blob: ef2f1a048cfeddf4ece2450abe7f112139682d93 [file] [log] [blame]
/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include "radeon.h"
#include "radeon_asic.h"
#include "rv770.h"
#include "rv770d.h"
#include "r600_dpm.h"
#include "rv770_dpm.h"
#include "cypress_dpm.h"
#include "atom.h"
#include "evergreen.h"
#include <linux/seq_file.h>
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define MC_CG_SEQ_DRAMCONF_S0 0x05
#define MC_CG_SEQ_DRAMCONF_S1 0x06
#define PCIE_BUS_CLK 10000
#define TCLK (PCIE_BUS_CLK / 10)
#define SMC_RAM_END 0xC000
struct rv7xx_ps *rv770_get_ps(struct radeon_ps *rps)
{
struct rv7xx_ps *ps = rps->ps_priv;
return ps;
}
struct rv7xx_power_info *rv770_get_pi(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
struct evergreen_power_info *evergreen_get_pi(struct radeon_device *rdev)
{
struct evergreen_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
static void rv770_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if (enable) {
tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK;
tmp |= LC_HW_VOLTAGE_IF_CONTROL(1);
tmp |= LC_GEN2_EN_STRAP;
} else {
if (!pi->boot_in_gen2) {
tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK;
tmp &= ~LC_GEN2_EN_STRAP;
}
}
if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) ||
(tmp & LC_OTHER_SIDE_SUPPORTS_GEN2))
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
static void rv770_enable_l0s(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L0S_INACTIVITY_MASK;
tmp |= LC_L0S_INACTIVITY(3);
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
}
static void rv770_enable_l1(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL);
tmp &= ~LC_L1_INACTIVITY_MASK;
tmp |= LC_L1_INACTIVITY(4);
tmp &= ~LC_PMI_TO_L1_DIS;
tmp &= ~LC_ASPM_TO_L1_DIS;
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
}
static void rv770_enable_pll_sleep_in_l1(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L1_INACTIVITY_MASK;
tmp |= LC_L1_INACTIVITY(8);
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
/* NOTE, this is a PCIE indirect reg, not PCIE PORT */
tmp = RREG32_PCIE(PCIE_P_CNTL);
tmp |= P_PLL_PWRDN_IN_L1L23;
tmp &= ~P_PLL_BUF_PDNB;
tmp &= ~P_PLL_PDNB;
tmp |= P_ALLOW_PRX_FRONTEND_SHUTOFF;
WREG32_PCIE(PCIE_P_CNTL, tmp);
}
static void rv770_gfx_clock_gating_enable(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
else {
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON);
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON);
RREG32(GB_TILING_CONFIG);
}
}
static void rv770_mg_clock_gating_enable(struct radeon_device *rdev,
bool enable)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (enable) {
u32 mgcg_cgtt_local0;
if (rdev->family == CHIP_RV770)
mgcg_cgtt_local0 = RV770_MGCGTTLOCAL0_DFLT;
else
mgcg_cgtt_local0 = RV7XX_MGCGTTLOCAL0_DFLT;
WREG32(CG_CGTT_LOCAL_0, mgcg_cgtt_local0);
WREG32(CG_CGTT_LOCAL_1, (RV770_MGCGTTLOCAL1_DFLT & 0xFFFFCFFF));
if (pi->mgcgtssm)
WREG32(CGTS_SM_CTRL_REG, RV770_MGCGCGTSSMCTRL_DFLT);
} else {
WREG32(CG_CGTT_LOCAL_0, 0xFFFFFFFF);
WREG32(CG_CGTT_LOCAL_1, 0xFFFFCFFF);
}
}
void rv770_restore_cgcg(struct radeon_device *rdev)
{
bool dpm_en = false, cg_en = false;
if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN)
dpm_en = true;
if (RREG32(SCLK_PWRMGT_CNTL) & DYN_GFX_CLK_OFF_EN)
cg_en = true;
if (dpm_en && !cg_en)
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
}
static void rv770_start_dpm(struct radeon_device *rdev)
{
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF);
WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF);
WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN);
}
void rv770_stop_dpm(struct radeon_device *rdev)
{
PPSMC_Result result;
result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_TwoLevelsDisabled);
if (result != PPSMC_Result_OK)
DRM_DEBUG("Could not force DPM to low.\n");
WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN);
WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF);
WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF);
}
bool rv770_dpm_enabled(struct radeon_device *rdev)
{
if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN)
return true;
else
return false;
}
void rv770_enable_thermal_protection(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
else
WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
}
void rv770_enable_acpi_pm(struct radeon_device *rdev)
{
WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN);
}
u8 rv770_get_seq_value(struct radeon_device *rdev,
struct rv7xx_pl *pl)
{
return (pl->flags & ATOM_PPLIB_R600_FLAGS_LOWPOWER) ?
MC_CG_SEQ_DRAMCONF_S0 : MC_CG_SEQ_DRAMCONF_S1;
}
#if 0
int rv770_read_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 *value)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
return rv770_read_smc_sram_dword(rdev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
#endif
int rv770_write_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 value)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
return rv770_write_smc_sram_dword(rdev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
int rv770_populate_smc_t(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
RV770_SMC_SWSTATE *smc_state)
{
struct rv7xx_ps *state = rv770_get_ps(radeon_state);
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int i;
int a_n;
int a_d;
u8 l[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE];
u8 r[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE];
u32 a_t;
l[0] = 0;
r[2] = 100;
a_n = (int)state->medium.sclk * pi->lmp +
(int)state->low.sclk * (R600_AH_DFLT - pi->rlp);
a_d = (int)state->low.sclk * (100 - (int)pi->rlp) +
(int)state->medium.sclk * pi->lmp;
l[1] = (u8)(pi->lmp - (int)pi->lmp * a_n / a_d);
r[0] = (u8)(pi->rlp + (100 - (int)pi->rlp) * a_n / a_d);
a_n = (int)state->high.sclk * pi->lhp + (int)state->medium.sclk *
(R600_AH_DFLT - pi->rmp);
a_d = (int)state->medium.sclk * (100 - (int)pi->rmp) +
(int)state->high.sclk * pi->lhp;
l[2] = (u8)(pi->lhp - (int)pi->lhp * a_n / a_d);
r[1] = (u8)(pi->rmp + (100 - (int)pi->rmp) * a_n / a_d);
for (i = 0; i < (RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1); i++) {
a_t = CG_R(r[i] * pi->bsp / 200) | CG_L(l[i] * pi->bsp / 200);
smc_state->levels[i].aT = cpu_to_be32(a_t);
}
a_t = CG_R(r[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1] * pi->pbsp / 200) |
CG_L(l[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1] * pi->pbsp / 200);
smc_state->levels[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1].aT =
cpu_to_be32(a_t);
return 0;
}
int rv770_populate_smc_sp(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
RV770_SMC_SWSTATE *smc_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int i;
for (i = 0; i < (RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1); i++)
smc_state->levels[i].bSP = cpu_to_be32(pi->dsp);
smc_state->levels[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1].bSP =
cpu_to_be32(pi->psp);
return 0;
}
static void rv770_calculate_fractional_mpll_feedback_divider(u32 memory_clock,
u32 reference_clock,
bool gddr5,
struct atom_clock_dividers *dividers,
u32 *clkf,
u32 *clkfrac)
{
u32 post_divider, reference_divider, feedback_divider8;
u32 fyclk;
if (gddr5)
fyclk = (memory_clock * 8) / 2;
else
fyclk = (memory_clock * 4) / 2;
post_divider = dividers->post_div;
