
dsp->ops = &cs_dsp_adsp2_ops[0];
break;
case 1:
dsp->ops = &cs_dsp_adsp2_ops[1];
break;
default:
dsp->ops = &cs_dsp_adsp2_ops[2];
break;
}