| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved. |
| */ |
| |
| #include "hdmi.h" |
| #include <linux/qcom_scm.h> |
| |
| #define HDCP_REG_ENABLE 0x01 |
| #define HDCP_REG_DISABLE 0x00 |
| #define HDCP_PORT_ADDR 0x74 |
| |
| #define HDCP_INT_STATUS_MASK ( \ |
| HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT | \ |
| HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT | \ |
| HDMI_HDCP_INT_CTRL_AUTH_XFER_REQ_INT | \ |
| HDMI_HDCP_INT_CTRL_AUTH_XFER_DONE_INT) |
| |
| #define AUTH_WORK_RETRIES_TIME 100 |
| #define AUTH_RETRIES_TIME 30 |
| |
| /* QFPROM Registers for HDMI/HDCP */ |
| #define QFPROM_RAW_FEAT_CONFIG_ROW0_LSB 0x000000F8 |
| #define QFPROM_RAW_FEAT_CONFIG_ROW0_MSB 0x000000FC |
| #define HDCP_KSV_LSB 0x000060D8 |
| #define HDCP_KSV_MSB 0x000060DC |
| |
| enum DS_TYPE { /* type of downstream device */ |
| DS_UNKNOWN, |
| DS_RECEIVER, |
| DS_REPEATER, |
| }; |
| |
| enum hdmi_hdcp_state { |
| HDCP_STATE_NO_AKSV, |
| HDCP_STATE_INACTIVE, |
| HDCP_STATE_AUTHENTICATING, |
| HDCP_STATE_AUTHENTICATED, |
| HDCP_STATE_AUTH_FAILED |
| }; |
| |
| struct hdmi_hdcp_reg_data { |
| u32 reg_id; |
| u32 off; |
| char *name; |
| u32 reg_val; |
| }; |
| |
| struct hdmi_hdcp_ctrl { |
| struct hdmi *hdmi; |
| u32 auth_retries; |
| bool tz_hdcp; |
| enum hdmi_hdcp_state hdcp_state; |
| struct work_struct hdcp_auth_work; |
| struct work_struct hdcp_reauth_work; |
| |
| #define AUTH_ABORT_EV 1 |
| #define AUTH_RESULT_RDY_EV 2 |
| unsigned long auth_event; |
| wait_queue_head_t auth_event_queue; |
| |
| u32 ksv_fifo_w_index; |
| /* |
| * store aksv from qfprom |
| */ |
| u32 aksv_lsb; |
| u32 aksv_msb; |
| bool aksv_valid; |
| u32 ds_type; |
| u32 bksv_lsb; |
| u32 bksv_msb; |
| u8 dev_count; |
| u8 depth; |
| u8 ksv_list[5 * 127]; |
| bool max_cascade_exceeded; |
| bool max_dev_exceeded; |
| }; |
| |
| static int msm_hdmi_ddc_read(struct hdmi *hdmi, u16 addr, u8 offset, |
| u8 *data, u16 data_len) |
| { |
| int rc; |
| int retry = 5; |
| struct i2c_msg msgs[] = { |
| { |
| .addr = addr >> 1, |
| .flags = 0, |
| .len = 1, |
| .buf = &offset, |
| }, { |
| .addr = addr >> 1, |
| .flags = I2C_M_RD, |
| .len = data_len, |
| .buf = data, |
| } |
| }; |
| |
| DBG("Start DDC read"); |
| retry: |
| rc = i2c_transfer(hdmi->i2c, msgs, 2); |
| |
| retry--; |
| if (rc == 2) |
| rc = 0; |
| else if (retry > 0) |
| goto retry; |
| else |
| rc = -EIO; |
| |
| DBG("End DDC read %d", rc); |
| |
| return rc; |
| } |
| |
| #define HDCP_DDC_WRITE_MAX_BYTE_NUM 32 |
| |
| static int msm_hdmi_ddc_write(struct hdmi *hdmi, u16 addr, u8 offset, |
| u8 *data, u16 data_len) |
| { |
| int rc; |
| int retry = 10; |
| u8 buf[HDCP_DDC_WRITE_MAX_BYTE_NUM]; |
| struct i2c_msg msgs[] = { |
| { |
| .addr = addr >> 1, |
| .flags = 0, |
| .len = 1, |
| } |
| }; |
| |
| DBG("Start DDC write"); |
| if (data_len > (HDCP_DDC_WRITE_MAX_BYTE_NUM - 1)) { |
| pr_err("%s: write size too big\n", __func__); |
| return -ERANGE; |
| } |
| |
| buf[0] = offset; |
| memcpy(&buf[1], data, data_len); |
| msgs[0].buf = buf; |
| msgs[0].len = data_len + 1; |
| retry: |
| rc = i2c_transfer(hdmi->i2c, msgs, 1); |
| |
| retry--; |
| if (rc == 1) |
| rc = 0; |
| else if (retry > 0) |
| goto retry; |
| else |
| rc = -EIO; |
| |
| DBG("End DDC write %d", rc); |
| |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_scm_wr(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 *preg, |
| u32 *pdata, u32 count) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| struct qcom_scm_hdcp_req scm_buf[QCOM_SCM_HDCP_MAX_REQ_CNT]; |
| u32 resp, phy_addr, idx = 0; |
| int i, ret = 0; |
| |
| WARN_ON(!pdata || !preg || (count == 0)); |
| |
| if (hdcp_ctrl->tz_hdcp) { |
| phy_addr = (u32)hdmi->mmio_phy_addr; |
| |
| while (count) { |
| memset(scm_buf, 0, sizeof(scm_buf)); |
| for (i = 0; i < count && i < QCOM_SCM_HDCP_MAX_REQ_CNT; |
| i++) { |
| scm_buf[i].addr = phy_addr + preg[idx]; |
| scm_buf[i].val = pdata[idx]; |
| idx++; |
| } |
| ret = qcom_scm_hdcp_req(scm_buf, i, &resp); |
| |
| if (ret || resp) { |
| pr_err("%s: error: scm_call ret=%d resp=%u\n", |
| __func__, ret, resp); |
| ret = -EINVAL; |
| break; |
| } |
| |
| count -= i; |
| } |
| } else { |
| for (i = 0; i < count; i++) |
| hdmi_write(hdmi, preg[i], pdata[i]); |
| } |
| |
| return ret; |
| } |
| |
| void msm_hdmi_hdcp_irq(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg_val, hdcp_int_status; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_INT_CTRL); |
| hdcp_int_status = reg_val & HDCP_INT_STATUS_MASK; |
| if (!hdcp_int_status) { |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| return; |
| } |
| /* Clear Interrupts */ |
| reg_val |= hdcp_int_status << 1; |
| /* Clear AUTH_FAIL_INFO as well */ |
| if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT) |
| reg_val |= HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK; |
| hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| DBG("hdcp irq %x", hdcp_int_status); |