reference_divider = dividers->ref_div;
feedback_divider8 =
(8 * fyclk * reference_divider * post_divider) / reference_clock;
*clkf = feedback_divider8 / 8;
*clkfrac = feedback_divider8 % 8;
}
static int rv770_encode_yclk_post_div(u32 postdiv, u32 *encoded_postdiv)
{
int ret = 0;
switch (postdiv) {
case 1:
*encoded_postdiv = 0;
break;
case 2:
*encoded_postdiv = 1;
break;
case 4:
*encoded_postdiv = 2;
break;
case 8:
*encoded_postdiv = 3;
break;
case 16:
*encoded_postdiv = 4;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
u32 rv770_map_clkf_to_ibias(struct radeon_device *rdev, u32 clkf)
{
if (clkf <= 0x10)
return 0x4B;
if (clkf <= 0x19)
return 0x5B;
if (clkf <= 0x21)
return 0x2B;
if (clkf <= 0x27)
return 0x6C;
if (clkf <= 0x31)
return 0x9D;
return 0xC6;
}
static int rv770_populate_mclk_value(struct radeon_device *rdev,
u32 engine_clock, u32 memory_clock,
RV7XX_SMC_MCLK_VALUE *mclk)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u8 encoded_reference_dividers[] = { 0, 16, 17, 20, 21 };
u32 mpll_ad_func_cntl =
pi->clk_regs.rv770.mpll_ad_func_cntl;
u32 mpll_ad_func_cntl_2 =
pi->clk_regs.rv770.mpll_ad_func_cntl_2;
u32 mpll_dq_func_cntl =
pi->clk_regs.rv770.mpll_dq_func_cntl;
u32 mpll_dq_func_cntl_2 =
pi->clk_regs.rv770.mpll_dq_func_cntl_2;
u32 mclk_pwrmgt_cntl =
pi->clk_regs.rv770.mclk_pwrmgt_cntl;
u32 dll_cntl = pi->clk_regs.rv770.dll_cntl;
struct atom_clock_dividers dividers;
u32 reference_clock = rdev->clock.mpll.reference_freq;
u32 clkf, clkfrac;
u32 postdiv_yclk;
u32 ibias;
int ret;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM,
memory_clock, false, &dividers);
if (ret)
return ret;
if ((dividers.ref_div < 1) || (dividers.ref_div > 5))
return -EINVAL;
rv770_calculate_fractional_mpll_feedback_divider(memory_clock, reference_clock,
pi->mem_gddr5,
&dividers, &clkf, &clkfrac);
ret = rv770_encode_yclk_post_div(dividers.post_div, &postdiv_yclk);
if (ret)
return ret;
ibias = rv770_map_clkf_to_ibias(rdev, clkf);
mpll_ad_func_cntl &= ~(CLKR_MASK |
YCLK_POST_DIV_MASK |
CLKF_MASK |
CLKFRAC_MASK |
IBIAS_MASK);
mpll_ad_func_cntl |= CLKR(encoded_reference_dividers[dividers.ref_div - 1]);
mpll_ad_func_cntl |= YCLK_POST_DIV(postdiv_yclk);
mpll_ad_func_cntl |= CLKF(clkf);
mpll_ad_func_cntl |= CLKFRAC(clkfrac);
mpll_ad_func_cntl |= IBIAS(ibias);
if (dividers.vco_mode)
mpll_ad_func_cntl_2 |= VCO_MODE;
else
mpll_ad_func_cntl_2 &= ~VCO_MODE;
if (pi->mem_gddr5) {
rv770_calculate_fractional_mpll_feedback_divider(memory_clock,
reference_clock,
pi->mem_gddr5,
&dividers, &clkf, &clkfrac);
ibias = rv770_map_clkf_to_ibias(rdev, clkf);
ret = rv770_encode_yclk_post_div(dividers.post_div, &postdiv_yclk);
if (ret)
return ret;
mpll_dq_func_cntl &= ~(CLKR_MASK |
YCLK_POST_DIV_MASK |
CLKF_MASK |
CLKFRAC_MASK |
IBIAS_MASK);
mpll_dq_func_cntl |= CLKR(encoded_reference_dividers[dividers.ref_div - 1]);
mpll_dq_func_cntl |= YCLK_POST_DIV(postdiv_yclk);
mpll_dq_func_cntl |= CLKF(clkf);
mpll_dq_func_cntl |= CLKFRAC(clkfrac);
mpll_dq_func_cntl |= IBIAS(ibias);
if (dividers.vco_mode)
mpll_dq_func_cntl_2 |= VCO_MODE;
else
mpll_dq_func_cntl_2 &= ~VCO_MODE;
}
mclk->mclk770.mclk_value = cpu_to_be32(memory_clock);
mclk->mclk770.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl);
mclk->mclk770.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2);
mclk->mclk770.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl);
mclk->mclk770.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2);
mclk->mclk770.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl);
mclk->mclk770.vDLL_CNTL = cpu_to_be32(dll_cntl);
return 0;
}
static int rv770_populate_sclk_value(struct radeon_device *rdev,
u32 engine_clock,
RV770_SMC_SCLK_VALUE *sclk)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct atom_clock_dividers dividers;
u32 spll_func_cntl =
pi->clk_regs.rv770.cg_spll_func_cntl;
u32 spll_func_cntl_2 =
pi->clk_regs.rv770.cg_spll_func_cntl_2;
u32 spll_func_cntl_3 =
pi->clk_regs.rv770.cg_spll_func_cntl_3;
u32 cg_spll_spread_spectrum =
pi->clk_regs.rv770.cg_spll_spread_spectrum;
u32 cg_spll_spread_spectrum_2 =
pi->clk_regs.rv770.cg_spll_spread_spectrum_2;
u64 tmp;
u32 reference_clock = rdev->clock.spll.reference_freq;
u32 reference_divider, post_divider;
u32 fbdiv;
int ret;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
engine_clock, false, &dividers);
if (ret)
return ret;
reference_divider = 1 + dividers.ref_div;
if (dividers.enable_post_div)
post_divider = (0x0f & (dividers.post_div >> 4)) + (0x0f & dividers.post_div) + 2;
else
post_divider = 1;
tmp = (u64) engine_clock * reference_divider * post_divider * 16384;
do_div(tmp, reference_clock);
fbdiv = (u32) tmp;
if (dividers.enable_post_div)
spll_func_cntl |= SPLL_DIVEN;
else
spll_func_cntl &= ~SPLL_DIVEN;
spll_func_cntl &= ~(SPLL_HILEN_MASK | SPLL_LOLEN_MASK | SPLL_REF_DIV_MASK);
spll_func_cntl |= SPLL_REF_DIV(dividers.ref_div);
spll_func_cntl |= SPLL_HILEN((dividers.post_div >> 4) & 0xf);
spll_func_cntl |= SPLL_LOLEN(dividers.post_div & 0xf);
spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= SCLK_MUX_SEL(2);
spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK;
spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv);
spll_func_cntl_3 |= SPLL_DITHEN;
if (pi->sclk_ss) {
struct radeon_atom_ss ss;
u32 vco_freq = engine_clock * post_divider;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate);
u32 clk_v = ss.percentage * fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum &= ~CLKS_MASK;
cg_spll_spread_spectrum |= CLKS(clk_s);
cg_spll_spread_spectrum |= SSEN;
cg_spll_spread_spectrum_2 &= ~CLKV_MASK;
cg_spll_spread_spectrum_2 |= CLKV(clk_v);
}
}
sclk->sclk_value = cpu_to_be32(engine_clock);
sclk->vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl);
sclk->vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2);
sclk->vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3);
sclk->vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(cg_spll_spread_spectrum);
sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(cg_spll_spread_spectrum_2);
return 0;
}
int rv770_populate_vddc_value(struct radeon_device *rdev, u16 vddc,
RV770_SMC_VOLTAGE_VALUE *voltage)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int i;
if (!pi->voltage_control) {
voltage->index = 0;
voltage->value = 0;
return 0;
}
for (i = 0; i < pi->valid_vddc_entries; i++) {
if (vddc <= pi->vddc_table[i].vddc) {
voltage->index = pi->vddc_table[i].vddc_index;
voltage->value = cpu_to_be16(vddc);
break;
}
}
if (i == pi->valid_vddc_entries)
return -EINVAL;
return 0;
}
int rv770_populate_mvdd_value(struct radeon_device *rdev, u32 mclk,
RV770_SMC_VOLTAGE_VALUE *voltage)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (!pi->mvdd_control) {
voltage->index = MVDD_HIGH_INDEX;
voltage->value = cpu_to_be16(MVDD_HIGH_VALUE);
return 0;
}
if (mclk <= pi->mvdd_split_frequency) {
voltage->index = MVDD_LOW_INDEX;
voltage->value = cpu_to_be16(MVDD_LOW_VALUE);
} else {
voltage->index = MVDD_HIGH_INDEX;
voltage->value = cpu_to_be16(MVDD_HIGH_VALUE);
}
return 0;
}
static int rv770_convert_power_level_to_smc(struct radeon_device *rdev,
struct rv7xx_pl *pl,
RV770_SMC_HW_PERFORMANCE_LEVEL *level,
u8 watermark_level)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int ret;
level->gen2PCIE = pi->pcie_gen2 ?
((pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? 1 : 0) : 0;
level->gen2XSP = (pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? 1 : 0;
level->backbias = (pl->flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? 1 : 0;
level->displayWatermark = watermark_level;
if (rdev->family == CHIP_RV740)
ret = rv740_populate_sclk_value(rdev, pl->sclk,
&level->sclk);
else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
ret = rv730_populate_sclk_value(rdev, pl->sclk,
&level->sclk);
else
ret = rv770_populate_sclk_value(rdev, pl->sclk,
&level->sclk);
if (ret)
return ret;
if (rdev->family == CHIP_RV740) {
if (pi->mem_gddr5) {
if (pl->mclk <= pi->mclk_strobe_mode_threshold)
level->strobeMode =
rv740_get_mclk_frequency_ratio(pl->mclk) | 0x10;
else
level->strobeMode = 0;
if (pl->mclk > pi->mclk_edc_enable_threshold)
level->mcFlags = SMC_MC_EDC_RD_FLAG | SMC_MC_EDC_WR_FLAG;
else
level->mcFlags = 0;
}
ret = rv740_populate_mclk_value(rdev, pl->sclk,
pl->mclk, &level->mclk);
} else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
ret = rv730_populate_mclk_value(rdev, pl->sclk,
pl->mclk, &level->mclk);
else
ret = rv770_populate_mclk_value(rdev, pl->sclk,
pl->mclk, &level->mclk);
if (ret)
return ret;
ret = rv770_populate_vddc_value(rdev, pl->vddc,
&level->vddc);
if (ret)
return ret;
ret = rv770_populate_mvdd_value(rdev, pl->mclk, &level->mvdd);
return ret;
}
static int rv770_convert_power_state_to_smc(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
RV770_SMC_SWSTATE *smc_state)
{
struct rv7xx_ps *state = rv770_get_ps(radeon_state);
int ret;
if (!(radeon_state->caps & ATOM_PPLIB_DISALLOW_ON_DC))
smc_state->flags |= PPSMC_SWSTATE_FLAG_DC;
ret = rv770_convert_power_level_to_smc(rdev,
&state->low,
&smc_state->levels[0],
PPSMC_DISPLAY_WATERMARK_LOW);
if (ret)
return ret;
ret = rv770_convert_power_level_to_smc(rdev,
&state->medium,
&smc_state->levels[1],
PPSMC_DISPLAY_WATERMARK_LOW);
if (ret)
return ret;
ret = rv770_convert_power_level_to_smc(rdev,
&state->high,
&smc_state->levels[2],
PPSMC_DISPLAY_WATERMARK_HIGH);
if (ret)
return ret;
smc_state->levels[0].arbValue = MC_CG_ARB_FREQ_F1;
smc_state->levels[1].arbValue = MC_CG_ARB_FREQ_F2;
smc_state->levels[2].arbValue = MC_CG_ARB_FREQ_F3;
smc_state->levels[0].seqValue = rv770_get_seq_value(rdev,
&state->low);
smc_state->levels[1].seqValue = rv770_get_seq_value(rdev,
&state->medium);
smc_state->levels[2].seqValue = rv770_get_seq_value(rdev,
&state->high);
rv770_populate_smc_sp(rdev, radeon_state, smc_state);
return rv770_populate_smc_t(rdev, radeon_state, smc_state);
}
u32 rv770_calculate_memory_refresh_rate(struct radeon_device *rdev,
u32 engine_clock)
{
u32 dram_rows;
u32 dram_refresh_rate;
u32 mc_arb_rfsh_rate;
u32 tmp;
tmp = (RREG32(MC_ARB_RAMCFG) & NOOFROWS_MASK) >> NOOFROWS_SHIFT;
dram_rows = 1 << (tmp + 10);
tmp = RREG32(MC_SEQ_MISC0) & 3;
dram_refresh_rate = 1 << (tmp + 3);
mc_arb_rfsh_rate = ((engine_clock * 10) * dram_refresh_rate / dram_rows - 32) / 64;
return mc_arb_rfsh_rate;
}
static void rv770_program_memory_timing_parameters(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct rv7xx_ps *state = rv770_get_ps(radeon_state);
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 sqm_ratio;
u32 arb_refresh_rate;
u32 high_clock;
if (state->high.sclk < (state->low.sclk * 0xFF / 0x40))
high_clock = state->high.sclk;
else
high_clock = (state->low.sclk * 0xFF / 0x40);
radeon_atom_set_engine_dram_timings(rdev, high_clock,
state->high.mclk);
sqm_ratio =
STATE0(64 * high_clock / pi->boot_sclk) |
STATE1(64 * high_clock / state->low.sclk) |
STATE2(64 * high_clock / state->medium.sclk) |
STATE3(64 * high_clock / state->high.sclk);
WREG32(MC_ARB_SQM_RATIO, sqm_ratio);
arb_refresh_rate =
POWERMODE0(rv770_calculate_memory_refresh_rate(rdev, pi->boot_sclk)) |
POWERMODE1(rv770_calculate_memory_refresh_rate(rdev, state->low.sclk)) |
POWERMODE2(rv770_calculate_memory_refresh_rate(rdev, state->medium.sclk)) |
POWERMODE3(rv770_calculate_memory_refresh_rate(rdev, state->high.sclk));
WREG32(MC_ARB_RFSH_RATE, arb_refresh_rate);
}
void rv770_enable_backbias(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, BACKBIAS_PAD_EN, ~BACKBIAS_PAD_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~(BACKBIAS_VALUE | BACKBIAS_PAD_EN));
}
static void rv770_enable_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (enable) {
if (pi->sclk_ss)
WREG32_P(GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, ~DYN_SPREAD_SPECTRUM_EN);
if (pi->mclk_ss) {
if (rdev->family == CHIP_RV740)
rv740_enable_mclk_spread_spectrum(rdev, true);
}
} else {
WREG32_P(CG_SPLL_SPREAD_SPECTRUM, 0, ~SSEN);
WREG32_P(GENERAL_PWRMGT, 0, ~DYN_SPREAD_SPECTRUM_EN);
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, 0, ~SSEN);
if (rdev->family == CHIP_RV740)
rv740_enable_mclk_spread_spectrum(rdev, false);
}
}
static void rv770_program_mpll_timing_parameters(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if ((rdev->family == CHIP_RV770) && !pi->mem_gddr5) {
WREG32(MPLL_TIME,
(MPLL_LOCK_TIME(R600_MPLLLOCKTIME_DFLT * pi->ref_div) |
MPLL_RESET_TIME(R600_MPLLRESETTIME_DFLT)));
}
}
void rv770_setup_bsp(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 xclk = radeon_get_xclk(rdev);
r600_calculate_u_and_p(pi->asi,
xclk,
16,
&pi->bsp,
&pi->bsu);
r600_calculate_u_and_p(pi->pasi,
xclk,
16,
&pi->pbsp,
&pi->pbsu);
pi->dsp = BSP(pi->bsp) | BSU(pi->bsu);
pi->psp = BSP(pi->pbsp) | BSU(pi->pbsu);
WREG32(CG_BSP, pi->dsp);
}
void rv770_program_git(struct radeon_device *rdev)
{
WREG32_P(CG_GIT, CG_GICST(R600_GICST_DFLT), ~CG_GICST_MASK);
}
void rv770_program_tp(struct radeon_device *rdev)
{
int i;
enum r600_td td = R600_TD_DFLT;
for (i = 0; i < R600_PM_NUMBER_OF_TC; i++)
WREG32(CG_FFCT_0 + (i * 4), (UTC_0(r600_utc[i]) | DTC_0(r600_dtc[i])));
if (td == R600_TD_AUTO)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL);
else
WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL);
if (td == R600_TD_UP)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE);
if (td == R600_TD_DOWN)
WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE);
}
void rv770_program_tpp(struct radeon_device *rdev)
{
WREG32(CG_TPC, R600_TPC_DFLT);
}
void rv770_program_sstp(struct radeon_device *rdev)
{
WREG32(CG_SSP, (SSTU(R600_SSTU_DFLT) | SST(R600_SST_DFLT)));
}
void rv770_program_engine_speed_parameters(struct radeon_device *rdev)
{
WREG32_P(SPLL_CNTL_MODE, SPLL_DIV_SYNC, ~SPLL_DIV_SYNC);
}
static void rv770_enable_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL);
tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK);
tmp |= (DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) |
DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE));
WREG32(CG_DISPLAY_GAP_CNTL, tmp);
}
void rv770_program_vc(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
WREG32(CG_FTV, pi->vrc);
}
void rv770_clear_vc(struct radeon_device *rdev)
{
WREG32(CG_FTV, 0);
}
int rv770_upload_firmware(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int ret;
rv770_reset_smc(rdev);
rv770_stop_smc_clock(rdev);
ret = rv770_load_smc_ucode(rdev, pi->sram_end);
if (ret)
return ret;
return 0;
}
static int rv770_populate_smc_acpi_state(struct radeon_device *rdev,
RV770_SMC_STATETABLE *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 mpll_ad_func_cntl =
pi->clk_regs.rv770.mpll_ad_func_cntl;
u32 mpll_ad_func_cntl_2 =
pi->clk_regs.rv770.mpll_ad_func_cntl_2;
u32 mpll_dq_func_cntl =
pi->clk_regs.rv770.mpll_dq_func_cntl;
u32 mpll_dq_func_cntl_2 =
pi->clk_regs.rv770.mpll_dq_func_cntl_2;
u32 spll_func_cntl =
pi->clk_regs.rv770.cg_spll_func_cntl;
u32 spll_func_cntl_2 =
pi->clk_regs.rv770.cg_spll_func_cntl_2;
u32 spll_func_cntl_3 =
pi->clk_regs.rv770.cg_spll_func_cntl_3;
