| // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause |
| /* |
| * Copyright(c) 2016 - 2018 Intel Corporation. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include "cq.h" |
| #include "vt.h" |
| #include "trace.h" |
| |
| static struct workqueue_struct *comp_vector_wq; |
| |
| /** |
| * rvt_cq_enter - add a new entry to the completion queue |
| * @cq: completion queue |
| * @entry: work completion entry to add |
| * @solicited: true if @entry is solicited |
| * |
| * This may be called with qp->s_lock held. |
| * |
| * Return: return true on success, else return |
| * false if cq is full. |
| */ |
| bool rvt_cq_enter(struct rvt_cq *cq, struct ib_wc *entry, bool solicited) |
| { |
| struct ib_uverbs_wc *uqueue = NULL; |
| struct ib_wc *kqueue = NULL; |
| struct rvt_cq_wc *u_wc = NULL; |
| struct rvt_k_cq_wc *k_wc = NULL; |
| unsigned long flags; |
| u32 head; |
| u32 next; |
| u32 tail; |
| |
| spin_lock_irqsave(&cq->lock, flags); |
| |
| if (cq->ip) { |
| u_wc = cq->queue; |
| uqueue = &u_wc->uqueue[0]; |
| head = RDMA_READ_UAPI_ATOMIC(u_wc->head); |
| tail = RDMA_READ_UAPI_ATOMIC(u_wc->tail); |
| } else { |
| k_wc = cq->kqueue; |
| kqueue = &k_wc->kqueue[0]; |
| head = k_wc->head; |
| tail = k_wc->tail; |
| } |
| |
| /* |
| * Note that the head pointer might be writable by |
| * user processes.Take care to verify it is a sane value. |
| */ |
| if (head >= (unsigned)cq->ibcq.cqe) { |
| head = cq->ibcq.cqe; |
| next = 0; |
| } else { |
| next = head + 1; |
| } |
| |
| if (unlikely(next == tail || cq->cq_full)) { |
| struct rvt_dev_info *rdi = cq->rdi; |
| |
| if (!cq->cq_full) |
| rvt_pr_err_ratelimited(rdi, "CQ is full!\n"); |
| cq->cq_full = true; |
| spin_unlock_irqrestore(&cq->lock, flags); |
| if (cq->ibcq.event_handler) { |
| struct ib_event ev; |
| |
| ev.device = cq->ibcq.device; |
| ev.element.cq = &cq->ibcq; |
| ev.event = IB_EVENT_CQ_ERR; |
| cq->ibcq.event_handler(&ev, cq->ibcq.cq_context); |
| } |
| return false; |
| } |
| trace_rvt_cq_enter(cq, entry, head); |
| if (uqueue) { |
| uqueue[head].wr_id = entry->wr_id; |
| uqueue[head].status = entry->status; |
| uqueue[head].opcode = entry->opcode; |
| uqueue[head].vendor_err = entry->vendor_err; |
| uqueue[head].byte_len = entry->byte_len; |
| uqueue[head].ex.imm_data = entry->ex.imm_data; |
| uqueue[head].qp_num = entry->qp->qp_num; |
| uqueue[head].src_qp = entry->src_qp; |
| uqueue[head].wc_flags = entry->wc_flags; |
| uqueue[head].pkey_index = entry->pkey_index; |
| uqueue[head].slid = ib_lid_cpu16(entry->slid); |
| uqueue[head].sl = entry->sl; |
| uqueue[head].dlid_path_bits = entry->dlid_path_bits; |
| uqueue[head].port_num = entry->port_num; |
| /* Make sure entry is written before the head index. */ |
| RDMA_WRITE_UAPI_ATOMIC(u_wc->head, next); |
| } else { |
| kqueue[head] = *entry; |
| k_wc->head = next; |
| } |
| |
| if (cq->notify == IB_CQ_NEXT_COMP || |
| (cq->notify == IB_CQ_SOLICITED && |
| (solicited || entry->status != IB_WC_SUCCESS))) { |
| /* |
| * This will cause send_complete() to be called in |
| * another thread. |
| */ |
| cq->notify = RVT_CQ_NONE; |
| cq->triggered++; |
| queue_work_on(cq->comp_vector_cpu, comp_vector_wq, |
| &cq->comptask); |
| } |
| |
| spin_unlock_irqrestore(&cq->lock, flags); |
| return true; |
| } |
| EXPORT_SYMBOL(rvt_cq_enter); |
| |
| static void send_complete(struct work_struct *work) |
| { |
| struct rvt_cq *cq = container_of(work, struct rvt_cq, comptask); |
| |
| /* |
| * The completion handler will most likely rearm the notification |