| |
| if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT) { |
| pr_info("%s:AUTH_SUCCESS_INT received\n", __func__); |
| if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) { |
| set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event); |
| wake_up_all(&hdcp_ctrl->auth_event_queue); |
| } |
| } |
| |
| if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT) { |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); |
| pr_info("%s: AUTH_FAIL_INT rcvd, LINK0_STATUS=0x%08x\n", |
| __func__, reg_val); |
| if (HDCP_STATE_AUTHENTICATED == hdcp_ctrl->hdcp_state) |
| queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work); |
| else if (HDCP_STATE_AUTHENTICATING == |
| hdcp_ctrl->hdcp_state) { |
| set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event); |
| wake_up_all(&hdcp_ctrl->auth_event_queue); |
| } |
| } |
| } |
| |
| static int msm_hdmi_hdcp_msleep(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 ms, u32 ev) |
| { |
| int rc; |
| |
| rc = wait_event_timeout(hdcp_ctrl->auth_event_queue, |
| !!test_bit(ev, &hdcp_ctrl->auth_event), |
| msecs_to_jiffies(ms)); |
| if (rc) { |
| pr_info("%s: msleep is canceled by event %d\n", |
| __func__, ev); |
| clear_bit(ev, &hdcp_ctrl->auth_event); |
| return -ECANCELED; |
| } |
| |
| return 0; |
| } |
| |
| static int msm_hdmi_hdcp_read_validate_aksv(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| |
| /* Fetch aksv from QFPROM, this info should be public. */ |
| hdcp_ctrl->aksv_lsb = hdmi_qfprom_read(hdmi, HDCP_KSV_LSB); |
| hdcp_ctrl->aksv_msb = hdmi_qfprom_read(hdmi, HDCP_KSV_MSB); |
| |
| /* check there are 20 ones in AKSV */ |
| if ((hweight32(hdcp_ctrl->aksv_lsb) + hweight32(hdcp_ctrl->aksv_msb)) |
| != 20) { |
| pr_err("%s: AKSV QFPROM doesn't have 20 1's, 20 0's\n", |
| __func__); |
| pr_err("%s: QFPROM AKSV chk failed (AKSV=%02x%08x)\n", |
| __func__, hdcp_ctrl->aksv_msb, |
| hdcp_ctrl->aksv_lsb); |
| return -EINVAL; |
| } |
| DBG("AKSV=%02x%08x", hdcp_ctrl->aksv_msb, hdcp_ctrl->aksv_lsb); |
| |
| return 0; |
| } |
| |
| static int msm_reset_hdcp_ddc_failures(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg_val, failure, nack0; |
| int rc = 0; |
| |
| /* Check for any DDC transfer failures */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS); |
| failure = reg_val & HDMI_HDCP_DDC_STATUS_FAILED; |
| nack0 = reg_val & HDMI_HDCP_DDC_STATUS_NACK0; |
| DBG("HDCP_DDC_STATUS=0x%x, FAIL=%d, NACK0=%d", |
| reg_val, failure, nack0); |
| |
| if (failure) { |
| /* |
| * Indicates that the last HDCP HW DDC transfer failed. |
| * This occurs when a transfer is attempted with HDCP DDC |
| * disabled (HDCP_DDC_DISABLE=1) or the number of retries |
| * matches HDCP_DDC_RETRY_CNT. |
| * Failure occurred, let's clear it. |
| */ |
| DBG("DDC failure detected"); |
| |
| /* First, Disable DDC */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0, |
| HDMI_HDCP_DDC_CTRL_0_DISABLE); |
| |
| /* ACK the Failure to Clear it */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_CTRL_1); |
| reg_val |= HDMI_HDCP_DDC_CTRL_1_FAILED_ACK; |
| hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_1, reg_val); |
| |
| /* Check if the FAILURE got Cleared */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS); |
| if (reg_val & HDMI_HDCP_DDC_STATUS_FAILED) |
| pr_info("%s: Unable to clear HDCP DDC Failure\n", |
| __func__); |
| |
| /* Re-Enable HDCP DDC */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0, 0); |
| } |
| |
| if (nack0) { |
| DBG("Before: HDMI_DDC_SW_STATUS=0x%08x", |
| hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS)); |
| /* Reset HDMI DDC software status */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); |
| reg_val |= HDMI_DDC_CTRL_SW_STATUS_RESET; |
| hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| |
| reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); |
| reg_val &= ~HDMI_DDC_CTRL_SW_STATUS_RESET; |
| hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); |
| |
| /* Reset HDMI DDC Controller */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); |
| reg_val |= HDMI_DDC_CTRL_SOFT_RESET; |
| hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); |
| |
| /* If previous msleep is aborted, skip this msleep */ |
| if (!rc) |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| |
| reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); |
| reg_val &= ~HDMI_DDC_CTRL_SOFT_RESET; |
| hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); |
| DBG("After: HDMI_DDC_SW_STATUS=0x%08x", |
| hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS)); |
| } |
| |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_hw_ddc_clean(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc; |
| u32 hdcp_ddc_status, ddc_hw_status; |
| u32 xfer_done, xfer_req, hw_done; |
| bool hw_not_ready; |
| u32 timeout_count; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| |