u32 mclk_pwrmgt_cntl;
u32 dll_cntl;
table->ACPIState = table->initialState;
table->ACPIState.flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (pi->acpi_vddc) {
rv770_populate_vddc_value(rdev, pi->acpi_vddc,
&table->ACPIState.levels[0].vddc);
if (pi->pcie_gen2) {
if (pi->acpi_pcie_gen2)
table->ACPIState.levels[0].gen2PCIE = 1;
else
table->ACPIState.levels[0].gen2PCIE = 0;
} else
table->ACPIState.levels[0].gen2PCIE = 0;
if (pi->acpi_pcie_gen2)
table->ACPIState.levels[0].gen2XSP = 1;
else
table->ACPIState.levels[0].gen2XSP = 0;
} else {
rv770_populate_vddc_value(rdev, pi->min_vddc_in_table,
&table->ACPIState.levels[0].vddc);
table->ACPIState.levels[0].gen2PCIE = 0;
}
mpll_ad_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN;
mpll_dq_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN;
mclk_pwrmgt_cntl = (MRDCKA0_RESET |
MRDCKA1_RESET |
MRDCKB0_RESET |
MRDCKB1_RESET |
MRDCKC0_RESET |
MRDCKC1_RESET |
MRDCKD0_RESET |
MRDCKD1_RESET);
dll_cntl = 0xff000000;
spll_func_cntl |= SPLL_RESET | SPLL_SLEEP | SPLL_BYPASS_EN;
spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= SCLK_MUX_SEL(4);
table->ACPIState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl);
table->ACPIState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2);
table->ACPIState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl);
table->ACPIState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2);
table->ACPIState.levels[0].mclk.mclk770.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl);
table->ACPIState.levels[0].mclk.mclk770.vDLL_CNTL = cpu_to_be32(dll_cntl);
table->ACPIState.levels[0].mclk.mclk770.mclk_value = 0;
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl);
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2);
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3);
table->ACPIState.levels[0].sclk.sclk_value = 0;
rv770_populate_mvdd_value(rdev, 0, &table->ACPIState.levels[0].mvdd);
table->ACPIState.levels[1] = table->ACPIState.levels[0];
table->ACPIState.levels[2] = table->ACPIState.levels[0];
return 0;
}
int rv770_populate_initial_mvdd_value(struct radeon_device *rdev,
RV770_SMC_VOLTAGE_VALUE *voltage)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if ((pi->s0_vid_lower_smio_cntl & pi->mvdd_mask_low) ==
(pi->mvdd_low_smio[MVDD_LOW_INDEX] & pi->mvdd_mask_low) ) {
voltage->index = MVDD_LOW_INDEX;
voltage->value = cpu_to_be16(MVDD_LOW_VALUE);
} else {
voltage->index = MVDD_HIGH_INDEX;
voltage->value = cpu_to_be16(MVDD_HIGH_VALUE);
}
return 0;
}
static int rv770_populate_smc_initial_state(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
RV770_SMC_STATETABLE *table)
{
struct rv7xx_ps *initial_state = rv770_get_ps(radeon_state);
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 a_t;
table->initialState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL =
cpu_to_be32(pi->clk_regs.rv770.mpll_ad_func_cntl);
table->initialState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL_2 =
cpu_to_be32(pi->clk_regs.rv770.mpll_ad_func_cntl_2);
table->initialState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL =
cpu_to_be32(pi->clk_regs.rv770.mpll_dq_func_cntl);
table->initialState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL_2 =
cpu_to_be32(pi->clk_regs.rv770.mpll_dq_func_cntl_2);
table->initialState.levels[0].mclk.mclk770.vMCLK_PWRMGT_CNTL =
cpu_to_be32(pi->clk_regs.rv770.mclk_pwrmgt_cntl);
table->initialState.levels[0].mclk.mclk770.vDLL_CNTL =
cpu_to_be32(pi->clk_regs.rv770.dll_cntl);
table->initialState.levels[0].mclk.mclk770.vMPLL_SS =
cpu_to_be32(pi->clk_regs.rv770.mpll_ss1);
table->initialState.levels[0].mclk.mclk770.vMPLL_SS2 =
cpu_to_be32(pi->clk_regs.rv770.mpll_ss2);
table->initialState.levels[0].mclk.mclk770.mclk_value =
cpu_to_be32(initial_state->low.mclk);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL =
cpu_to_be32(pi->clk_regs.rv770.cg_spll_func_cntl);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_2 =
cpu_to_be32(pi->clk_regs.rv770.cg_spll_func_cntl_2);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_3 =
cpu_to_be32(pi->clk_regs.rv770.cg_spll_func_cntl_3);
table->initialState.levels[0].sclk.vCG_SPLL_SPREAD_SPECTRUM =
cpu_to_be32(pi->clk_regs.rv770.cg_spll_spread_spectrum);
table->initialState.levels[0].sclk.vCG_SPLL_SPREAD_SPECTRUM_2 =
cpu_to_be32(pi->clk_regs.rv770.cg_spll_spread_spectrum_2);
table->initialState.levels[0].sclk.sclk_value =
cpu_to_be32(initial_state->low.sclk);
table->initialState.levels[0].arbValue = MC_CG_ARB_FREQ_F0;
table->initialState.levels[0].seqValue =
rv770_get_seq_value(rdev, &initial_state->low);
rv770_populate_vddc_value(rdev,
initial_state->low.vddc,
&table->initialState.levels[0].vddc);
rv770_populate_initial_mvdd_value(rdev,
&table->initialState.levels[0].mvdd);
a_t = CG_R(0xffff) | CG_L(0);
table->initialState.levels[0].aT = cpu_to_be32(a_t);
table->initialState.levels[0].bSP = cpu_to_be32(pi->dsp);
if (pi->boot_in_gen2)
table->initialState.levels[0].gen2PCIE = 1;
else
table->initialState.levels[0].gen2PCIE = 0;
if (initial_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2)
table->initialState.levels[0].gen2XSP = 1;
else
table->initialState.levels[0].gen2XSP = 0;
if (rdev->family == CHIP_RV740) {
if (pi->mem_gddr5) {
if (initial_state->low.mclk <= pi->mclk_strobe_mode_threshold)
table->initialState.levels[0].strobeMode =
rv740_get_mclk_frequency_ratio(initial_state->low.mclk) | 0x10;
else
table->initialState.levels[0].strobeMode = 0;
if (initial_state->low.mclk >= pi->mclk_edc_enable_threshold)
table->initialState.levels[0].mcFlags = SMC_MC_EDC_RD_FLAG | SMC_MC_EDC_WR_FLAG;
else
table->initialState.levels[0].mcFlags = 0;
}
}
table->initialState.levels[1] = table->initialState.levels[0];
table->initialState.levels[2] = table->initialState.levels[0];
table->initialState.flags |= PPSMC_SWSTATE_FLAG_DC;
return 0;
}
static int rv770_populate_smc_vddc_table(struct radeon_device *rdev,
RV770_SMC_STATETABLE *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int i;
for (i = 0; i < pi->valid_vddc_entries; i++) {
table->highSMIO[pi->vddc_table[i].vddc_index] =
pi->vddc_table[i].high_smio;
table->lowSMIO[pi->vddc_table[i].vddc_index] =
cpu_to_be32(pi->vddc_table[i].low_smio);
}
table->voltageMaskTable.highMask[RV770_SMC_VOLTAGEMASK_VDDC] = 0;
table->voltageMaskTable.lowMask[RV770_SMC_VOLTAGEMASK_VDDC] =
cpu_to_be32(pi->vddc_mask_low);
for (i = 0;
((i < pi->valid_vddc_entries) &&
(pi->max_vddc_in_table >
pi->vddc_table[i].vddc));
i++);
table->maxVDDCIndexInPPTable =
pi->vddc_table[i].vddc_index;
return 0;
}
static int rv770_populate_smc_mvdd_table(struct radeon_device *rdev,
RV770_SMC_STATETABLE *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (pi->mvdd_control) {
table->lowSMIO[MVDD_HIGH_INDEX] |=
cpu_to_be32(pi->mvdd_low_smio[MVDD_HIGH_INDEX]);
table->lowSMIO[MVDD_LOW_INDEX] |=
cpu_to_be32(pi->mvdd_low_smio[MVDD_LOW_INDEX]);
table->voltageMaskTable.highMask[RV770_SMC_VOLTAGEMASK_MVDD] = 0;
table->voltageMaskTable.lowMask[RV770_SMC_VOLTAGEMASK_MVDD] =
cpu_to_be32(pi->mvdd_mask_low);
}
return 0;
}
static int rv770_init_smc_table(struct radeon_device *rdev,
struct radeon_ps *radeon_boot_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct rv7xx_ps *boot_state = rv770_get_ps(radeon_boot_state);
RV770_SMC_STATETABLE *table = &pi->smc_statetable;
int ret;
memset(table, 0, sizeof(RV770_SMC_STATETABLE));
pi->boot_sclk = boot_state->low.sclk;
rv770_populate_smc_vddc_table(rdev, table);
rv770_populate_smc_mvdd_table(rdev, table);
switch (rdev->pm.int_thermal_type) {
case THERMAL_TYPE_RV770:
case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_INTERNAL;
break;
case THERMAL_TYPE_NONE:
table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_NONE;