| * and poll for all pending entries. If a new completion entry |
| * is added while we are in this routine, queue_work() |
| * won't call us again until we return so we check triggered to |
| * see if we need to call the handler again. |
| */ |
| for (;;) { |
| u8 triggered = cq->triggered; |
| |
| /* |
| * IPoIB connected mode assumes the callback is from a |
| * soft IRQ. We simulate this by blocking "bottom halves". |
| * See the implementation for ipoib_cm_handle_tx_wc(), |
| * netif_tx_lock_bh() and netif_tx_lock(). |
| */ |
| local_bh_disable(); |
| cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context); |
| local_bh_enable(); |
| |
| if (cq->triggered == triggered) |
| return; |
| } |
| } |
| |
| /** |
| * rvt_create_cq - create a completion queue |
| * @ibcq: Allocated CQ |
| * @attr: creation attributes |
| * @udata: user data for libibverbs.so |
| * |
| * Called by ib_create_cq() in the generic verbs code. |
| * |
| * Return: 0 on success |
| */ |
| int rvt_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr, |
| struct ib_udata *udata) |
| { |
| struct ib_device *ibdev = ibcq->device; |
| struct rvt_dev_info *rdi = ib_to_rvt(ibdev); |
| struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); |
| struct rvt_cq_wc *u_wc = NULL; |
| struct rvt_k_cq_wc *k_wc = NULL; |
| u32 sz; |
| unsigned int entries = attr->cqe; |
| int comp_vector = attr->comp_vector; |
| int err; |
| |
| if (attr->flags) |
| return -EOPNOTSUPP; |
| |
| if (entries < 1 || entries > rdi->dparms.props.max_cqe) |
| return -EINVAL; |
| |
| if (comp_vector < 0) |
| comp_vector = 0; |
| |
| comp_vector = comp_vector % rdi->ibdev.num_comp_vectors; |
| |
| /* |
| * Allocate the completion queue entries and head/tail pointers. |
| * This is allocated separately so that it can be resized and |
| * also mapped into user space. |
| * We need to use vmalloc() in order to support mmap and large |
| * numbers of entries. |
| */ |
| if (udata && udata->outlen >= sizeof(__u64)) { |
| sz = sizeof(struct ib_uverbs_wc) * (entries + 1); |
| sz += sizeof(*u_wc); |
| u_wc = vmalloc_user(sz); |
| if (!u_wc) |
| return -ENOMEM; |
| } else { |
| sz = sizeof(struct ib_wc) * (entries + 1); |
| sz += sizeof(*k_wc); |
| k_wc = vzalloc_node(sz, rdi->dparms.node); |
| if (!k_wc) |
| return -ENOMEM; |
| } |
| |
| /* |
| * Return the address of the WC as the offset to mmap. |
| * See rvt_mmap() for details. |
| */ |
| if (udata && udata->outlen >= sizeof(__u64)) { |
| cq->ip = rvt_create_mmap_info(rdi, sz, udata, u_wc); |
| if (IS_ERR(cq->ip)) { |
| err = PTR_ERR(cq->ip); |
| goto bail_wc; |
| } |
| |
| err = ib_copy_to_udata(udata, &cq->ip->offset, |
| sizeof(cq->ip->offset)); |
| if (err) |
| goto bail_ip; |
| } |
| |
| spin_lock_irq(&rdi->n_cqs_lock); |
| if (rdi->n_cqs_allocated == rdi->dparms.props.max_cq) { |
| spin_unlock_irq(&rdi->n_cqs_lock); |
| err = -ENOMEM; |
| goto bail_ip; |
| } |
| |
| rdi->n_cqs_allocated++; |
| spin_unlock_irq(&rdi->n_cqs_lock); |
| |
| if (cq->ip) { |
| spin_lock_irq(&rdi->pending_lock); |
| list_add(&cq->ip->pending_mmaps, &rdi->pending_mmaps); |
| spin_unlock_irq(&rdi->pending_lock); |
| } |
| |
| /* |
| * ib_create_cq() will initialize cq->ibcq except for cq->ibcq.cqe. |
| * The number of entries should be >= the number requested or return |
| * an error. |
| */ |
| cq->rdi = rdi; |
| if (rdi->driver_f.comp_vect_cpu_lookup) |
| cq->comp_vector_cpu = |
| rdi->driver_f.comp_vect_cpu_lookup(rdi, comp_vector); |
| else |
| cq->comp_vector_cpu = |
| cpumask_first(cpumask_of_node(rdi->dparms.node)); |
| |