| if (hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS) == 0) |
| return 0; |
| |
| /* Wait to be clean on DDC HW engine */ |
| timeout_count = 100; |
| do { |
| hdcp_ddc_status = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS); |
| ddc_hw_status = hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS); |
| |
| xfer_done = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_DONE; |
| xfer_req = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_REQ; |
| hw_done = ddc_hw_status & HDMI_DDC_HW_STATUS_DONE; |
| hw_not_ready = !xfer_done || xfer_req || !hw_done; |
| |
| if (hw_not_ready) |
| break; |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_warn("%s: hw_ddc_clean failed\n", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| return 0; |
| } |
| |
| static void msm_hdmi_hdcp_reauth_work(struct work_struct *work) |
| { |
| struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work, |
| struct hdmi_hdcp_ctrl, hdcp_reauth_work); |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| unsigned long flags; |
| u32 reg_val; |
| |
| DBG("HDCP REAUTH WORK"); |
| /* |
| * Disable HPD circuitry. |
| * This is needed to reset the HDCP cipher engine so that when we |
| * attempt a re-authentication, HW would clear the AN0_READY and |
| * AN1_READY bits in HDMI_HDCP_LINK0_STATUS register |
| */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); |
| reg_val &= ~HDMI_HPD_CTRL_ENABLE; |
| hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); |
| |
| /* Disable HDCP interrupts */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| hdmi_write(hdmi, REG_HDMI_HDCP_RESET, |
| HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE); |
| |
| /* Wait to be clean on DDC HW engine */ |
| if (msm_hdmi_hdcp_hw_ddc_clean(hdcp_ctrl)) { |
| pr_info("%s: reauth work aborted\n", __func__); |
| return; |
| } |
| |
| /* Disable encryption and disable the HDCP block */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0); |
| |
| /* Enable HPD circuitry */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); |
| reg_val |= HDMI_HPD_CTRL_ENABLE; |
| hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| /* |
| * Only retry defined times then abort current authenticating process |
| */ |
| if (++hdcp_ctrl->auth_retries == AUTH_RETRIES_TIME) { |
| hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; |
| hdcp_ctrl->auth_retries = 0; |
| pr_info("%s: abort reauthentication!\n", __func__); |
| |
| return; |
| } |
| |
| DBG("Queue AUTH WORK"); |
| hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING; |
| queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work); |
| } |
| |
| static int msm_hdmi_hdcp_auth_prepare(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 link0_status; |
| u32 reg_val; |
| unsigned long flags; |
| int rc; |
| |
| if (!hdcp_ctrl->aksv_valid) { |
| rc = msm_hdmi_hdcp_read_validate_aksv(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: ASKV validation failed\n", __func__); |
| hdcp_ctrl->hdcp_state = HDCP_STATE_NO_AKSV; |
| return -ENOTSUPP; |
| } |
| hdcp_ctrl->aksv_valid = true; |
| } |
| |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| /* disable HDMI Encrypt */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); |
| reg_val &= ~HDMI_CTRL_ENCRYPTED; |
| hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); |
| |
| /* Enabling Software DDC */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION); |
| reg_val &= ~HDMI_DDC_ARBITRATION_HW_ARBITRATION; |
| hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| /* |
| * Write AKSV read from QFPROM to the HDCP registers. |
| * This step is needed for HDCP authentication and must be |
| * written before enabling HDCP. |
| */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_SW_LOWER_AKSV, hdcp_ctrl->aksv_lsb); |
| hdmi_write(hdmi, REG_HDMI_HDCP_SW_UPPER_AKSV, hdcp_ctrl->aksv_msb); |
| |
| /* |
| * HDCP setup prior to enabling HDCP_CTRL. |
| * Setup seed values for random number An. |
| */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL0, 0xB1FFB0FF); |
| hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL1, 0xF00DFACE); |
| |
| /* Disable the RngCipher state */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL); |
| reg_val &= ~HDMI_HDCP_DEBUG_CTRL_RNG_CIPHER; |
| hdmi_write(hdmi, REG_HDMI_HDCP_DEBUG_CTRL, reg_val); |
| DBG("HDCP_DEBUG_CTRL=0x%08x", |
| hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL)); |
| |
| /* |
| * Ensure that all register writes are completed before |
| * enabling HDCP cipher |
| */ |
| wmb(); |
| |
| /* |
| * Enable HDCP |
| * This needs to be done as early as possible in order for the |
| * hardware to make An available to read |
| */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, HDMI_HDCP_CTRL_ENABLE); |
| |
| /* |
| * If we had stale values for the An ready bit, it should most |
| * likely be cleared now after enabling HDCP cipher |
| */ |