break;
case THERMAL_TYPE_EXTERNAL_GPIO:
default:
table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_EXTERNAL;
break;
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC) {
table->systemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT)
table->extraFlags |= PPSMC_EXTRAFLAGS_AC2DC_DONT_WAIT_FOR_VBLANK;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT)
table->extraFlags |= PPSMC_EXTRAFLAGS_AC2DC_ACTION_GOTOINITIALSTATE;
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
table->systemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (pi->mem_gddr5)
table->systemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
ret = rv730_populate_smc_initial_state(rdev, radeon_boot_state, table);
else
ret = rv770_populate_smc_initial_state(rdev, radeon_boot_state, table);
if (ret)
return ret;
if (rdev->family == CHIP_RV740)
ret = rv740_populate_smc_acpi_state(rdev, table);
else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
ret = rv730_populate_smc_acpi_state(rdev, table);
else
ret = rv770_populate_smc_acpi_state(rdev, table);
if (ret)
return ret;
table->driverState = table->initialState;
return rv770_copy_bytes_to_smc(rdev,
pi->state_table_start,
(const u8 *)table,
sizeof(RV770_SMC_STATETABLE),
pi->sram_end);
}
static int rv770_construct_vddc_table(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u16 min, max, step;
u32 steps = 0;
u8 vddc_index = 0;
u32 i;
radeon_atom_get_min_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &min);
radeon_atom_get_max_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &max);
radeon_atom_get_voltage_step(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &step);
steps = (max - min) / step + 1;
if (steps > MAX_NO_VREG_STEPS)
return -EINVAL;
for (i = 0; i < steps; i++) {
u32 gpio_pins, gpio_mask;
pi->vddc_table[i].vddc = (u16)(min + i * step);
radeon_atom_get_voltage_gpio_settings(rdev,
pi->vddc_table[i].vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC,
&gpio_pins, &gpio_mask);
pi->vddc_table[i].low_smio = gpio_pins & gpio_mask;
pi->vddc_table[i].high_smio = 0;
pi->vddc_mask_low = gpio_mask;
if (i > 0) {
if ((pi->vddc_table[i].low_smio !=
pi->vddc_table[i - 1].low_smio ) ||
(pi->vddc_table[i].high_smio !=
pi->vddc_table[i - 1].high_smio))
vddc_index++;
}
pi->vddc_table[i].vddc_index = vddc_index;
}
pi->valid_vddc_entries = (u8)steps;
return 0;
}
static u32 rv770_get_mclk_split_point(struct atom_memory_info *memory_info)
{
if (memory_info->mem_type == MEM_TYPE_GDDR3)
return 30000;
return 0;
}
static int rv770_get_mvdd_pin_configuration(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 gpio_pins, gpio_mask;
radeon_atom_get_voltage_gpio_settings(rdev,
MVDD_HIGH_VALUE, SET_VOLTAGE_TYPE_ASIC_MVDDC,
&gpio_pins, &gpio_mask);
pi->mvdd_mask_low = gpio_mask;
pi->mvdd_low_smio[MVDD_HIGH_INDEX] =
gpio_pins & gpio_mask;
radeon_atom_get_voltage_gpio_settings(rdev,
MVDD_LOW_VALUE, SET_VOLTAGE_TYPE_ASIC_MVDDC,
&gpio_pins, &gpio_mask);
pi->mvdd_low_smio[MVDD_LOW_INDEX] =
gpio_pins & gpio_mask;
return 0;
}
u8 rv770_get_memory_module_index(struct radeon_device *rdev)
{
return (u8) ((RREG32(BIOS_SCRATCH_4) >> 16) & 0xff);
}
static int rv770_get_mvdd_configuration(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u8 memory_module_index;
struct atom_memory_info memory_info;
memory_module_index = rv770_get_memory_module_index(rdev);
if (radeon_atom_get_memory_info(rdev, memory_module_index, &memory_info)) {
pi->mvdd_control = false;
return 0;
}
pi->mvdd_split_frequency =
rv770_get_mclk_split_point(&memory_info);
if (pi->mvdd_split_frequency == 0) {
pi->mvdd_control = false;
return 0;
}
return rv770_get_mvdd_pin_configuration(rdev);
}
void rv770_enable_voltage_control(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, VOLT_PWRMGT_EN, ~VOLT_PWRMGT_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~VOLT_PWRMGT_EN);
}
static void rv770_program_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL);
tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK);
if (rdev->pm.dpm.new_active_crtcs & 1) {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
} else if (rdev->pm.dpm.new_active_crtcs & 2) {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK);
} else {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
}
WREG32(CG_DISPLAY_GAP_CNTL, tmp);
}
static void rv770_enable_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
rv770_enable_bif_dynamic_pcie_gen2(rdev, enable);
if (enable)
WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE);
else
WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE);
}
static void r7xx_program_memory_timing_parameters(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state)
{
if ((rdev->family == CHIP_RV730) ||
(rdev->family == CHIP_RV710) ||
(rdev->family == CHIP_RV740))
rv730_program_memory_timing_parameters(rdev, radeon_new_state);
else
rv770_program_memory_timing_parameters(rdev, radeon_new_state);
}
static int rv770_upload_sw_state(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u16 address = pi->state_table_start +
offsetof(RV770_SMC_STATETABLE, driverState);
RV770_SMC_SWSTATE state = { 0 };
int ret;
ret = rv770_convert_power_state_to_smc(rdev, radeon_new_state, &state);
if (ret)
return ret;
return rv770_copy_bytes_to_smc(rdev, address, (const u8 *)&state,
sizeof(RV770_SMC_SWSTATE),
pi->sram_end);
}
int rv770_halt_smc(struct radeon_device *rdev)
{
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_Halt) != PPSMC_Result_OK)
return -EINVAL;
if (rv770_wait_for_smc_inactive(rdev) != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
int rv770_resume_smc(struct radeon_device *rdev)
{
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_Resume) != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
int rv770_set_sw_state(struct radeon_device *rdev)
{
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_SwitchToSwState) != PPSMC_Result_OK)
DRM_DEBUG("rv770_set_sw_state failed\n");
return 0;
}
int rv770_set_boot_state(struct radeon_device *rdev)
{
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_SwitchToInitialState) != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
void rv770_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv7xx_ps *new_state = rv770_get_ps(new_ps);
struct rv7xx_ps *current_state = rv770_get_ps(old_ps);
if ((new_ps->vclk == old_ps->vclk) &&
(new_ps->dclk == old_ps->dclk))
return;
if (new_state->high.sclk >= current_state->high.sclk)
return;
radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk);
}
void rv770_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv7xx_ps *new_state = rv770_get_ps(new_ps);
struct rv7xx_ps *current_state = rv770_get_ps(old_ps);
if ((new_ps->vclk == old_ps->vclk) &&
(new_ps->dclk == old_ps->dclk))
return;
if (new_state->high.sclk < current_state->high.sclk)
return;
radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk);
}
int rv770_restrict_performance_levels_before_switch(struct radeon_device *rdev)
{
if (rv770_send_msg_to_smc(rdev, (PPSMC_Msg)(PPSMC_MSG_NoForcedLevel)) != PPSMC_Result_OK)
return -EINVAL;
if (rv770_send_msg_to_smc(rdev, (PPSMC_Msg)(PPSMC_MSG_TwoLevelsDisabled)) != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
int rv770_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
PPSMC_Msg msg;
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_ZeroLevelsDisabled) != PPSMC_Result_OK)
return -EINVAL;
msg = PPSMC_MSG_ForceHigh;
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK)
return -EINVAL;
msg = (PPSMC_Msg)(PPSMC_MSG_TwoLevelsDisabled);
} else {
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK)
return -EINVAL;
msg = (PPSMC_Msg)(PPSMC_MSG_ZeroLevelsDisabled);
}
if (rv770_send_msg_to_smc(rdev, msg) != PPSMC_Result_OK)
return -EINVAL;