| cq->ibcq.cqe = entries; |
| cq->notify = RVT_CQ_NONE; |
| spin_lock_init(&cq->lock); |
| INIT_WORK(&cq->comptask, send_complete); |
| if (u_wc) |
| cq->queue = u_wc; |
| else |
| cq->kqueue = k_wc; |
| |
| trace_rvt_create_cq(cq, attr); |
| return 0; |
| |
| bail_ip: |
| kfree(cq->ip); |
| bail_wc: |
| vfree(u_wc); |
| vfree(k_wc); |
| return err; |
| } |
| |
| /** |
| * rvt_destroy_cq - destroy a completion queue |
| * @ibcq: the completion queue to destroy. |
| * @udata: user data or NULL for kernel object |
| * |
| * Called by ib_destroy_cq() in the generic verbs code. |
| */ |
| int rvt_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata) |
| { |
| struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); |
| struct rvt_dev_info *rdi = cq->rdi; |
| |
| flush_work(&cq->comptask); |
| spin_lock_irq(&rdi->n_cqs_lock); |
| rdi->n_cqs_allocated--; |
| spin_unlock_irq(&rdi->n_cqs_lock); |
| if (cq->ip) |
| kref_put(&cq->ip->ref, rvt_release_mmap_info); |
| else |
| vfree(cq->kqueue); |
| return 0; |
| } |
| |
| /** |
| * rvt_req_notify_cq - change the notification type for a completion queue |
| * @ibcq: the completion queue |
| * @notify_flags: the type of notification to request |
| * |
| * This may be called from interrupt context. Also called by |
| * ib_req_notify_cq() in the generic verbs code. |
| * |
| * Return: 0 for success. |
| */ |
| int rvt_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags) |
| { |
| struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&cq->lock, flags); |
| /* |
| * Don't change IB_CQ_NEXT_COMP to IB_CQ_SOLICITED but allow |
| * any other transitions (see C11-31 and C11-32 in ch. 11.4.2.2). |
| */ |
| if (cq->notify != IB_CQ_NEXT_COMP) |
| cq->notify = notify_flags & IB_CQ_SOLICITED_MASK; |
| |
| if (notify_flags & IB_CQ_REPORT_MISSED_EVENTS) { |
| if (cq->queue) { |
| if (RDMA_READ_UAPI_ATOMIC(cq->queue->head) != |
| RDMA_READ_UAPI_ATOMIC(cq->queue->tail)) |
| ret = 1; |
| } else { |
| if (cq->kqueue->head != cq->kqueue->tail) |
| ret = 1; |
| } |
| } |
| |
| spin_unlock_irqrestore(&cq->lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * rvt_resize_cq - change the size of the CQ |
| * @ibcq: the completion queue |
| * |
| * Return: 0 for success. |
| */ |
| int rvt_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata) |
| { |
| struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); |
| u32 head, tail, n; |
| int ret; |
| u32 sz; |
| struct rvt_dev_info *rdi = cq->rdi; |
| struct rvt_cq_wc *u_wc = NULL; |
| struct rvt_cq_wc *old_u_wc = NULL; |
| struct rvt_k_cq_wc *k_wc = NULL; |
| struct rvt_k_cq_wc *old_k_wc = NULL; |
| |
| if (cqe < 1 || cqe > rdi->dparms.props.max_cqe) |
| return -EINVAL; |
| |
| /* |
| * Need to use vmalloc() if we want to support large #s of entries. |
| */ |
| if (udata && udata->outlen >= sizeof(__u64)) { |
| sz = sizeof(struct ib_uverbs_wc) * (cqe + 1); |
| sz += sizeof(*u_wc); |
| u_wc = vmalloc_user(sz); |
| if (!u_wc) |
| return -ENOMEM; |
| } else { |
| sz = sizeof(struct ib_wc) * (cqe + 1); |
| sz += sizeof(*k_wc); |
| k_wc = vzalloc_node(sz, rdi->dparms.node); |
| if (!k_wc) |
| return -ENOMEM; |
| } |
| /* Check that we can write the offset to mmap. */ |
| if (udata && udata->outlen >= sizeof(__u64)) { |
| __u64 offset = 0; |
| |
| ret = ib_copy_to_udata(udata, &offset, sizeof(offset)); |
| if (ret) |
| goto bail_free; |
| } |
| |
| spin_lock_irq(&cq->lock); |
| /* |
| * Make sure head and tail are sane since they |
| * might be user writable. |
| */ |
| if (u_wc) { |
| old_u_wc = cq->queue; |