| link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); |
| DBG("After enabling HDCP Link0_Status=0x%08x", link0_status); |
| if (!(link0_status & |
| (HDMI_HDCP_LINK0_STATUS_AN_0_READY | |
| HDMI_HDCP_LINK0_STATUS_AN_1_READY))) |
| DBG("An not ready after enabling HDCP"); |
| |
| /* Clear any DDC failures from previous tries before enable HDCP*/ |
| rc = msm_reset_hdcp_ddc_failures(hdcp_ctrl); |
| |
| return rc; |
| } |
| |
| static void msm_hdmi_hdcp_auth_fail(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg_val; |
| unsigned long flags; |
| |
| DBG("hdcp auth failed, queue reauth work"); |
| /* clear HDMI Encrypt */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); |
| reg_val &= ~HDMI_CTRL_ENCRYPTED; |
| hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| hdcp_ctrl->hdcp_state = HDCP_STATE_AUTH_FAILED; |
| queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work); |
| } |
| |
| static void msm_hdmi_hdcp_auth_done(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg_val; |
| unsigned long flags; |
| |
| /* |
| * Disable software DDC before going into part3 to make sure |
| * there is no Arbitration between software and hardware for DDC |
| */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION); |
| reg_val |= HDMI_DDC_ARBITRATION_HW_ARBITRATION; |
| hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| /* enable HDMI Encrypt */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); |
| reg_val |= HDMI_CTRL_ENCRYPTED; |
| hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATED; |
| hdcp_ctrl->auth_retries = 0; |
| } |
| |
| /* |
| * hdcp authenticating part 1 |
| * Wait Key/An ready |
| * Read BCAPS from sink |
| * Write BCAPS and AKSV into HDCP engine |
| * Write An and AKSV to sink |
| * Read BKSV from sink and write into HDCP engine |
| */ |
| static int msm_hdmi_hdcp_wait_key_an_ready(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 link0_status, keys_state; |
| u32 timeout_count; |
| bool an_ready; |
| |
| /* Wait for HDCP keys to be checked and validated */ |
| timeout_count = 100; |
| do { |
| link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); |
| keys_state = (link0_status >> 28) & 0x7; |
| if (keys_state == HDCP_KEYS_STATE_VALID) |
| break; |
| |
| DBG("Keys not ready(%d). s=%d, l0=%0x08x", |
| timeout_count, keys_state, link0_status); |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_err("%s: Wait key state timedout", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| timeout_count = 100; |
| do { |
| link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); |
| an_ready = (link0_status & HDMI_HDCP_LINK0_STATUS_AN_0_READY) |
| && (link0_status & HDMI_HDCP_LINK0_STATUS_AN_1_READY); |
| if (an_ready) |
| break; |
| |
| DBG("An not ready(%d). l0_status=0x%08x", |
| timeout_count, link0_status); |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_err("%s: Wait An timedout", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| return 0; |
| } |
| |
| static int msm_hdmi_hdcp_send_aksv_an(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc = 0; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 link0_aksv_0, link0_aksv_1; |
| u32 link0_an[2]; |
| u8 aksv[5]; |
| |
| /* Read An0 and An1 */ |
| link0_an[0] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA5); |
| link0_an[1] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA6); |
| |
| /* Read AKSV */ |
| link0_aksv_0 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA3); |
| link0_aksv_1 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4); |
| |
| DBG("Link ASKV=%08x%08x", link0_aksv_0, link0_aksv_1); |
| /* Copy An and AKSV to byte arrays for transmission */ |
| aksv[0] = link0_aksv_0 & 0xFF; |
| aksv[1] = (link0_aksv_0 >> 8) & 0xFF; |
| aksv[2] = (link0_aksv_0 >> 16) & 0xFF; |
| aksv[3] = (link0_aksv_0 >> 24) & 0xFF; |
| aksv[4] = link0_aksv_1 & 0xFF; |
| |
| /* Write An to offset 0x18 */ |
| rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x18, (u8 *)link0_an, |
| (u16)sizeof(link0_an)); |
| if (rc) { |
| pr_err("%s:An write failed\n", __func__); |
| return rc; |
| } |
| DBG("Link0-An=%08x%08x", link0_an[0], link0_an[1]); |
| |
| /* Write AKSV to offset 0x10 */ |
| rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x10, aksv, 5); |
| if (rc) { |
| pr_err("%s:AKSV write failed\n", __func__); |
| return rc; |
| } |
| DBG("Link0-AKSV=%02x%08x", link0_aksv_1 & 0xFF, link0_aksv_0); |
| |
| return 0; |
| } |
| |
| static int msm_hdmi_hdcp_recv_bksv(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc = 0; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u8 bksv[5]; |
| u32 reg[2], data[2]; |
| |
| /* Read BKSV at offset 0x00 */ |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x00, bksv, 5); |
| if (rc) { |
| pr_err("%s:BKSV read failed\n", __func__); |
| return rc; |
| } |
| |
| hdcp_ctrl->bksv_lsb = bksv[0] | (bksv[1] << 8) | |
| (bksv[2] << 16) | (bksv[3] << 24); |