rdev->pm.dpm.forced_level = level;
return 0;
}
void r7xx_start_smc(struct radeon_device *rdev)
{
rv770_start_smc(rdev);
rv770_start_smc_clock(rdev);
}
void r7xx_stop_smc(struct radeon_device *rdev)
{
rv770_reset_smc(rdev);
rv770_stop_smc_clock(rdev);
}
static void rv770_read_clock_registers(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
pi->clk_regs.rv770.cg_spll_func_cntl =
RREG32(CG_SPLL_FUNC_CNTL);
pi->clk_regs.rv770.cg_spll_func_cntl_2 =
RREG32(CG_SPLL_FUNC_CNTL_2);
pi->clk_regs.rv770.cg_spll_func_cntl_3 =
RREG32(CG_SPLL_FUNC_CNTL_3);
pi->clk_regs.rv770.cg_spll_spread_spectrum =
RREG32(CG_SPLL_SPREAD_SPECTRUM);
pi->clk_regs.rv770.cg_spll_spread_spectrum_2 =
RREG32(CG_SPLL_SPREAD_SPECTRUM_2);
pi->clk_regs.rv770.mpll_ad_func_cntl =
RREG32(MPLL_AD_FUNC_CNTL);
pi->clk_regs.rv770.mpll_ad_func_cntl_2 =
RREG32(MPLL_AD_FUNC_CNTL_2);
pi->clk_regs.rv770.mpll_dq_func_cntl =
RREG32(MPLL_DQ_FUNC_CNTL);
pi->clk_regs.rv770.mpll_dq_func_cntl_2 =
RREG32(MPLL_DQ_FUNC_CNTL_2);
pi->clk_regs.rv770.mclk_pwrmgt_cntl =
RREG32(MCLK_PWRMGT_CNTL);
pi->clk_regs.rv770.dll_cntl = RREG32(DLL_CNTL);
}
static void r7xx_read_clock_registers(struct radeon_device *rdev)
{
if (rdev->family == CHIP_RV740)
rv740_read_clock_registers(rdev);
else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
rv730_read_clock_registers(rdev);
else
rv770_read_clock_registers(rdev);
}
void rv770_read_voltage_smio_registers(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
pi->s0_vid_lower_smio_cntl =
RREG32(S0_VID_LOWER_SMIO_CNTL);
}
void rv770_reset_smio_status(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 sw_smio_index, vid_smio_cntl;
sw_smio_index =
(RREG32(GENERAL_PWRMGT) & SW_SMIO_INDEX_MASK) >> SW_SMIO_INDEX_SHIFT;
switch (sw_smio_index) {
case 3:
vid_smio_cntl = RREG32(S3_VID_LOWER_SMIO_CNTL);
break;
case 2:
vid_smio_cntl = RREG32(S2_VID_LOWER_SMIO_CNTL);
break;
case 1:
vid_smio_cntl = RREG32(S1_VID_LOWER_SMIO_CNTL);
break;
case 0:
return;
default:
vid_smio_cntl = pi->s0_vid_lower_smio_cntl;
break;
}
WREG32(S0_VID_LOWER_SMIO_CNTL, vid_smio_cntl);
WREG32_P(GENERAL_PWRMGT, SW_SMIO_INDEX(0), ~SW_SMIO_INDEX_MASK);
}
void rv770_get_memory_type(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 tmp;
tmp = RREG32(MC_SEQ_MISC0);
if (((tmp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT) ==
MC_SEQ_MISC0_GDDR5_VALUE)
pi->mem_gddr5 = true;
else
pi->mem_gddr5 = false;
}
void rv770_get_pcie_gen2_status(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) &&
(tmp & LC_OTHER_SIDE_SUPPORTS_GEN2))
pi->pcie_gen2 = true;
else
pi->pcie_gen2 = false;
if (pi->pcie_gen2) {
if (tmp & LC_CURRENT_DATA_RATE)
pi->boot_in_gen2 = true;
else
pi->boot_in_gen2 = false;
} else
pi->boot_in_gen2 = false;
}
#if 0
static int rv770_enter_ulp_state(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (pi->gfx_clock_gating) {
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON);
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON);
RREG32(GB_TILING_CONFIG);
}
WREG32_P(SMC_MSG, HOST_SMC_MSG(PPSMC_MSG_SwitchToMinimumPower),
~HOST_SMC_MSG_MASK);
udelay(7000);
return 0;
}
static int rv770_exit_ulp_state(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int i;
WREG32_P(SMC_MSG, HOST_SMC_MSG(PPSMC_MSG_ResumeFromMinimumPower),
~HOST_SMC_MSG_MASK);
udelay(7000);
for (i = 0; i < rdev->usec_timeout; i++) {
if (((RREG32(SMC_MSG) & HOST_SMC_RESP_MASK) >> HOST_SMC_RESP_SHIFT) == 1)
break;
udelay(1000);
}
if (pi->gfx_clock_gating)
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
return 0;
}
#endif
static void rv770_get_mclk_odt_threshold(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u8 memory_module_index;
struct atom_memory_info memory_info;
pi->mclk_odt_threshold = 0;
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) {
memory_module_index = rv770_get_memory_module_index(rdev);
if (radeon_atom_get_memory_info(rdev, memory_module_index, &memory_info))
return;
if (memory_info.mem_type == MEM_TYPE_DDR2 ||
memory_info.mem_type == MEM_TYPE_DDR3)
pi->mclk_odt_threshold = 30000;
}
}
void rv770_get_max_vddc(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u16 vddc;
if (radeon_atom_get_max_vddc(rdev, 0, 0, &vddc))
pi->max_vddc = 0;
else
pi->max_vddc = vddc;
}
void rv770_program_response_times(struct radeon_device *rdev)
{
u32 voltage_response_time, backbias_response_time;
u32 acpi_delay_time, vbi_time_out;
u32 vddc_dly, bb_dly, acpi_dly, vbi_dly;
u32 reference_clock;
voltage_response_time = (u32)rdev->pm.dpm.voltage_response_time;
backbias_response_time = (u32)rdev->pm.dpm.backbias_response_time;
if (voltage_response_time == 0)
voltage_response_time = 1000;
if (backbias_response_time == 0)
backbias_response_time = 1000;
acpi_delay_time = 15000;
vbi_time_out = 100000;
reference_clock = radeon_get_xclk(rdev);
vddc_dly = (voltage_response_time * reference_clock) / 1600;
bb_dly = (backbias_response_time * reference_clock) / 1600;
acpi_dly = (acpi_delay_time * reference_clock) / 1600;
vbi_dly = (vbi_time_out * reference_clock) / 1600;
rv770_write_smc_soft_register(rdev,
RV770_SMC_SOFT_REGISTER_delay_vreg, vddc_dly);
rv770_write_smc_soft_register(rdev,
RV770_SMC_SOFT_REGISTER_delay_bbias, bb_dly);
rv770_write_smc_soft_register(rdev,
RV770_SMC_SOFT_REGISTER_delay_acpi, acpi_dly);
rv770_write_smc_soft_register(rdev,
RV770_SMC_SOFT_REGISTER_mclk_chg_timeout, vbi_dly);
#if 0
/* XXX look up hw revision */
if (WEKIVA_A21)
rv770_write_smc_soft_register(rdev,
RV770_SMC_SOFT_REGISTER_baby_step_timer,
0x10);
#endif
}
static void rv770_program_dcodt_before_state_switch(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct rv7xx_ps *new_state = rv770_get_ps(radeon_new_state);
struct rv7xx_ps *current_state = rv770_get_ps(radeon_current_state);
bool current_use_dc = false;
bool new_use_dc = false;
if (pi->mclk_odt_threshold == 0)
return;
if (current_state->high.mclk <= pi->mclk_odt_threshold)
current_use_dc = true;
if (new_state->high.mclk <= pi->mclk_odt_threshold)
new_use_dc = true;
if (current_use_dc == new_use_dc)
return;
if (!current_use_dc && new_use_dc)
return;
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
rv730_program_dcodt(rdev, new_use_dc);
}
static void rv770_program_dcodt_after_state_switch(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct rv7xx_ps *new_state = rv770_get_ps(radeon_new_state);
struct rv7xx_ps *current_state = rv770_get_ps(radeon_current_state);
bool current_use_dc = false;
bool new_use_dc = false;
if (pi->mclk_odt_threshold == 0)
return;
if (current_state->high.mclk <= pi->mclk_odt_threshold)
current_use_dc = true;
if (new_state->high.mclk <= pi->mclk_odt_threshold)
new_use_dc = true;
if (current_use_dc == new_use_dc)
return;
if (current_use_dc && !new_use_dc)
return;
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
rv730_program_dcodt(rdev, new_use_dc);
}
static void rv770_retrieve_odt_values(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (pi->mclk_odt_threshold == 0)
return;
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
rv730_get_odt_values(rdev);
}
static void rv770_set_dpm_event_sources(struct radeon_device *rdev, u32 sources)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
bool want_thermal_protection;
enum radeon_dpm_event_src dpm_event_src;
switch (sources) {
case 0:
default:
want_thermal_protection = false;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL;
break;
case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) |
(1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL;
break;
}
if (want_thermal_protection) {
WREG32_P(CG_THERMAL_CTRL, DPM_EVENT_SRC(dpm_event_src), ~DPM_EVENT_SRC_MASK);
if (pi->thermal_protection)
WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
} else {
WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
}
}
void rv770_enable_auto_throttle_source(struct radeon_device *rdev,
enum radeon_dpm_auto_throttle_src source,
bool enable)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (enable) {
if (!(pi->active_auto_throttle_sources & (1 << source))) {
pi->active_auto_throttle_sources |= 1 << source;
rv770_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
} else {
if (pi->active_auto_throttle_sources & (1 << source)) {
pi->active_auto_throttle_sources &= ~(1 << source);
rv770_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
}
}
static int rv770_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK);
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK);
WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK);
rdev->pm.dpm.thermal.min_temp = low_temp;
rdev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
int rv770_dpm_enable(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
int ret;
if (pi->gfx_clock_gating)
rv770_restore_cgcg(rdev);
if (rv770_dpm_enabled(rdev))
return -EINVAL;
if (pi->voltage_control) {
rv770_enable_voltage_control(rdev, true);
ret = rv770_construct_vddc_table(rdev);
if (ret) {
DRM_ERROR("rv770_construct_vddc_table failed\n");
return ret;
}
}
if (pi->dcodt)
rv770_retrieve_odt_values(rdev);
if (pi->mvdd_control) {
ret = rv770_get_mvdd_configuration(rdev);
if (ret) {
DRM_ERROR("rv770_get_mvdd_configuration failed\n");
return ret;
}
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv770_enable_backbias(rdev, true);
rv770_enable_spread_spectrum(rdev, true);
if (pi->thermal_protection)
rv770_enable_thermal_protection(rdev, true);
rv770_program_mpll_timing_parameters(rdev);
rv770_setup_bsp(rdev);
rv770_program_git(rdev);
rv770_program_tp(rdev);
rv770_program_tpp(rdev);
rv770_program_sstp(rdev);
rv770_program_engine_speed_parameters(rdev);
rv770_enable_display_gap(rdev);
rv770_program_vc(rdev);
if (pi->dynamic_pcie_gen2)
rv770_enable_dynamic_pcie_gen2(rdev, true);
ret = rv770_upload_firmware(rdev);
if (ret) {
DRM_ERROR("rv770_upload_firmware failed\n");
return ret;
}
ret = rv770_init_smc_table(rdev, boot_ps);
if (ret) {
DRM_ERROR("rv770_init_smc_table failed\n");
return ret;
}
rv770_program_response_times(rdev);
r7xx_start_smc(rdev);
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
rv730_start_dpm(rdev);
else
rv770_start_dpm(rdev);
if (pi->gfx_clock_gating)
rv770_gfx_clock_gating_enable(rdev, true);
if (pi->mg_clock_gating)
rv770_mg_clock_gating_enable(rdev, true);
rv770_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
return 0;
}
int rv770_dpm_late_enable(struct radeon_device *rdev)
{
int ret;
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
PPSMC_Result result;
ret = rv770_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
if (ret)
return ret;
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_EnableThermalInterrupt);
if (result != PPSMC_Result_OK)
DRM_DEBUG_KMS("Could not enable thermal interrupts.\n");
}
return 0;
}
void rv770_dpm_disable(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (!rv770_dpm_enabled(rdev))
return;
rv770_clear_vc(rdev);
if (pi->thermal_protection)
rv770_enable_thermal_protection(rdev, false);
rv770_enable_spread_spectrum(rdev, false);
if (pi->dynamic_pcie_gen2)
rv770_enable_dynamic_pcie_gen2(rdev, false);
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
rdev->irq.dpm_thermal = false;
radeon_irq_set(rdev);
}
if (pi->gfx_clock_gating)
rv770_gfx_clock_gating_enable(rdev, false);
if (pi->mg_clock_gating)
rv770_mg_clock_gating_enable(rdev, false);
if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710))
rv730_stop_dpm(rdev);
else
rv770_stop_dpm(rdev);
r7xx_stop_smc(rdev);
rv770_reset_smio_status(rdev);
}
int rv770_dpm_set_power_state(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct radeon_ps *new_ps = rdev->pm.dpm.requested_ps;
struct radeon_ps *old_ps = rdev->pm.dpm.current_ps;
int ret;
ret = rv770_restrict_performance_levels_before_switch(rdev);
if (ret) {
DRM_ERROR("rv770_restrict_performance_levels_before_switch failed\n");
return ret;
}
rv770_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps);
ret = rv770_halt_smc(rdev);
if (ret) {
DRM_ERROR("rv770_halt_smc failed\n");
return ret;
}
ret = rv770_upload_sw_state(rdev, new_ps);
if (ret) {
DRM_ERROR("rv770_upload_sw_state failed\n");
return ret;
}
r7xx_program_memory_timing_parameters(rdev, new_ps);
if (pi->dcodt)
rv770_program_dcodt_before_state_switch(rdev, new_ps, old_ps);
ret = rv770_resume_smc(rdev);
if (ret) {
DRM_ERROR("rv770_resume_smc failed\n");
return ret;
}
ret = rv770_set_sw_state(rdev);
if (ret) {
DRM_ERROR("rv770_set_sw_state failed\n");
return ret;
}
if (pi->dcodt)
rv770_program_dcodt_after_state_switch(rdev, new_ps, old_ps);
rv770_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps);
return 0;
}
#if 0
void rv770_dpm_reset_asic(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
rv770_restrict_performance_levels_before_switch(rdev);
if (pi->dcodt)
rv770_program_dcodt_before_state_switch(rdev, boot_ps, boot_ps);
rv770_set_boot_state(rdev);
if (pi->dcodt)
rv770_program_dcodt_after_state_switch(rdev, boot_ps, boot_ps);
}
#endif
void rv770_dpm_setup_asic(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
r7xx_read_clock_registers(rdev);
rv770_read_voltage_smio_registers(rdev);
rv770_get_memory_type(rdev);
if (pi->dcodt)
rv770_get_mclk_odt_threshold(rdev);
rv770_get_pcie_gen2_status(rdev);
rv770_enable_acpi_pm(rdev);
if (radeon_aspm != 0) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s)
rv770_enable_l0s(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1)
rv770_enable_l1(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1)
rv770_enable_pll_sleep_in_l1(rdev);
}
}
void rv770_dpm_display_configuration_changed(struct radeon_device *rdev)
{
rv770_program_display_gap(rdev);
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void rv7xx_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (r600_is_uvd_state(rps->class, rps->class2)) {
if ((rps->vclk == 0) || (rps->dclk == 0)) {
rps->vclk = RV770_DEFAULT_VCLK_FREQ;
rps->dclk = RV770_DEFAULT_DCLK_FREQ;
}
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
rdev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void rv7xx_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct rv7xx_ps *ps = rv770_get_ps(rps);
u32 sclk, mclk;
struct rv7xx_pl *pl;
switch (index) {
case 0:
pl = &ps->low;
break;
case 1:
pl = &ps->medium;
break;
case 2:
default:
pl = &ps->high;
break;
}
if (rdev->family >= CHIP_CEDAR) {
sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow);
sclk |= clock_info->evergreen.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow);
mclk |= clock_info->evergreen.ucMemoryClockHigh << 16;
pl->vddc = le16_to_cpu(clock_info->evergreen.usVDDC);
pl->vddci = le16_to_cpu(clock_info->evergreen.usVDDCI);
pl->flags = le32_to_cpu(clock_info->evergreen.ulFlags);
} else {
sclk = le16_to_cpu(clock_info->r600.usEngineClockLow);
sclk |= clock_info->r600.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow);
mclk |= clock_info->r600.ucMemoryClockHigh << 16;
pl->vddc = le16_to_cpu(clock_info->r600.usVDDC);
pl->flags = le32_to_cpu(clock_info->r600.ulFlags);
}
pl->mclk = mclk;
pl->sclk = sclk;
/* patch up vddc if necessary */
if (pl->vddc == 0xff01) {
if (pi->max_vddc)
pl->vddc = pi->max_vddc;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) {
pi->acpi_vddc = pl->vddc;
if (rdev->family >= CHIP_CEDAR)
eg_pi->acpi_vddci = pl->vddci;
if (ps->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2)
pi->acpi_pcie_gen2 = true;
else
pi->acpi_pcie_gen2 = false;
}
if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) {
if (rdev->family >= CHIP_BARTS) {
eg_pi->ulv.supported = true;