| head = RDMA_READ_UAPI_ATOMIC(old_u_wc->head); |
| tail = RDMA_READ_UAPI_ATOMIC(old_u_wc->tail); |
| } else { |
| old_k_wc = cq->kqueue; |
| head = old_k_wc->head; |
| tail = old_k_wc->tail; |
| } |
| |
| if (head > (u32)cq->ibcq.cqe) |
| head = (u32)cq->ibcq.cqe; |
| if (tail > (u32)cq->ibcq.cqe) |
| tail = (u32)cq->ibcq.cqe; |
| if (head < tail) |
| n = cq->ibcq.cqe + 1 + head - tail; |
| else |
| n = head - tail; |
| if (unlikely((u32)cqe < n)) { |
| ret = -EINVAL; |
| goto bail_unlock; |
| } |
| for (n = 0; tail != head; n++) { |
| if (u_wc) |
| u_wc->uqueue[n] = old_u_wc->uqueue[tail]; |
| else |
| k_wc->kqueue[n] = old_k_wc->kqueue[tail]; |
| if (tail == (u32)cq->ibcq.cqe) |
| tail = 0; |
| else |
| tail++; |
| } |
| cq->ibcq.cqe = cqe; |
| if (u_wc) { |
| RDMA_WRITE_UAPI_ATOMIC(u_wc->head, n); |
| RDMA_WRITE_UAPI_ATOMIC(u_wc->tail, 0); |
| cq->queue = u_wc; |
| } else { |
| k_wc->head = n; |
| k_wc->tail = 0; |
| cq->kqueue = k_wc; |
| } |
| spin_unlock_irq(&cq->lock); |
| |
| if (u_wc) |
| vfree(old_u_wc); |
| else |
| vfree(old_k_wc); |
| |
| if (cq->ip) { |
| struct rvt_mmap_info *ip = cq->ip; |
| |
| rvt_update_mmap_info(rdi, ip, sz, u_wc); |
| |
| /* |
| * Return the offset to mmap. |
| * See rvt_mmap() for details. |
| */ |
| if (udata && udata->outlen >= sizeof(__u64)) { |
| ret = ib_copy_to_udata(udata, &ip->offset, |
| sizeof(ip->offset)); |
| if (ret) |
| return ret; |
| } |
| |
| spin_lock_irq(&rdi->pending_lock); |
| if (list_empty(&ip->pending_mmaps)) |
| list_add(&ip->pending_mmaps, &rdi->pending_mmaps); |
| spin_unlock_irq(&rdi->pending_lock); |
| } |
| |
| return 0; |
| |
| bail_unlock: |
| spin_unlock_irq(&cq->lock); |
| bail_free: |
| vfree(u_wc); |
| vfree(k_wc); |
| |
| return ret; |
| } |
| |
| /** |
| * rvt_poll_cq - poll for work completion entries |
| * @ibcq: the completion queue to poll |
| * @num_entries: the maximum number of entries to return |
| * @entry: pointer to array where work completions are placed |
| * |
| * This may be called from interrupt context. Also called by ib_poll_cq() |
| * in the generic verbs code. |
| * |
| * Return: the number of completion entries polled. |
| */ |
| int rvt_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry) |
| { |
| struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); |
| struct rvt_k_cq_wc *wc; |
| unsigned long flags; |
| int npolled; |
| u32 tail; |
| |
| /* The kernel can only poll a kernel completion queue */ |
| if (cq->ip) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&cq->lock, flags); |
| |
| wc = cq->kqueue; |
| tail = wc->tail; |
| if (tail > (u32)cq->ibcq.cqe) |
| tail = (u32)cq->ibcq.cqe; |
| for (npolled = 0; npolled < num_entries; ++npolled, ++entry) { |
| if (tail == wc->head) |
| break; |
| /* The kernel doesn't need a RMB since it has the lock. */ |
| trace_rvt_cq_poll(cq, &wc->kqueue[tail], npolled); |
| *entry = wc->kqueue[tail]; |
| if (tail >= cq->ibcq.cqe) |
| tail = 0; |
| else |
| tail++; |
| } |
| wc->tail = tail; |
| |
| spin_unlock_irqrestore(&cq->lock, flags); |
| |
| return npolled; |
| } |
| |
| /** |
| * rvt_driver_cq_init - Init cq resources on behalf of driver |
| * |
| * Return: 0 on success |
| */ |
| int rvt_driver_cq_init(void) |
| { |
| comp_vector_wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_CPU_INTENSIVE, |
| 0, "rdmavt_cq"); |
| if (!comp_vector_wq) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * rvt_cq_exit - tear down cq reources |
| */ |
| void rvt_cq_exit(void) |
| { |
| destroy_workqueue(comp_vector_wq); |
| comp_vector_wq = NULL; |
| } |