| hdcp_ctrl->bksv_msb = bksv[4]; |
| DBG(":BKSV=%02x%08x", hdcp_ctrl->bksv_msb, hdcp_ctrl->bksv_lsb); |
| |
| /* check there are 20 ones in BKSV */ |
| if ((hweight32(hdcp_ctrl->bksv_lsb) + hweight32(hdcp_ctrl->bksv_msb)) |
| != 20) { |
| pr_err(": BKSV doesn't have 20 1's and 20 0's\n"); |
| pr_err(": BKSV chk fail. BKSV=%02x%02x%02x%02x%02x\n", |
| bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]); |
| return -EINVAL; |
| } |
| |
| /* Write BKSV read from sink to HDCP registers */ |
| reg[0] = REG_HDMI_HDCP_RCVPORT_DATA0; |
| data[0] = hdcp_ctrl->bksv_lsb; |
| reg[1] = REG_HDMI_HDCP_RCVPORT_DATA1; |
| data[1] = hdcp_ctrl->bksv_msb; |
| rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2); |
| |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_recv_bcaps(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc = 0; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg, data; |
| u8 bcaps; |
| |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1); |
| if (rc) { |
| pr_err("%s:BCAPS read failed\n", __func__); |
| return rc; |
| } |
| DBG("BCAPS=%02x", bcaps); |
| |
| /* receiver (0), repeater (1) */ |
| hdcp_ctrl->ds_type = (bcaps & BIT(6)) ? DS_REPEATER : DS_RECEIVER; |
| |
| /* Write BCAPS to the hardware */ |
| reg = REG_HDMI_HDCP_RCVPORT_DATA12; |
| data = (u32)bcaps; |
| rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1); |
| |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_auth_part1_key_exchange(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| unsigned long flags; |
| int rc; |
| |
| /* Wait for AKSV key and An ready */ |
| rc = msm_hdmi_hdcp_wait_key_an_ready(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: wait key and an ready failed\n", __func__); |
| return rc; |
| } |
| |
| /* Read BCAPS and send to HDCP engine */ |
| rc = msm_hdmi_hdcp_recv_bcaps(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: read bcaps error, abort\n", __func__); |
| return rc; |
| } |
| |
| /* |
| * 1.1_Features turned off by default. |
| * No need to write AInfo since 1.1_Features is disabled. |
| */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4, 0); |
| |
| /* Send AKSV and An to sink */ |
| rc = msm_hdmi_hdcp_send_aksv_an(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s:An/Aksv write failed\n", __func__); |
| return rc; |
| } |
| |
| /* Read BKSV and send to HDCP engine*/ |
| rc = msm_hdmi_hdcp_recv_bksv(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s:BKSV Process failed\n", __func__); |
| return rc; |
| } |
| |
| /* Enable HDCP interrupts and ack/clear any stale interrupts */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, |
| HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_ACK | |
| HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_MASK | |
| HDMI_HDCP_INT_CTRL_AUTH_FAIL_ACK | |
| HDMI_HDCP_INT_CTRL_AUTH_FAIL_MASK | |
| HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| return 0; |
| } |
| |
| /* read R0' from sink and pass it to HDCP engine */ |
| static int msm_hdmi_hdcp_auth_part1_recv_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| int rc = 0; |
| u8 buf[2]; |
| |
| /* |
| * HDCP Compliance Test case 1A-01: |
| * Wait here at least 100ms before reading R0' |
| */ |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 125, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| |
| /* Read R0' at offset 0x08 */ |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x08, buf, 2); |
| if (rc) { |
| pr_err("%s:R0' read failed\n", __func__); |
| return rc; |
| } |
| DBG("R0'=%02x%02x", buf[1], buf[0]); |
| |
| /* Write R0' to HDCP registers and check to see if it is a match */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA2_0, |
| (((u32)buf[1]) << 8) | buf[0]); |
| |
| return 0; |
| } |
| |
| /* Wait for authenticating result: R0/R0' are matched or not */ |
| static int msm_hdmi_hdcp_auth_part1_verify_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 link0_status; |
| int rc; |
| |
| /* wait for hdcp irq, 10 sec should be long enough */ |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 10000, AUTH_RESULT_RDY_EV); |
| if (!rc) { |
| pr_err("%s: Wait Auth IRQ timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); |
| if (!(link0_status & HDMI_HDCP_LINK0_STATUS_RI_MATCHES)) { |
| pr_err("%s: Authentication Part I failed\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Enable HDCP Encryption */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, |
| HDMI_HDCP_CTRL_ENABLE | |
| HDMI_HDCP_CTRL_ENCRYPTION_ENABLE); |
| |
| return 0; |
| } |
| |
| static int msm_hdmi_hdcp_recv_check_bstatus(struct hdmi_hdcp_ctrl *hdcp_ctrl, |
| u16 *pbstatus) |
| { |
| int rc; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| bool max_devs_exceeded = false, max_cascade_exceeded = false; |
| u32 repeater_cascade_depth = 0, down_stream_devices = 0; |
| u16 bstatus; |
| u8 buf[2]; |
| |
| /* Read BSTATUS at offset 0x41 */ |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x41, buf, 2); |