eg_pi->ulv.pl = pl;
}
}
if (pi->min_vddc_in_table > pl->vddc)
pi->min_vddc_in_table = pl->vddc;
if (pi->max_vddc_in_table < pl->vddc)
pi->max_vddc_in_table = pl->vddc;
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
u16 vddc, vddci, mvdd;
radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd);
pl->mclk = rdev->clock.default_mclk;
pl->sclk = rdev->clock.default_sclk;
pl->vddc = vddc;
pl->vddci = vddci;
}
if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) {
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk = pl->sclk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk = pl->mclk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc = pl->vddc;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci = pl->vddci;
}
}
int rv7xx_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j;
union pplib_clock_info *clock_info;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
struct rv7xx_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
rdev->pm.dpm.ps = kcalloc(power_info->pplib.ucNumStates,
sizeof(struct radeon_ps),
GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
for (i = 0; i < power_info->pplib.ucNumStates; i++) {
power_state = (union pplib_power_state *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset) +
i * power_info->pplib.ucStateEntrySize);
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) +
(power_state->v1.ucNonClockStateIndex *
power_info->pplib.ucNonClockSize));
if (power_info->pplib.ucStateEntrySize - 1) {
u8 *idx;
ps = kzalloc(sizeof(struct rv7xx_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
rv7xx_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info,
power_info->pplib.ucNonClockSize);
idx = (u8 *)&power_state->v1.ucClockStateIndices[0];
for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) {
clock_info = (union pplib_clock_info *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) +
(idx[j] * power_info->pplib.ucClockInfoSize));
rv7xx_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], j,
clock_info);
}
}
}
rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates;
return 0;
}
void rv770_get_engine_memory_ss(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct radeon_atom_ss ss;
pi->sclk_ss = radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, 0);
pi->mclk_ss = radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, 0);
if (pi->sclk_ss || pi->mclk_ss)
pi->dynamic_ss = true;
else
pi->dynamic_ss = false;
}
int rv770_dpm_init(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi;
struct atom_clock_dividers dividers;
int ret;
pi = kzalloc(sizeof(struct rv7xx_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
rv770_get_max_vddc(rdev);
pi->acpi_vddc = 0;
pi->min_vddc_in_table = 0;
pi->max_vddc_in_table = 0;
ret = r600_get_platform_caps(rdev);
if (ret)
return ret;
ret = rv7xx_parse_power_table(rdev);
if (ret)
return ret;
if (rdev->pm.dpm.voltage_response_time == 0)
rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT;
if (rdev->pm.dpm.backbias_response_time == 0)
rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
0, false, &dividers);
if (ret)
pi->ref_div = dividers.ref_div + 1;
else
pi->ref_div = R600_REFERENCEDIVIDER_DFLT;
pi->mclk_strobe_mode_threshold = 30000;
pi->mclk_edc_enable_threshold = 30000;
pi->rlp = RV770_RLP_DFLT;
pi->rmp = RV770_RMP_DFLT;
pi->lhp = RV770_LHP_DFLT;
pi->lmp = RV770_LMP_DFLT;
pi->voltage_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, 0);
pi->mvdd_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_MVDDC, 0);
rv770_get_engine_memory_ss(rdev);
pi->asi = RV770_ASI_DFLT;
pi->pasi = RV770_HASI_DFLT;
pi->vrc = RV770_VRC_DFLT;
pi->power_gating = false;
pi->gfx_clock_gating = true;
pi->mg_clock_gating = true;
pi->mgcgtssm = true;
pi->dynamic_pcie_gen2 = true;
if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE)
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->display_gap = true;
if (rdev->flags & RADEON_IS_MOBILITY)
pi->dcodt = true;
else
pi->dcodt = false;
pi->ulps = true;
pi->mclk_stutter_mode_threshold = 0;
pi->sram_end = SMC_RAM_END;
pi->state_table_start = RV770_SMC_TABLE_ADDRESS;
pi->soft_regs_start = RV770_SMC_SOFT_REGISTERS_START;
return 0;
}
void rv770_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct rv7xx_ps *ps = rv770_get_ps(rps);
struct rv7xx_pl *pl;
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
if (rdev->family >= CHIP_CEDAR) {
pl = &ps->low;
printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u vddci: %u\n",
pl->sclk, pl->mclk, pl->vddc, pl->vddci);
pl = &ps->medium;
printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u vddci: %u\n",
pl->sclk, pl->mclk, pl->vddc, pl->vddci);
pl = &ps->high;
printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u vddci: %u\n",
pl->sclk, pl->mclk, pl->vddc, pl->vddci);
} else {
pl = &ps->low;
printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
pl = &ps->medium;
printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
pl = &ps->high;
printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
}
r600_dpm_print_ps_status(rdev, rps);
}
void rv770_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
struct radeon_ps *rps = rdev->pm.dpm.current_ps;
struct rv7xx_ps *ps = rv770_get_ps(rps);
struct rv7xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >>
CURRENT_PROFILE_INDEX_SHIFT;
if (current_index > 2) {
seq_printf(m, "invalid dpm profile %d\n", current_index);
} else {
if (current_index == 0)
pl = &ps->low;
else if (current_index == 1)
pl = &ps->medium;
else /* current_index == 2 */
pl = &ps->high;
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
if (rdev->family >= CHIP_CEDAR) {
seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u vddci: %u\n",
current_index, pl->sclk, pl->mclk, pl->vddc, pl->vddci);
} else {
seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u\n",
current_index, pl->sclk, pl->mclk, pl->vddc);
}
}
}
u32 rv770_dpm_get_current_sclk(struct radeon_device *rdev)
{
struct radeon_ps *rps = rdev->pm.dpm.current_ps;
struct rv7xx_ps *ps = rv770_get_ps(rps);
struct rv7xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >>
CURRENT_PROFILE_INDEX_SHIFT;
if (current_index > 2) {
return 0;
} else {
if (current_index == 0)
pl = &ps->low;
else if (current_index == 1)
pl = &ps->medium;
else /* current_index == 2 */
pl = &ps->high;
return pl->sclk;
}
}
u32 rv770_dpm_get_current_mclk(struct radeon_device *rdev)
{
struct radeon_ps *rps = rdev->pm.dpm.current_ps;
struct rv7xx_ps *ps = rv770_get_ps(rps);
struct rv7xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >>
CURRENT_PROFILE_INDEX_SHIFT;
if (current_index > 2) {
return 0;
} else {
if (current_index == 0)
pl = &ps->low;
else if (current_index == 1)
pl = &ps->medium;
else /* current_index == 2 */
pl = &ps->high;
return pl->mclk;
}
}
void rv770_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
}
u32 rv770_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct rv7xx_ps *requested_state = rv770_get_ps(rdev->pm.dpm.requested_ps);
if (low)
return requested_state->low.sclk;
else
return requested_state->high.sclk;
}
u32 rv770_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct rv7xx_ps *requested_state = rv770_get_ps(rdev->pm.dpm.requested_ps);
if (low)
return requested_state->low.mclk;
else
return requested_state->high.mclk;
}
bool rv770_dpm_vblank_too_short(struct radeon_device *rdev)
{
u32 vblank_time = r600_dpm_get_vblank_time(rdev);
u32 switch_limit = 200; /* 300 */
/* RV770 */
/* mclk switching doesn't seem to work reliably on desktop RV770s */
if ((rdev->family == CHIP_RV770) &&
!(rdev->flags & RADEON_IS_MOBILITY))
switch_limit = 0xffffffff; /* disable mclk switching */
if (vblank_time < switch_limit)
return true;
else
return false;
}