| if (rc) { |
| pr_err("%s: BSTATUS read failed\n", __func__); |
| goto error; |
| } |
| *pbstatus = bstatus = (buf[1] << 8) | buf[0]; |
| |
| |
| down_stream_devices = bstatus & 0x7F; |
| repeater_cascade_depth = (bstatus >> 8) & 0x7; |
| max_devs_exceeded = (bstatus & BIT(7)) ? true : false; |
| max_cascade_exceeded = (bstatus & BIT(11)) ? true : false; |
| |
| if (down_stream_devices == 0) { |
| /* |
| * If no downstream devices are attached to the repeater |
| * then part II fails. |
| * todo: The other approach would be to continue PART II. |
| */ |
| pr_err("%s: No downstream devices\n", __func__); |
| rc = -EINVAL; |
| goto error; |
| } |
| |
| /* |
| * HDCP Compliance 1B-05: |
| * Check if no. of devices connected to repeater |
| * exceed max_devices_connected from bit 7 of Bstatus. |
| */ |
| if (max_devs_exceeded) { |
| pr_err("%s: no. of devs connected exceeds max allowed", |
| __func__); |
| rc = -EINVAL; |
| goto error; |
| } |
| |
| /* |
| * HDCP Compliance 1B-06: |
| * Check if no. of cascade connected to repeater |
| * exceed max_cascade_connected from bit 11 of Bstatus. |
| */ |
| if (max_cascade_exceeded) { |
| pr_err("%s: no. of cascade conn exceeds max allowed", |
| __func__); |
| rc = -EINVAL; |
| goto error; |
| } |
| |
| error: |
| hdcp_ctrl->dev_count = down_stream_devices; |
| hdcp_ctrl->max_cascade_exceeded = max_cascade_exceeded; |
| hdcp_ctrl->max_dev_exceeded = max_devs_exceeded; |
| hdcp_ctrl->depth = repeater_cascade_depth; |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready( |
| struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg, data; |
| u32 timeout_count; |
| u16 bstatus; |
| u8 bcaps; |
| |
| /* |
| * Wait until READY bit is set in BCAPS, as per HDCP specifications |
| * maximum permitted time to check for READY bit is five seconds. |
| */ |
| timeout_count = 100; |
| do { |
| /* Read BCAPS at offset 0x40 */ |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1); |
| if (rc) { |
| pr_err("%s: BCAPS read failed\n", __func__); |
| return rc; |
| } |
| |
| if (bcaps & BIT(5)) |
| break; |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_err("%s: Wait KSV fifo ready timedout", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| rc = msm_hdmi_hdcp_recv_check_bstatus(hdcp_ctrl, &bstatus); |
| if (rc) { |
| pr_err("%s: bstatus error\n", __func__); |
| return rc; |
| } |
| |
| /* Write BSTATUS and BCAPS to HDCP registers */ |
| reg = REG_HDMI_HDCP_RCVPORT_DATA12; |
| data = bcaps | (bstatus << 8); |
| rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1); |
| if (rc) { |
| pr_err("%s: BSTATUS write failed\n", __func__); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * hdcp authenticating part 2: 2nd |
| * read ksv fifo from sink |
| * transfer V' from sink to HDCP engine |
| * reset SHA engine |
| */ |
| static int msm_hdmi_hdcp_transfer_v_h(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| int rc = 0; |
| struct hdmi_hdcp_reg_data reg_data[] = { |
| {REG_HDMI_HDCP_RCVPORT_DATA7, 0x20, "V' H0"}, |
| {REG_HDMI_HDCP_RCVPORT_DATA8, 0x24, "V' H1"}, |
| {REG_HDMI_HDCP_RCVPORT_DATA9, 0x28, "V' H2"}, |
| {REG_HDMI_HDCP_RCVPORT_DATA10, 0x2C, "V' H3"}, |
| {REG_HDMI_HDCP_RCVPORT_DATA11, 0x30, "V' H4"}, |
| }; |
| struct hdmi_hdcp_reg_data *rd; |
| u32 size = ARRAY_SIZE(reg_data); |
| u32 reg[ARRAY_SIZE(reg_data)]; |
| u32 data[ARRAY_SIZE(reg_data)]; |
| int i; |
| |
| for (i = 0; i < size; i++) { |
| rd = ®_data[i]; |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, |
| rd->off, (u8 *)&data[i], (u16)sizeof(data[i])); |
| if (rc) { |
| pr_err("%s: Read %s failed\n", __func__, rd->name); |
| goto error; |
| } |
| |
| DBG("%s =%x", rd->name, data[i]); |
| reg[i] = reg_data[i].reg_id; |
| } |
| |
| rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, size); |
| |
| error: |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_recv_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 ksv_bytes; |
| |
| ksv_bytes = 5 * hdcp_ctrl->dev_count; |
| |
| rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x43, |
| hdcp_ctrl->ksv_list, ksv_bytes); |
| if (rc) |
| pr_err("%s: KSV FIFO read failed\n", __func__); |
| |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_reset_sha_engine(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| u32 reg[2], data[2]; |
| u32 rc = 0; |
| |
| reg[0] = REG_HDMI_HDCP_SHA_CTRL; |
| data[0] = HDCP_REG_ENABLE; |
| reg[1] = REG_HDMI_HDCP_SHA_CTRL; |
| data[1] = HDCP_REG_DISABLE; |
| |
| rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2); |
| |
| return rc; |
| } |
| |
| static int msm_hdmi_hdcp_auth_part2_recv_ksv_fifo( |
| struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc; |
| u32 timeout_count; |
| |
| /* |
| * Read KSV FIFO over DDC |
| * Key Selection vector FIFO Used to pull downstream KSVs |
| * from HDCP Repeaters. |
| * All bytes (DEVICE_COUNT * 5) must be read in a single, |
| * auto incrementing access. |
| * All bytes read as 0x00 for HDCP Receivers that are not |
| * HDCP Repeaters (REPEATER == 0). |
| */ |
| timeout_count = 100; |
| do { |
| rc = msm_hdmi_hdcp_recv_ksv_fifo(hdcp_ctrl); |
| if (!rc) |
| break; |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_err("%s: Recv ksv fifo timedout", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 25, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| rc = msm_hdmi_hdcp_transfer_v_h(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: transfer V failed\n", __func__); |
| return rc; |
| } |
| |
| /* reset SHA engine before write ksv fifo */ |
| rc = msm_hdmi_hdcp_reset_sha_engine(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: fail to reset sha engine\n", __func__); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Write KSV FIFO to HDCP_SHA_DATA. |
| * This is done 1 byte at time starting with the LSB. |
| * Once 64 bytes have been written, we need to poll for |
| * HDCP_SHA_BLOCK_DONE before writing any further |
| * If the last byte is written, we need to poll for |
| * HDCP_SHA_COMP_DONE to wait until HW finish |
| */ |
| static int msm_hdmi_hdcp_write_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int i; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 ksv_bytes, last_byte = 0; |
| u8 *ksv_fifo = NULL; |
| u32 reg_val, data, reg; |
| u32 rc = 0; |
| |
| ksv_bytes = 5 * hdcp_ctrl->dev_count; |
| |
| /* Check if need to wait for HW completion */ |
| if (hdcp_ctrl->ksv_fifo_w_index) { |
| reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_SHA_STATUS); |
| DBG("HDCP_SHA_STATUS=%08x", reg_val); |
| if (hdcp_ctrl->ksv_fifo_w_index == ksv_bytes) { |
| /* check COMP_DONE if last write */ |
| if (reg_val & HDMI_HDCP_SHA_STATUS_COMP_DONE) { |
| DBG("COMP_DONE"); |
| return 0; |
| } else { |
| return -EAGAIN; |
| } |
| } else { |
| /* check BLOCK_DONE if not last write */ |
| if (!(reg_val & HDMI_HDCP_SHA_STATUS_BLOCK_DONE)) |
| return -EAGAIN; |
| |
| DBG("BLOCK_DONE"); |
| } |
| } |
| |
| ksv_bytes -= hdcp_ctrl->ksv_fifo_w_index; |
| if (ksv_bytes <= 64) |
| last_byte = 1; |
| else |
| ksv_bytes = 64; |
| |
| ksv_fifo = hdcp_ctrl->ksv_list; |
| ksv_fifo += hdcp_ctrl->ksv_fifo_w_index; |
| |
| for (i = 0; i < ksv_bytes; i++) { |
| /* Write KSV byte and set DONE bit[0] for last byte*/ |
| reg_val = ksv_fifo[i] << 16; |
| if ((i == (ksv_bytes - 1)) && last_byte) |
| reg_val |= HDMI_HDCP_SHA_DATA_DONE; |
| |
| reg = REG_HDMI_HDCP_SHA_DATA; |
| data = reg_val; |
| rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1); |
| |
| if (rc) |
| return rc; |
| } |
| |
| hdcp_ctrl->ksv_fifo_w_index += ksv_bytes; |
| |
| /* |
| *return -EAGAIN to notify caller to wait for COMP_DONE or BLOCK_DONE |
| */ |
| return -EAGAIN; |
| } |
| |
| /* write ksv fifo into HDCP engine */ |
| static int msm_hdmi_hdcp_auth_part2_write_ksv_fifo( |
| struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc; |
| u32 timeout_count; |
| |
| hdcp_ctrl->ksv_fifo_w_index = 0; |
| timeout_count = 100; |
| do { |
| rc = msm_hdmi_hdcp_write_ksv_fifo(hdcp_ctrl); |
| if (!rc) |
| break; |
| |
| if (rc != -EAGAIN) |
| return rc; |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_err("%s: Write KSV fifo timedout", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| return 0; |
| } |
| |
| static int msm_hdmi_hdcp_auth_part2_check_v_match(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| int rc = 0; |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 link0_status; |
| u32 timeout_count = 100; |
| |
| do { |
| link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); |
| if (link0_status & HDMI_HDCP_LINK0_STATUS_V_MATCHES) |
| break; |
| |
| timeout_count--; |
| if (!timeout_count) { |
| pr_err("%s: HDCP V Match timedout", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); |
| if (rc) |
| return rc; |
| } while (1); |
| |
| return 0; |
| } |
| |
| static void msm_hdmi_hdcp_auth_work(struct work_struct *work) |
| { |
| struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work, |
| struct hdmi_hdcp_ctrl, hdcp_auth_work); |
| int rc; |
| |
| rc = msm_hdmi_hdcp_auth_prepare(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: auth prepare failed %d\n", __func__, rc); |
| goto end; |
| } |
| |
| /* HDCP PartI */ |
| rc = msm_hdmi_hdcp_auth_part1_key_exchange(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: key exchange failed %d\n", __func__, rc); |
| goto end; |
| } |
| |
| rc = msm_hdmi_hdcp_auth_part1_recv_r0(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: receive r0 failed %d\n", __func__, rc); |
| goto end; |
| } |
| |
| rc = msm_hdmi_hdcp_auth_part1_verify_r0(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: verify r0 failed %d\n", __func__, rc); |
| goto end; |
| } |
| pr_info("%s: Authentication Part I successful\n", __func__); |
| if (hdcp_ctrl->ds_type == DS_RECEIVER) |
| goto end; |
| |
| /* HDCP PartII */ |
| rc = msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: wait ksv fifo ready failed %d\n", __func__, rc); |
| goto end; |
| } |
| |
| rc = msm_hdmi_hdcp_auth_part2_recv_ksv_fifo(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: recv ksv fifo failed %d\n", __func__, rc); |
| goto end; |
| } |
| |
| rc = msm_hdmi_hdcp_auth_part2_write_ksv_fifo(hdcp_ctrl); |
| if (rc) { |
| pr_err("%s: write ksv fifo failed %d\n", __func__, rc); |
| goto end; |
| } |
| |
| rc = msm_hdmi_hdcp_auth_part2_check_v_match(hdcp_ctrl); |
| if (rc) |
| pr_err("%s: check v match failed %d\n", __func__, rc); |
| |
| end: |
| if (rc == -ECANCELED) { |
| pr_info("%s: hdcp authentication canceled\n", __func__); |
| } else if (rc == -ENOTSUPP) { |
| pr_info("%s: hdcp is not supported\n", __func__); |
| } else if (rc) { |
| pr_err("%s: hdcp authentication failed\n", __func__); |
| msm_hdmi_hdcp_auth_fail(hdcp_ctrl); |
| } else { |
| msm_hdmi_hdcp_auth_done(hdcp_ctrl); |
| } |
| } |
| |
| void msm_hdmi_hdcp_on(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| u32 reg_val; |
| unsigned long flags; |
| |
| if ((HDCP_STATE_INACTIVE != hdcp_ctrl->hdcp_state) || |
| (HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) { |
| DBG("still active or activating or no askv. returning"); |
| return; |
| } |
| |
| /* clear HDMI Encrypt */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); |
| reg_val &= ~HDMI_CTRL_ENCRYPTED; |
| hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| hdcp_ctrl->auth_event = 0; |
| hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING; |
| hdcp_ctrl->auth_retries = 0; |
| queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work); |
| } |
| |
| void msm_hdmi_hdcp_off(struct hdmi_hdcp_ctrl *hdcp_ctrl) |
| { |
| struct hdmi *hdmi = hdcp_ctrl->hdmi; |
| unsigned long flags; |
| u32 reg_val; |
| |
| if ((HDCP_STATE_INACTIVE == hdcp_ctrl->hdcp_state) || |
| (HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) { |
| DBG("hdcp inactive or no aksv. returning"); |
| return; |
| } |
| |
| /* |
| * Disable HPD circuitry. |
| * This is needed to reset the HDCP cipher engine so that when we |
| * attempt a re-authentication, HW would clear the AN0_READY and |
| * AN1_READY bits in HDMI_HDCP_LINK0_STATUS register |
| */ |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); |
| reg_val &= ~HDMI_HPD_CTRL_ENABLE; |
| hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); |
| |
| /* |
| * Disable HDCP interrupts. |
| * Also, need to set the state to inactive here so that any ongoing |
| * reauth works will know that the HDCP session has been turned off. |
| */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| /* |
| * Cancel any pending auth/reauth attempts. |
| * If one is ongoing, this will wait for it to finish. |
| * No more reauthentication attempts will be scheduled since we |
| * set the current state to inactive. |
| */ |
| set_bit(AUTH_ABORT_EV, &hdcp_ctrl->auth_event); |
| wake_up_all(&hdcp_ctrl->auth_event_queue); |
| cancel_work_sync(&hdcp_ctrl->hdcp_auth_work); |
| cancel_work_sync(&hdcp_ctrl->hdcp_reauth_work); |
| |
| hdmi_write(hdmi, REG_HDMI_HDCP_RESET, |
| HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE); |
| |
| /* Disable encryption and disable the HDCP block */ |
| hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0); |
| |
| spin_lock_irqsave(&hdmi->reg_lock, flags); |
| reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); |
| reg_val &= ~HDMI_CTRL_ENCRYPTED; |
| hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); |
| |
| /* Enable HPD circuitry */ |
| reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); |
| reg_val |= HDMI_HPD_CTRL_ENABLE; |
| hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); |
| spin_unlock_irqrestore(&hdmi->reg_lock, flags); |
| |
| hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; |
| |
| DBG("HDCP: Off"); |
| } |
| |
| struct hdmi_hdcp_ctrl *msm_hdmi_hdcp_init(struct hdmi *hdmi) |
| { |
| struct hdmi_hdcp_ctrl *hdcp_ctrl = NULL; |
| |
| if (!hdmi->qfprom_mmio) { |
| pr_err("%s: HDCP is not supported without qfprom\n", |
| __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| hdcp_ctrl = kzalloc(sizeof(*hdcp_ctrl), GFP_KERNEL); |
| if (!hdcp_ctrl) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_WORK(&hdcp_ctrl->hdcp_auth_work, msm_hdmi_hdcp_auth_work); |
| INIT_WORK(&hdcp_ctrl->hdcp_reauth_work, msm_hdmi_hdcp_reauth_work); |
| init_waitqueue_head(&hdcp_ctrl->auth_event_queue); |
| hdcp_ctrl->hdmi = hdmi; |
| hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; |
| hdcp_ctrl->aksv_valid = false; |
| |
| if (qcom_scm_hdcp_available()) |
| hdcp_ctrl->tz_hdcp = true; |
| else |
| hdcp_ctrl->tz_hdcp = false; |
| |
| return hdcp_ctrl; |
| } |
| |
| void msm_hdmi_hdcp_destroy(struct hdmi *hdmi) |
| { |
| if (hdmi) { |
| kfree(hdmi->hdcp_ctrl); |
| hdmi->hdcp_ctrl = NULL; |
| } |
| } |